Supporting Information

Direct Synthesis of CsPbX₃ Perovskite Nanocrystal Assemblies

Chujie Wang,^{*a*} Sri K. Matta,^{*b,c*} Chun Kiu Ng,^{*a*} Chang Cao,^{*a*} Manoj Sharma,^{*a**} Anthony S.R. Chesman,^{*d*} Salvy P. Russo^{*b*} and Jacek J. Jasieniak^{*a**}

a. ARC Centre of Excellence in Exciton Science, Department of Materials
Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
b. ARC Centre of Excellence in Exciton Science, School of Science, RMIT
University, Melbourne 3000, Australia

c Center for Computational Sciences, University of Tsukuba, Japan

d. CSIRO Manufacturing, Ian Wark Laboratories, Research Way, Clayton, VIC 3168, Australia

E mail: manoj.sharma@monash.edu; jacek.Jasieniak@monash.edu

Fig. S1. Chemical structures of the solvents and ligands used in the synthesis of CsPbX₃NCs/SCs.

Fig. S2. DLS size measurements for CsPbI₃ NCs and SCs.

Fig. S3. TEM images for CsPbI₃ SCs at a) low, b) medium, c) high and d) highest magnifications.

Fig. S4. High-angle annular dark-field imaging (HAADF) images CsPbBr₃ SCs.

Fig. S5. STEM- EDX mapping of Cs, Pb and halide elements for a) CsPbCl₃, b) CsPbBr₃ and c) CsPbI₃ SCs.

Fig. S6. XRD patterns of CsPbCl₃, CsPbBr₃ and CsPbI₃ super-crystals. Standard PDF numbers for the cubic phases of CsPbCl₃, CsPbBr₃ and CsPbI₃ are 00-018-0365, 00-054-0752, 01-080-4039, respectively.

Fig. S7. The SADP of CsPbI₃ SCs synthesised at a Cs:Pb:I = 1:1:2 ratio. The pattern is indexed to the Cs₄PbI₆ phase.

Fig. S8. Absorption spectra of the CsPbI₃ SC crude solutions synthesised at different Cs:Pb:I ratios.

The extinction coefficient (ϵ) for CsPbI₃ NCs is 4.07×10⁶ M⁻¹ cm⁻¹ at 400 nm. ¹ The absorption spectra was measured by diluting 10 µl of the crude solutions in 3 ml of hexane.

According to the Beer-Lambert law, the concentration of the NCs can be calculated.

 $A = \varepsilon C L$

In which C is the [NC], L is the path length (1 cm), A is the absorbance.

With the C, the total molar of Cs, and the yield of the synthesis reaction in terms of Cs precursor can thus be calculated.

All the results are summarized in the table below:

Table S1. Calculations of the reaction yield (by Cs content) for different Cs:Pb:I ratios.

Cs:Pb:I	Absorbance at 400nm	Concentration of NC (M)	Concentration of Cs (M)	Total Molar of Cs (Mol)	Total Cs injection (Mol)	Reaction Yield of Cs (%)
1:4:8	0.15	1.1E-6	5.5E-3	3.3E-5	4.4E-5	75
1:4:16	0.17	1.26E-6	6.3E-3	3.7E-5	4.4E-5	85
1:2:8	0.34	2.5E-6	1.2E-2	7.2E-5	8.8E-5	81
1:1:4	0.65	4.8E-6	2.4E-2	1.4E-4	1.8E-4	77

CsPbl₃ synthesized following the SC procedure with saturated and unsaturated solvent

Fig. S9. TEM images for $CsPbI_3$ synthesised at Cs:Pb:I = 1:1:4 with the TMPPA and HDA ligands and a) saturated dodecane solvent and b) unsaturated octadecene solvent

CsPbl₃ synthesized following the SC procedure with TMPPA + OLA ligands

Fig. S10. a) Low and b) high magnification TEM images for $CsPbI_3$ synthesised at Cs:Pb:I = 1:1:4 with the TMPPA and OLA ligands. Herein, the pre-made

hexadecylammonium iodide is used as the extra iodide source, avoiding the hydroiodic acid being consumed by the alkene of OLA.

CsPbl₃ synthesized following the SC procedure with OA + HDA ligands

Fig. S11. a) Low and b) high magnification TEM images for CsPbI₃ synthesised at Cs:Pb:I= 1:1:4 with OA and HDA ligands.

Fig. S12. ³¹P-NMR spectra of the SC dispersions of (top to bottom) CsPbCl₃, CsPbBr₃, CsPbI₃, which were washed 2 times.

Because TMPPA was the only source of phosphorus in the SC dispersion, ³¹P NMR spectroscopy can be used to monitor its speciation in solution. After the 2nd wash (centrifuged - redispersed twice), ³¹P NMR spectra were collected for the CsPbCl₃, CsPbBr₃, and CsPbI₃ SCs, with no phosphorus signals detected with an extended data collection period (10 hr). This indicates that all TMPPA species have been removed. Such a result is consistent with our previous report on the synthesis of CsPbI₃ NCs using TMPPA.² Hence, it can be confirmed that the TMPPA is not binding to the CsPbX₃ SC surface, and the only surface binding ligand is therefore HDA.

Fig. S13. Plot of NC-ligand energy (in eV) vs attachment angle of the HDA-Br ligand for a single nanoparticle with 3 ligands attached. An attachment angle of 0° indicates the ligand is perpendicular to the surface (see Fig.s 4b-c). Negative and positive angles represent the ligand bend orientation is to the left and right, respectively.

Fig. S14. Absolute PL QYs for CsPbBr₃ NCs and SCs.

Fig. S15. (a,b) Photoluminescence emission spectra and (c,d) TRPL decay curves of CsPbBr₃ NCs and SCs.

Sample	TRF Decay Components						Amplitude
		Average					
		lifetime					
							$\frac{\sum_{A_i\tau_i}}{\sum_{A_i}}$
	τ _{1 (ns)}	$\tau_{2 (ns)}$	τ _{3 (ns)}	A1	A2	A3	τ _{avg} (ns)
SCs solution	1.29	4.80	24.74	6.41	5.17	0.33	3.46
NCs solution	1.24	5.32	20.10	5.45	5.92	0.39	3.92
SCs film	4.91	20.38	110.7	5.371	1.84	0.29	12.82
NCs film	3.83	10.75	50.1	5.69	2.92	0.243	7.37

Table S2. Fluorescence decay components of the CsPbBr $_3$ NCs and SCs

Table S3. Fractional Emission Contributions of the CsPbBr₃ NCs and SCs

Sample	Fractional Emission Contributions						
	$\frac{A_i au_i}{\sum A_i au_i}$						
	$A_{1}\tau_{1}$ (%)	$A_2 \tau_2 (\%)$	Α ₃ τ ₃ (%)				
SCs solution	20.13	60.00	19.86				
NCs solution	14.60	68.28	17.12				
SCs film	27.45	38.91	33.64				
NCs film	33.34	48.03	18.63				

References

1 C. Wang, A. S. R. Chesman, W. Yin, L. Frazer, A. M. Funston, J. J. Jasieniak, J. Chem. Phys. 2019, 151, 121105.

2 C. Wang, A. S. R. Chesman, J. J. Jasieniak, Chem. Commun. 2017, 53, 232.