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S1 Conductance measurement protocol

Before starting any data set (of 1000 traces), to get rid of any memory ef-
fect from the local structure, we first manually break and form junction few
times using the coarse knob and then choose the triangular piezo pulse with
sufficiently large amplitude such that the conductance could reach up to >
200-300 G before each trace. The representative piezo ramp and the cor-
responding data from a data set (50 mV bias and 3 nm/s stretching speed)
are shown in Figure S1. This procedure leads to spontaneously formed fresh
junctions at each stretching event. We can see that the upper limit of mea-
surable conductance is 38 G for an applied bias of 50 mV with an amplifier
(current to voltage) gain of 10° V/A. This is because our 24 bit DAQ card
(PCI 4461, National Instrument) can measure a maximum voltage of + /-
10V. However, in reality it is a few 100*** of Gy, ensuring the fact that we
indeed rupture any local structure before taking any new trace. Futhermore,
Figure Sla also shows the three consecutive sets of conductance traces as a
function of piezo bias. Unique evolution of the junctions is better visualized
from the zoomed view as shown in Figure S1b. While trace 2 reveals the
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chain-like structure, trace 1 and trace 3 are limited to a single atomic junc-
tion. A completely different structure near 2.0 Gq further verify the absence
of any possible structural memory effect.
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Figure S1: (a) Acquisition of conductance traces for a gold (Au) atomic
contact during consecutive breaking (pull) and making (push) in the break
junction configuration at 77K. Bottom panel: Triangular waveform of the
piezo voltage and Top panel: corresponding conductance of the junction.
(b) Zoomed view of the conductance displacement breaking traces of gold
atomic junction, shown in (a) where traces are shifted horizontally for better
distinction.
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Figure S2: The Loss function during training of the model vs Epoch

S2 Unsupervised Machine Learning Methods

S2.1 Feature Extraction using Encoder-Decoder Model

The initial point of this analysis is the dataset of individual breaking traces
obtained from experiment. As a part of data preprocessing, each trace in
the dataset are made to have the same dimension. The same number of
equispaced datapoints M are picked from each trace between conductance
values of 0.7Gy and 1.4 Gy, the region which encapsulates information of
atomic chain formation before breaking. A value of M=100 is seen to provide
enough accuracy without computational overhead. Consequently, traces with
data-points less than M in the specified range are discarded. This reduces
the original dataset to ~ 22000 from 90000. Thus we end up with a modified
dataset of the form {G,(m); n € 1,2,.N; m € 1,2,.. M} where n is the trace
index and m is the points in each trace.

The unsupervised learning workflow adopted here for extracting the es-
sential features from the traces is the Stacked auto-encoder model, shown
schematically in figure 1(C) in the main text. This neural network based
deep learning framework essentially consists of two parts, an encoding part
and a decoding part. The encoding part produces a dimension-reduced fea-
ture representation of the input space into a code layer, while the decoding



part reconstructs the initial input using the code as input by minimizing a loss
function. The dimension reduction(reconstruction) in the encoder(decoder)
part is done through hierarchically stacked hidden layers of neurons where
the output of one layer is fed to the input of the next layer. Let L; and L to
be the number of neurons in the input data and feature space, respectively.
For a set of N training samples of the data space X = {x; € R} of the
data space, the encoding network with parameters P, maps x; to {y; € RL¥}
in the feature space(Y) in a non-linear fashion. Mathematically this can be
represented as Y = {*"“p (X). The decoding network with parameters P, is
used to reconstruct the data from feature space to the original data space
by another set of non-linear mapping. This equates to the formulation X =
fdecp (Y). If the data space has dimension much larger than that of the fea-
ture space,i.e, L;>Lp, then the outputs of the encoder network represent the
latent key features of the input trace data. The encoding-decoding network
are optimized with respect to their parameters P, and P, by training them
on the pre-processed experimental trace data {G,; n=1,2,.N}. The training
aims at minimizing the loss function(Fig S2) :
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Loss(P,, Py) = Z e (f(Gn)) — Gy |I?

There are certain algorithm-specific hyperparameters that are connected
to the training of the stacked autoencoder model. This include the size of the
code layer or the feature space, number of layers in the encoder and decoder
and the number of nodes in each layer. The detailed network architecture is
given in Table S1. Adam optimizer has been used in the model. Additionally,
two other parameters required in neural network training, the learning rate
and the batch size, are set to 1e-5 and 100 respectively. The model is trained
for 400 epochs beyond which the loss function saturates.

S2.2 Feature Clustering and Representation with K-
means and PCA

A clustering algorithm is used to distinguish among different kinds of traces
based on the extracted features in the previous step. This aids in grouping
breaking traces generated through different atomic rearrangements. A K-
Means clustering algorithm is applied for our purpose. The choice is made
owing to its efficiency and effectiveness in handling higher dimensional data.
This is an iterative process to conglomerate data into K different clusters such
that within each cluster the sum-squared-distances are minimized from their
respective centroids. The process begins by placing the centroids randomly in



Layer Name

No of Nodes

Activation function

Input Layer 100 None
Encoder Hidden Layer 1 75 Sigmoid
Hidden Layer 2 50 Sigmoid
Feature Feature Layer 25 Sigmoid
Hidden Layer 1 50 Sigmoid
Decoder Hidden Layer 2 75 Sigmoid
Output Layer 100 None

Table S1: The network architecture of the stacked auto-encoder model

the feature space. Next, distance between each trace and all the centroids are
calculated and is subsequently assigned to the cluster of the nearest centroid.
The centroids are then recalculated. This cycle is iterated until maximum
displacement of the centroids(O;, where j are centroid indices) between two
consecutive iterations converge to a small value(e), i.e, max| O5"'- O3] < e,
where s+1 and s indicate two consecutive iterations.

The choice of the number of clusters(K) is undoubtedly crucial to get clus-
tering that yields coherent physical interpretation. To determine the optimal
value of clusters K;.,., we have implemented the Elbow Method algorithm.
The idea is to calculate the Sum-of-squared-errors(SSE) for several guess K
values. SSE declines rapidly when the number of clusters K (K<Kj.,..) ap-
proach the true number of clusters(Ky,,.) in the data, and quickly slows down
once it is exceeded. The optimal Kj;,,. value can then be determined by plot-
ting K-SSE curve and locating the point of inflection|[1]. Rather than locating
this point visually, kneedle[2| algorithm is implemented via KneeLocator|3|
that returns the point of maximum curvature(knee) for a set of (x,y). The
optimal number of clusters is found to be three(Fig S3).

For better comprehension of the clustering exercise, the trace data from
the multidimensional feature space are projected to a lower dimensional
dataspace without loss of crucial information. This is achieved by employ-
ing the Principal Component Analysis (PCA)[4] algorithm. In this technique,
every vector of the original feature space is projected onto the first two eigen-
vectors of the covariance matrix of the data.

S3 Chain formation analysis

Mechanically controllable break junction (MCBJ) technique what we have
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Figure S3: SSE-vs-Number of Clusters(K). The point of inflection lies at
K=3

used to characterize the atomic junctions, can provide statistics over thou-
sands of independent data sets, and provides unambiguous evidence of chain
formation, as well accepted in the community. In the following, we provide
a detailed account of this.

S3.1 Plateau length histogram

Typically, if there is a formation of atomic chain, the plateau length (1Gy)
will be longer. Technically, it is defined as the difference between two abso-
lute displacement values, corresponding to a conductance G; to a desired
conductance value Gy. Two representative cases are shown having both
breaking (blue) and making (red) traces (see Figure S4c-d). Histogram of
these length for breaking traces is thus presents the distribution of plateau
lengths, obtained from each traces. It has been widely used to probe the
atomic chain formation in metals |5, 6, 7, 8]. Figure S4a shows the plateau
length histogram of gold atomic junctions where (1), (2) and (3) denotes
three consecutive peaks with average peak value 1.67 + 0.11 A, 4.78 + 0.17
A and 6.95 + 0.32 A. Conductance segments used to prepare the histogram
is 0.8 Go to 1.2 Gy. It is evident that plateau lengths can extend up to 10
Aas well as histogram exhibits equidistant peaks of average separation 2.6
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Figure S4: (a) Plateau length histogram of gold atomic junction, measured
at 77 K where red dash dotted line denotes the Gaussian fitting of the corre-
sponding peaks: 1, 2 and 3. (b) Average return length vs. plateau length of
gold atomic junction, measured at 77 K. (¢, d) Two representative conduc-
tance displacement breaking (blue) and making (red) traces of gold atomic
junction where breaking and making event is denoted by the arrow in d. The
black arrows, representing the plateau length and return length with their
absolute value, are mentioned in the respective graph.

A. Length corresponding to each peak structure demonstrates the tendency
of the junction to break at that displacement values, in which a sufficient
amount of stress is accumulated upon elongation. The relative separation
between these peaks is of the order of the interatomic separation of gold,
which is an indicative of gold atomic chain formation.

S3.2 Return length histogram

Further confirmation on the formation of atomic chain is established by plot-
ting average return length as a function of plateau length, shown in Figure



S4b. Return length is defined as the length over which two electrodes are
needed to retract back to reestablish the junction after breaking. For in-
stance, plateau length and return length of two representative traces are
shown in Figure S4c-d. Figure S4b shows the average return length calcu-
lated from large number of traces as a function of the corresponding plateau
length and we observed that average return length increases almost linearly
with the plateau length which gives a strong indication regarding the forma-
tion of Au atomic chain. An offset of around 8 Ais observed to be present
due to the elastic response of the atomic banks|5, 6, 9, 10].

S4 Supervised Machine Learning Method

Random Forest algorithm has been employed in our work. The number of
trees in the forest has been set to 500 which corresponds to the optimal
model. No limitations has been imposed on the depth of a tree. Based on
10-fold cross-validation, the optimal model has correlation coefficient of 0.94
and mean-absolute error of ~3%.

S5 Comparison of 1D histograms
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Figure S5: A comparison of the 1D histograms of three types demonstrating
the characteristics difference among them.
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