Supporting Information

Tailoring Density of State of Ni(OH)₂ with Ni⁰ Towards Solar Urea Wastewater Splitting

Li Zou¹, Wenyan Tao², Jing Huang¹, Shuxiang Wang¹, Yijia Zhang¹, Keqiang Han¹, Yi Hu¹, Haoyan

Gao¹, Pingping Yang¹, and Jiale Xie^{1*}

¹ School of New Energy Materials, Southwest Petroleum University, Chengdu, 610500, People's

Republic of China.

² Tongwei Solar Company, Chengdu, 610299, People's Republic of China.

*Corresponding author. J.L. Xie, E-mail: jialexie@swpu.edu.cn

Figure S1. CV curves with Pt and Ni counter electrodes in PBS (pH=6.8) at a scan rate of 100 mV s⁻¹.

Figure S2. (a) CV curves of TiO₂. (b) CV curves of the electrochemical reduced TiO₂ (TiO₂(R)). (c)

 $Dark \ (dot \ line) \ and \ light \ (solid \ line) \ of \ TiO_2(R). \ (d) \ Dark \ CV \ curves \ of \ TiO_2/Ni(OH)_2. \ Test \ conditions:$

the electrolyte is 1.0 M NaOH with/without 0.33 M CO(NH₂)₂. The scan rate is 20 mV s⁻¹.

Figure S3. SEM images of TiO₂/Ni(OH)₂ photoanodes.

Figure S4. EDS pattern of TiO₂/Ni⁰:Ni(OH)₂. The inset is the atomic ratios of O, Ti and Ni elements.

Figure S5. Ti 2p XPS spectra of TiO₂, TiO₂/Ni(OH)₂, and TiO₂/Ni⁰:Ni(OH)₂ photoanodes.

Figure S6. LSV curves of $TiO_2/Ni(OH)_2$ photoanodes with different loading of $Ni(OH)_2$ measured at a scan rate of 20 mV s⁻¹ in 1 M NaOH and 0.33 M CO(NH₂)₂ under AM 1.5G illumination.

Figure S7. (a) LSV curves of $TiO_2/Ni^0:Ni(OH)_2$ prepared with different electrochemical technologies under AM 1.5G illumination. The dot lines are the corresponding dark LSV curves. Scan rate: 20 mV s⁻¹. (b) Photocurrent density of the above $TiO_2/Ni^0:Ni(OH)_2$ photoanodes at 1.23 V_{RHE}. For the synthesis of Ni⁰:Ni(OH)₂, the quantity of electric charge during these three techniques is as same as 0.37 C.

Figure S8. (a) LSV curves of $TiO_2/Ni^0:Ni(OH)_2$ prepared with various CV cycles under AM 1.5G illumination. The dot lines are the corresponding dark LSV curves. Scan rate: 20 mV s⁻¹. (b) Photocurrent density of the above $TiO_2/Ni^0:Ni(OH)_2$ photoanodes at 1.23 V_{RHE}.

Figure S9. (a) CV curves of $TiO_2/Ni^0:Ni(OH)_2$ before the stability test. (b) CV curves of $TiO_2/Ni^0:Ni(OH)_2$ after the stability test. (e) Capacitances of the above electrodes. Test conditions: the electrolyte of 1.0 M NaOH and 0.33 M CO(NH₂)₂.

Figure S10. EDS pattern of $TiO_2/Ni^0:Ni(OH)_2$ after stability testing. The inset is the atomic ratios of

O, Ti and Ni elements.

Figure S11. MS plots of (a) FTO, (b) FTO/Ni(OH)₂ and (c) FTO/Ni⁰:Ni(OH)₂. The derivative of the nonlinear MS plots of (d) FTO, (e) FTO/Ni(OH)₂ and (f) FTO/Ni⁰:Ni(OH)₂.

Table S1. Summary the PEC performances of the reported photoanodes for urea oxidation reaction.

Cocatalyst	Photoanode	Electrolyte	PEC performance	Ref.	
Ni(OH) ₂	TiO ₂ (hydrogenated	1 M NaOH+0.33 M	$J_{\rm ph}$ =2.51 mA cm ⁻² , $E_{\rm on}$ =-	1	
)	$CO(NH_2)_2$	$0.2 \ V_{Ag/AgCl}$		
Ni(OH) ₂	TiO ₂ /CdS	1 M NaOH+0.33 M	$J_{\rm ph}=0.81~{\rm mA~cm^{-2}},$	2	
		$CO(NH_2)_2$	$E_{\rm on}$ =1.23 V _{RHE}		
Ni(OH) ₂	Ti:α-Fe ₂ O ₃	1 M NaOH+0.10 M	$J_{\rm ph}$ =1.57 mA cm ⁻² , $E_{\rm on}$	3	
		$CO(NH_2)_2$	=1.30 V _{RHE}		
Ni(OH) ₂ /Au/Co	α -Fe ₂ O ₃	Human urine	$J_{\rm ph}$ =7.51 mA cm ⁻² , $E_{\rm on}$	4	
			=1.33 V _{RHE}		
Co-Pi	SnO ₂ /BiVO ₄	0.1 M PBS+2%	$J_{\rm ph}$ =3.44 mA cm ⁻² , $E_{\rm on}$	5	
		$CO(NH_2)_2$	=1.23 V _{RHE}		
Ni/SiO _x	Si	1 M KOH+0.33 M	$J_{\rm ph}$ =10.00 mA cm ⁻² , $E_{\rm on}$	6	
		$CO(NH_2)_2$	$=1.50 V_{RHE}$		
CoOOH/NiOOH	BiVO ₄	$0.5 \text{ M} \text{ Na}_2 \text{SO}_4 + 2 \%$	$J_{\rm ph}$ =4.93 mA cm ⁻² , $E_{\rm on}$	7	
		$CO(NH_2)_2$	=1.23 V _{RHE}		

Table S2. $V_{\rm fb}$, $N_{\rm D}$, $W_{\rm SCL}$ of TiO₂ based photoanodes.

Photoanode	$V_{ m fb}$ / ${ m V}_{ m RHE}$	$N_{\rm D}$ / cm ⁻³	$W_{ m SCL}@0.8~{ m V_{RHE}}$ / nm
TiO ₂	0.12	2.63×10 ¹⁷	169.10
TiO ₂ /Ni(OH) ₂	0.2	6.98×10 ¹⁹	9.75
TiO ₂ /Ni ⁰ :Ni(OH) ₂	-0.16	1.21×10 ²²	0.90

Table S3. R_s , R_{bulk} , CPE_{bulk} , R_{ct} , CPE_{trap} of TiO₂ based photoanodes.

Photoanode	$R_{_{ m s}}$ / Ω	$R_{_{ m bulk}}$ / Ω	CPE _{bulk} / F	$R_{\rm ct}^{\rm}/\Omega$	CPE _{trap} / F

TiO ₂	25.03	113.40	7.10×10 ⁻⁶	1.18×10 ⁴	3.25×10 ⁻⁵
TiO ₂ /Ni(OH) ₂	24.68	1447.00	3.79×10 ⁻⁷	1.09×10 ⁴	2.51×10-6
TiO ₂ /Ni ⁰ :Ni(OH) ₂	25.24	104.80	6.24×10 ⁻⁶	0.87×10 ⁴	1.46×10-5

References

- G. Wang, Y. Ling, X. Lu, H. Wang, F. Qian, Y. Tong and Y. Li, *Energy & Environmental Science*, 2012, 5.
- R. Zhao, G. Schumacher, S. Leahy and E. J. Radich, *The Journal of Physical Chemistry C*, 2018, 122, 13995-14003.
- 3. D. Xu, Z. Fu, D. Wang, Y. Lin, Y. Sun, D. Meng and T. Feng Xie, *Physical Chemistry Chemical Physics*, 2015, **17**, 23924-23930.
- J. Gan, B. B. Rajeeva, Z. Wu, D. Penley and Y. Zheng, *Journal of Applied Electrochemistry*, 2019, 50, 63-69.
- 5. J. Liu, J. Li, M. Shao and M. Wei, Journal of Materials Chemistry A, 2019, 7, 6327-6336.
- 6. G. Loget, C. Meriadec, V. Dorcet, B. Fabre, A. Vacher, S. Fryars and S. Ababou-Girard, *Nature Communications*, 2019, **10**, 3522.
- 7. J. Xie, L. Wang, C. Zhong, J. Ren, X. Lu, S. Yang, C. Huang and P. Yang, *Materials Today Energy*, 2023, **31**.