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1. CHARACTERIZATIONS

The amounts of Cu and Au in the catalysts were determined using an iCAP 7400 ICP-OES
inductively coupled plasma emission spectrometer (Thermo Fisher Scientific, USA).

Transmission electron microscopy (TEM), high-resolution transmission electron microscopy
(HR-TEM), and high angle annular dark-field scanning transmission electron microscopy
(HAADF-STEM) analyses were performed using a USA FEI TECNAI G2 F20 S-TWIN TEM,
operated at 200 kV. Energy-dispersive X-ray spectroscopy (EDS) experiments were performed
using an Oxford EDAX Genesis transmission electron microscope.

X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance X-ray
diffractometer with Cu Ko rays (A = 1.542 A) at a voltage of 40 kV, current of 40 mA, and a
scanning speed of 0.1°-s”!, where the size of metal oxide was obtained by the Scherrer equation D
= KA/(fcos 6).

The H,-TPR test was performed on a USA Micromeritics AutoChem II 2920 fully
automated programmable temperature chemisorption instrument with a catalyst loading of 30 mg.
The sample was purged with Ar for 30 min at 200 °C, cooled to room temperature, purged with a
5%/95% mixture of H,/Ar at a flow rate of 40 ml/min and a heating rate of 10°C/min, and the
hydrogen consumption was detected by TCD.

X-ray photoelectron spectroscopy (XPS) and X-ray Auger electron spectroscopy (XAES)
measurements were performed on an Thermo SCIENTIFIC K-Alpha(Thermo Fisher Scientific,
USA) using a monochromatic Al Ka-ray source (hv = 1486.8 ¢V), and the binding energy in the
spectrum was calibrated from contaminant carbon (C Is = 284.8 eV).

The ultraviolet photoelectron spectra (UPS) were acquired on a commercial “Thermo

Scientific K-Alpha” using 21.2 eV of Helium discharge as the excitation source, and a negative
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bias of =5 V was applied during the measurement. Charge correction was carried out using the
binding energy standard of C1s=284.8 eV.

Raman spectra were obtained from a LabRAM HR Evolution Raman spectrometer
(HORIBA Scientific, France), the laser was focused on the sample surface through a 50xlong-
distance objective lens with a 1 um spot size. A holographic grating of 1800gr/mm was used, and
the acquisition time was 10 s. The Raman spectra were obtained with an acquisition time of 10 s
and collection number of 1, using a holographic grating with 1800 grooves/mm. The Raman band

of the silicon wafer at 520.7 cm™! was employed to calibrate the spectrometer.
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Scheme S1. Schematic illustration of the synthesis of Au@Cu,0 core—shell NPs. Here ‘x’ equals
0.8, 1.2, 1.8, 2.4 and 3.0 ml. The colors shown are the approximate solution colors observed

during the reaction of the synthesis of Au@Cu,0O core shell NPs.
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2. Experimental supplementary data section
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Figure S1. TEM images of as-synthesized Au@Cu,0O core-shell NPs named (a) 11Au@Cu,0,
(b) 13Au@Cu,0, (c¢) 16Au@Cu,0, (d) 25Au@Cu,0 and (e) 33Au@Cu,0. Histograms of (al -
el) Au core size and (a2 - €2) Cu,0 shell thickness shown in panels a — e, respectively.
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Figure S2. The color of Au@Cu,0 NPs varies with Au core particle size.
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Figure S3. (a) The XPS survey spectrum and (b) High-resolution Au 4f XPS spectra for
Au@Cu,0. (c) High-resolution O /s XPS spectra for 16 Au@Cu,O.
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Figure S4. UPS spectra recorded on pure Cu,0O, 11Au@Cu,0 and 33 Au@Cu,0.
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Figure S5. Raman spectra of Au@Cu,O catalysts after the ethynylation of formaldehyde.
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Figure S6. (a) The particle = EDX-SEM image of 16Au@Cu,O after the ethynylation of
formaldehyde. (b) Surface analysis of EDX for 16Au@Cu,O after the ethynylation of
formaldehyde.
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Figure S7. (a) XRD patterns of Au@Cu,0 catalysts after the ethynylation of formaldehyde. (b -
f) The enlarged XRD patterns after baseline-correcting and smoothing (15 pts PF smooth) by
Origin 2021b software.
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Figure S8. (a) Au 4f XPS spectra and (b - f) Cu LMM Auger spectra of the catalysts after the
ethynylation of formaldehyde.
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Table S1. Chemical composition, physicochemical properties and catalytic performance of
propargyl alcohol in Au@Cu,O samples with different core size.

Welgl(:/t r[?]tlo BET Catalytic performanceld!
(wt%) Ncu Average

Sample (x1072 Sl:;f::e pore S[ch]e propargyl propargyl

Cu Au mol-g!) (m2-g 1)l (nm) alcohol alcohol
g yield (%)  selectivity (%)

1TAu@Cu,O 67.78 1.95 1.07 40.62 22.3 1.37 2.06
13Au@Cu,0O 68.76  2.02 1.08 46.77 21.5 1.32 2.01
16Au@Cu,0O 72.16 2.12 1.14 55.87 239 1.68 2.46
25Au@Cu,0O 7441 2.14 1.17 57.44 19.9 0.96 2.19
33Au@Cu,O 7693 231 1.21 57.41 22.8 0.93 2.32

[a] Cu and Au Content analyzed by ICP-OES. [b] Calculated by the DFT model from the

adsorption branches of the isotherms. [c] Calculated by the multipoint BET model from the

adsorption date. [d] Reaction conditions: the catalyst (0.25g) was dispersed in 35wz %

formaldehyde solution (5ml), and reacted at 90°C for10 h with the C,H; flow rate of 30 ml/min.
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Table S2. Peak position of Cu species, chemical shift AE}, molar ratio of Cu™/(Cu®+Cu*) on the
different used catalysts surfaces, and proportion of Cu,C, to Carbyne in different used catalysts(?].

Surface information

Bulk information

Core
. Peak + 0 +)[b
Catalyst size itionlPl(eV AE;lY Cut/(Cu’+Cu*)P Ref.
position™l(eV) Cu,C,/polycarbon!d]
o
(nm) Cu* ca &Y) (%)
pure Cu,O -- 916.8 918.6 -- 67.6 1.19:1 [1]
33 916.5 918.3 -0.3 83.9 1.29:1
25 916.4 918.2 -0.4 85.8 1.40:1
this
Au@Cu,O 16 916.2 918.0 -0.6 88.4 1.60:1 work
13 916.1 917.9 -0.7 88.7 1.64:1
11 916.1 917.9 -0.7 89.1 1.66:1

[a] Reaction conditions: the catalyst (0.25g) was dispersed in 35 wt.% formaldehyde solution
(5ml), and reacted at 90°C for 10 h with the C,H, flow rate of 30 ml/min. [b] Peak position of Cu

species and molar ratio of Cu’ to Cu’+Cu* were obtained from Figure S8. [¢] The XAES

chemical shift of Cu® for the used catalyst is represented by AE), AE; = E(Au@Cu,0)-E;(pure

Cu,0). [d] Proportion of Cu,C, to polycarbon was obtained from Figure S7.
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Table S3. Specific fitting function equations and model parameters.

Equation parameters

Model Equation
A A, X9 dx R?
Cu*/(Cu®+Cu*)
VS.AE, 028 0.08 26.03 3.87 1
Cu,Cy/polycarbon
VS.AE, 041 0.08 2226 4.45 1
Cu*/(Cu’+Cu") 4, -4,
, Boltzmann Yy =4, + 89.5 83.07 2349 497 0.9998
VS. Au core size 1+ exp[(x-x,)/dx]
Cu,C,/polycarbon

S Au core size 1.70 126 21.69 4.5 1

TOF VS. Au core

; 073 039 21.85 1.87 1
size

References

[1] X. Huang, H. Li, Y. Zhang, R. Wu, L. Ban, L. Xi, Z. Yin, J. Peng, Y. Zhao and L. Fang,
Nanoscale, 2022, 14, 13248-13260.

S13



