Supporting Information for

Dependence of Copper(I) Stability on Long-range Electromagnetic Effects of Au under Reducing Atmospheres: the Size Effect of Au Cores

Xin Huang,^{a,b} Haitao Li,^{*a} Bin Zhang,^c Yin Zhang,^a Hao Wang,^a Lijun Ban,^a Yixuan Xu,^a Yongxiang Zhao^{*a}

^a Engineering Research Center of Ministry of Education for Fine Chemicals, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.

^b Department of Chemistry and Chemical Engineering, Jinzhong university, Jinzhong 030619, China.

^c State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.

***CORRESPONDING AUTHORS**

Address: Shanxi University, 92 Wucheng Road , Taiyuan 030006, China.

Haitao Li, Email: htli@sxu.edu.cn

Yongxiang Zhao, Email:yxzhao@sxu.edu.cn

1. CHARACTERIZATIONS

The amounts of Cu and Au in the catalysts were determined using an iCAP 7400 ICP-OES inductively coupled plasma emission spectrometer (Thermo Fisher Scientific, USA).

Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), and high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analyses were performed using a USA FEI TECNAI G2 F20 S-TWIN TEM, operated at 200 kV. Energy-dispersive X-ray spectroscopy (EDS) experiments were performed using an Oxford EDAX Genesis transmission electron microscope.

X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance X-ray diffractometer with Cu K α rays ($\lambda = 1.542$ Å) at a voltage of 40 kV, current of 40 mA, and a scanning speed of $0.1^{\circ} \cdot s^{-1}$, where the size of metal oxide was obtained by the Scherrer equation $D = K\lambda/(\beta \cos \theta)$.

The H₂-TPR test was performed on a USA Micromeritics AutoChem II 2920 fully automated programmable temperature chemisorption instrument with a catalyst loading of 30 mg. The sample was purged with Ar for 30 min at 200 °C, cooled to room temperature, purged with a 5%/95% mixture of H₂/Ar at a flow rate of 40 ml/min and a heating rate of 10°C/min, and the hydrogen consumption was detected by TCD.

X-ray photoelectron spectroscopy (XPS) and X-ray Auger electron spectroscopy (XAES) measurements were performed on an Thermo SCIENTIFIC K-Alpha(Thermo Fisher Scientific, USA) using a monochromatic Al K α -ray source (h ν = 1486.8 eV), and the binding energy in the spectrum was calibrated from contaminant carbon (*C 1s* = 284.8 eV).

The ultraviolet photoelectron spectra (UPS) were acquired on a commercial "Thermo Scientific K-Alpha" using 21.2 eV of Helium discharge as the excitation source, and a negative bias of -5 V was applied during the measurement. Charge correction was carried out using the binding energy standard of *C1s*=284.8 eV.

Raman spectra were obtained from a LabRAM HR Evolution Raman spectrometer (HORIBA Scientific, France), the laser was focused on the sample surface through a 50×longdistance objective lens with a 1 µm spot size. A holographic grating of 1800gr/mm was used, and the acquisition time was 10 s. The Raman spectra were obtained with an acquisition time of 10 s and collection number of 1, using a holographic grating with 1800 grooves/mm. The Raman band of the silicon wafer at 520.7 cm⁻¹ was employed to calibrate the spectrometer.

Scheme S1. Schematic illustration of the synthesis of Au@Cu₂O core–shell NPs. Here 'x' equals 0.8, 1.2, 1.8, 2.4 and 3.0 ml. The colors shown are the approximate solution colors observed during the reaction of the synthesis of Au@Cu₂O core shell NPs.

2. Experimental supplementary data section

Figure S1. TEM images of as-synthesized Au@Cu₂O core-shell NPs named (a) $11Au@Cu_2O$, (b) $13Au@Cu_2O$, (c) $16Au@Cu_2O$, (d) $25Au@Cu_2O$ and (e) $33Au@Cu_2O$. Histograms of (a1 - e1) Au core size and (a2 - e2) Cu₂O shell thickness shown in panels a – e, respectively.

Figure S2. The color of Au@Cu₂O NPs varies with Au core particle size.

Figure S3. (a) The XPS survey spectrum and (b) High-resolution Au *4f* XPS spectra for Au@Cu₂O. (c) High-resolution O *1s* XPS spectra for 16Au@Cu₂O.

Figure S4. UPS spectra recorded on pure Cu₂O, 11Au@Cu₂O and 33Au@Cu₂O.

Figure S5. Raman spectra of Au@Cu₂O catalysts after the ethynylation of formaldehyde.

Figure S6. (a) The particle EDX-SEM image of $16Au@Cu_2O$ after the ethynylation of formaldehyde. (b) Surface analysis of EDX for $16Au@Cu_2O$ after the ethynylation of formaldehyde.

Figure S7. (a) XRD patterns of Au@Cu₂O catalysts after the ethynylation of formaldehyde. (b - f) The enlarged XRD patterns after baseline-correcting and smoothing (15 pts PF smooth) by Origin 2021b software.

Figure S8. (a) Au 4f XPS spectra and (b - f) Cu LMM Auger spectra of the catalysts after the ethynylation of formaldehyde.

Sample	Weight ratio (wt%) ^[a]		n _{Cu}	BET	Average	Catalytic performance ^[d]		
	Cu	Au	(×10 ⁻² mol·g ⁻¹)	area (m ² ·g ⁻¹) ^[b]	pore size [–] (nm) ^[c]	propargyl alcohol yield (%)	propargyl alcohol selectivity (%)	
11Au@Cu ₂ O	67.78	1.95	1.07	40.62	22.3	1.37	2.06	
13Au@Cu ₂ O	68.76	2.02	1.08	46.77	21.5	1.32	2.01	
16Au@Cu ₂ O	72.16	2.12	1.14	55.87	23.9	1.68	2.46	
25Au@Cu ₂ O	74.41	2.14	1.17	57.44	19.9	0.96	2.19	
33Au@Cu ₂ O	76.93	2.31	1.21	57.41	22.8	0.93	2.32	

Table S1. Chemical composition, physicochemical properties and catalytic performance of propargyl alcohol in $Au@Cu_2O$ samples with different core size.

[a] Cu and Au Content analyzed by ICP-OES. [b] Calculated by the DFT model from the adsorption branches of the isotherms. [c] Calculated by the multipoint BET model from the adsorption date. [d] Reaction conditions: the catalyst (0.25g) was dispersed in 35wt.% formaldehyde solution (5ml), and reacted at 90°C for10 h with the C₂H₂ flow rate of 30 ml/min.

	Core		Surfac	ce inforr	Bulk information	Ref.	
Catalyst	- size (nm) -	Peak position ^[b] (eV)		$\Delta E_k^{[c]}$	Cu ⁺ /(Cu ⁰ +Cu ⁺) ^[b]		Cu ₂ C ₂ /polycarbon ^[d]
		Cu ⁺	Cu ⁰	- (eV)	(%)		
pure Cu ₂ O		916.8	918.6		67.6	1.19:1	[1]
	33	916.5	918.3	-0.3	83.9	1.29:1	
	25	916.4	918.2	-0.4	85.8	1.40:1	
Au@Cu ₂ O	16	916.2	918.0	-0.6	88.4	1.60:1	this work
	13	916.1	917.9	-0.7	88.7	1.64:1	
	11	916.1	917.9	-0.7	89.1	1.66:1	

Table S2. Peak position of Cu species, chemical shift ΔE_k , molar ratio of Cu⁺/(Cu⁰+Cu⁺) on the different used catalysts surfaces, and proportion of Cu₂C₂ to Carbyne in different used catalysts^[a].

[a] Reaction conditions: the catalyst (0.25g) was dispersed in 35 *wt.*% formaldehyde solution (5ml), and reacted at 90°C for 10 h with the C₂H₂ flow rate of 30 ml/min. [b] Peak position of Cu species and molar ratio of Cu⁺ to Cu⁰+Cu⁺ were obtained from Figure S8. [c] The XAES chemical shift of Cu⁺ for the used catalyst is represented by ΔE_k , $\Delta E_k = E_k$ (Au@Cu₂O)- E_k (pure Cu₂O). [d] Proportion of Cu₂C₂ to polycarbon was obtained from Figure S7.

	Model	Faustion	Equation parameters				
	Model	Equation	A_1	A_2	$x_{ heta}$	dx	R ²
$Cu^+/(Cu^0+Cu^+)$ VS. ΔE_b	Boltzmann	$y = A_2 + \frac{A_1 - A_2}{1 + \exp[(x - x_0)/dx]}$	0.28	0.08	26.03	3.87	1
Cu_2C_2 /polycarbon VS. ΔE_b			0.41	0.08	22.26	4.45	1
Cu ⁺ /(Cu ⁰ +Cu ⁺) VS. Au core size			89.5	83.07	23.49	4.97	0.9998
Cu ₂ C ₂ /polycarbon VS. Au core size			1.70	1.26	21.69	4.55	1
TOF <i>VS</i> . Au core size			0.73	0.39	21.85	1.87	1

Table S3. Specific fitting function equations and model parameters.

References

[1] X. Huang, H. Li, Y. Zhang, R. Wu, L. Ban, L. Xi, Z. Yin, J. Peng, Y. Zhao and L. Fang, *Nanoscale*, 2022, **14**, 13248–13260.