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1. CHARACTERIZATIONS

The amounts of Cu and Au in the catalysts were determined using an iCAP 7400 ICP-OES 

inductively coupled plasma emission spectrometer (Thermo Fisher Scientific, USA). 

Transmission electron microscopy (TEM), high-resolution transmission electron microscopy 

(HR-TEM), and high angle annular dark-field scanning transmission electron microscopy 

(HAADF-STEM) analyses were performed using a USA FEI TECNAI G2 F20 S-TWIN TEM, 

operated at 200 kV. Energy-dispersive X-ray spectroscopy (EDS) experiments were performed 

using an Oxford EDAX Genesis transmission electron microscope. 

X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance X-ray 

diffractometer with Cu Kα rays (λ = 1.542 Å) at a voltage of 40 kV, current of 40 mA, and a 

scanning speed of 0.1°·s-1, where the size of metal oxide was obtained by the Scherrer equation D 

= Kλ/(βcos θ). 

The H2-TPR test was performed on a USA Micromeritics AutoChem II 2920 fully 

automated programmable temperature chemisorption instrument with a catalyst loading of 30 mg. 

The sample was purged with Ar for 30 min at 200 ℃, cooled to room temperature, purged with a 

5%/95% mixture of H2/Ar at a flow rate of 40 ml/min and a heating rate of 10℃/min, and the 

hydrogen consumption was detected by TCD.

X-ray photoelectron spectroscopy (XPS) and X-ray Auger electron spectroscopy (XAES) 

measurements were performed on an Thermo SCIENTIFIC K-Alpha(Thermo Fisher Scientific, 

USA) using a monochromatic Al Kα-ray source (h = 1486.8 eV), and the binding energy in the 

spectrum was calibrated from contaminant carbon (C 1s = 284.8 eV). 

The ultraviolet photoelectron spectra (UPS) were acquired on a commercial “Thermo 

Scientific K-Alpha” using 21.2 eV of Helium discharge as the excitation source, and a negative 
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bias of −5 V was applied during the measurement. Charge correction was carried out using the 

binding energy standard of C1s=284.8 eV.

Raman spectra were obtained from a LabRAM HR Evolution Raman spectrometer 

(HORIBA Scientific, France), the laser was focused on the sample surface through a 50×long-

distance objective lens with a 1 μm spot size. A holographic grating of 1800gr/mm was used, and 

the acquisition time was 10 s. The Raman spectra were obtained with an acquisition time of 10 s 

and collection number of 1, using a holographic grating with 1800 grooves/mm. The Raman band 

of the silicon wafer at 520.7 cm-1 was employed to calibrate the spectrometer.

Scheme S1. Schematic illustration of the synthesis of Au@Cu2O core–shell NPs. Here ‘x’ equals 

0.8, 1.2, 1.8, 2.4 and 3.0 ml. The colors shown are the approximate solution colors observed 

during the reaction of the synthesis of Au@Cu2O core shell NPs.
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2. Experimental supplementary data section

Figure S1. TEM images of as-synthesized Au@Cu2O core-shell NPs named (a) 11Au@Cu2O, 
(b) 13Au@Cu2O, (c) 16Au@Cu2O, (d) 25Au@Cu2O and (e) 33Au@Cu2O. Histograms of (a1 - 
e1) Au core size and (a2 - e2) Cu2O shell thickness shown in panels a − e, respectively. 
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Figure S2. The color of Au@Cu2O NPs varies with Au core particle size.
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Figure S3. (a) The XPS survey spectrum and (b) High-resolution Au 4f XPS spectra for 

Au@Cu2O. (c) High-resolution O 1s XPS spectra for 16Au@Cu2O.
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Figure S4. UPS spectra recorded on pure Cu2O, 11Au@Cu2O and 33Au@Cu2O.
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Figure S5. Raman spectra of Au@Cu2O catalysts after the ethynylation of formaldehyde.
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Figure S6. (a) The particle  EDX-SEM image of 16Au@Cu2O after the ethynylation of 
formaldehyde. (b) Surface analysis of EDX for 16Au@Cu2O after the ethynylation of 
formaldehyde.
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Figure S7. (a) XRD patterns of Au@Cu2O catalysts after the ethynylation of formaldehyde. (b - 
f) The enlarged XRD patterns after baseline-correcting and smoothing (15 pts PF smooth) by 
Origin 2021b software.
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Figure S8. (a) Au 4f XPS spectra and (b - f) Cu LMM Auger spectra of the catalysts after the 
ethynylation of formaldehyde.
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Table S1. Chemical composition, physicochemical properties and catalytic performance of 
propargyl alcohol in Au@Cu2O samples with different core size.

Weight ratio 
(wt%)[a] Catalytic performance[d]

Sample
Cu Au

nCu

(×10-2 
mol·g-1)

BET

surface 
area 

(m2·g-1)[b]

Average 
pore size 
(nm)[c] propargyl 

alcohol 
yield (%)

propargyl 
alcohol 

selectivity (%)

11Au@Cu2O 67.78 1.95 1.07 40.62 22.3 1.37 2.06

13Au@Cu2O 68.76 2.02 1.08 46.77 21.5 1.32 2.01

16Au@Cu2O 72.16 2.12 1.14 55.87 23.9 1.68 2.46

25Au@Cu2O 74.41 2.14 1.17 57.44 19.9 0.96 2.19

33Au@Cu2O 76.93 2.31 1.21 57.41 22.8 0.93 2.32

[a] Cu and Au Content analyzed by ICP-OES. [b] Calculated by the DFT model from the 

adsorption branches of the isotherms. [c] Calculated by the multipoint BET model from the 

adsorption date. [d] Reaction conditions: the catalyst (0.25g) was dispersed in 35wt.% 

formaldehyde solution (5ml), and reacted at 90℃ for10 h with the C2H2 flow rate of 30 ml/min.

file:///D:/%25E8%25BD%25AF%25E4%25BB%25B6/Youdao/Dict/8.10.0.0/resultui/html/index.html%23/javascript:;
file:///D:/%25E8%25BD%25AF%25E4%25BB%25B6/Youdao/Dict/8.10.0.0/resultui/html/index.html%23/javascript:;
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Table S2. Peak position of Cu species, chemical shift ΔEk, molar ratio of Cu+/(Cu0+Cu+) on the 
different used catalysts surfaces, and proportion of Cu2C2 to Carbyne in different used catalysts[a].

Surface information Bulk information

Peak 
position[b](eV)Catalyst

Core

size

(nm) Cu+ Cu0

ΔEk
[c]

(eV)

Cu+/(Cu0+Cu+)[b]

(%)
Cu2C2/polycarbon[d]

Ref.

pure Cu2O -- 916.8 918.6 -- 67.6 1.19:1 [1]

33 916.5 918.3 -0.3 83.9 1.29:1

25 916.4 918.2 -0.4 85.8 1.40:1

16 916.2 918.0 -0.6 88.4 1.60:1

13 916.1 917.9 -0.7 88.7 1.64:1

Au@Cu2O

11 916.1 917.9 -0.7 89.1 1.66:1

this 
work

[a] Reaction conditions: the catalyst (0.25g) was dispersed in 35 wt.% formaldehyde solution 

(5ml), and reacted at 90℃ for 10 h with the C2H2 flow rate of 30 ml/min. [b] Peak position of Cu 

species and molar ratio of Cu+ to Cu0+Cu+ were obtained from Figure S8. [c] The XAES 

chemical shift of Cu+ for the used catalyst is represented by ΔEk, ΔEk = Ek(Au@Cu2O)-Ek(pure 

Cu2O). [d] Proportion of Cu2C2 to polycarbon was obtained from Figure S7. 
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Table S3. Specific fitting function equations and model parameters.

Equation parameters
Model Equation

A1 A2 x0 dx R2

Cu+/(Cu0+Cu+) 
VS.ΔEb

0.28 0.08 26.03 3.87 1

Cu2C2/polycarbon
VS.ΔEb

0.41 0.08 22.26 4.45 1

Cu+/(Cu0+Cu+) 
VS. Au core size 89.5 83.07 23.49 4.97 0.9998

Cu2C2/polycarbon 
VS. Au core size 1.70 1.26 21.69 4.55 1

TOF VS. Au core 
size

Boltzmann
])[(exp1 0

21
2 /dxx-x

AAAy





0.73 0.39 21.85 1.87 1
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