Supporting information

Realizing High OER Activity in New SAC Catalysts Formed by Introducing TMN_x (x=3 and 4) Units into Carbon Nanotube under High-Throughput Calculations

Xia Yang^a, Guangtao Yu^{a,*} and Wei Chen^{a,b,c,*}

^a Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China

^b Academy of Carbon Neutrality of Fujian Normal University, Fujian Normal University, Fuzhou, ^c Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, 361005, China.

*E-mail: yugt@fjnu.edu.cn (G. Yu), chenwei@fjnu.edu.cn (W. Chen)

Fig. S1 The free energy diagram of OER in solvation for the sampled $RhN_3@CNT$.

Fig. S2 The optimized structures of TMN₄@CNT (TM = Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt).

Fig. S3 The optimized structures of TMN₃@CNT (TM = Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt).

Fig. S4 Plots of electron location function (ELF) for $TMN_4@CNT$ systems. Note that ELF can be characterized in the form of a contour plot within a range of 0-1. The region close to 1 indicates the presence of covalent electrons or lone-pair electrons; the region of 0.5 represents homogenous electron gas; and the region near to 0 suggests a low electron density area.

Fig. S5 Plots of electron location function for TMN₃@CNT systems.

Fig. S6 Gibbs free energy diagram of OER for $TMN_4@CNT$ series.

Fig. S7 Gibbs free energy diagram of OER for TMN₃@CNT series.

Fig. S8 Ab initio molecular dynamics simulation for the $TMN_x@CNT$ (x = 3 and 4) systems with high OER catalytic activity and their corresponding morphologies after 5000 *fs* at T=500 K.

Fig. S9 Density of states for $TMN_x@CNT$ (x = 3 and 4) systems with high OER catalytic activity.

Fig. S10 The scaling relationships of ΔG_{O^*} vs. ΔG_{OH^*} and ΔG_{O^*} vs. ΔG_{OOH^*} for TMN₄@CNT (a-b) and TMN₃@CNT (c-d).

Fig. S11 The scaling relationship between ΔG_{OH^*} and ΔG_{OOH^*} for (a) TMN₄@CNT and (b) TMN₃@CNT systems.

Systems	OH*	0*	H*
TiN ₄ @CNT	-1.53	-0.99	-0.42
VN4@CNT	-1.14	-1.11	0.44
CrN4@CNT	-0.08	0.07	0.48
MnN4@CNT	0.18	1.02	0.61
FeN ₄ @CNT	0.74	1.46	0.42
CoN4@CNT	0.89	2.25	-
NiN ₄ @CNT	1.87	3.68	-
ZrN ₄ @CNT	-2.00	-0.98	-0.51
NbN4@CNT	-1.75	-1.77	-0.43
MoN4@CNT	-1.38	-1.59	-0.85
TcN4@CNT	-0.66	-0.94	-0.01
RuN ₄ @CNT	0.04	0.88	-
RhN4@CNT	1.38	2.81	-
PdN ₄ @CNT	2.03	4.66	-
HfN ₄ @CNT	-2.42	-1.25	-0.84
TaN ₄ @CNT	-2.27	-2.35	-0.95
WN4@CNT	-1.96	-2.48	-0.91
ReN ₄ @CNT	-1.30	-1.86	-0.56
OsN4@CNT	-0.21	-0.25	-0.42
IrN ₄ @CNT	0.90	2.25	-
PtN ₄ @CNT	1.97	4.45	

Table S1 Adsorption free energy of the possible species including OH, O, H adsorbed on the $TMN_4@CNT$ and $TMN_3@CNT$ (TM = Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt) systems ("-" indicates that the species cannot be adsorbed on TM sites)^a.

TiN ₃ @CNT	-1.44	-0.49	-0.05
VN ₃ @CNT	-1.18	-0.94	0.31
CrN ₃ @CNT	-0.51	-0.31	0.33
MnN ₃ @CNT	0.22	0.80	-
FeN ₃ @CNT	-0.18	0.75	-0.09
CoN3@CNT	0.72	2.16	-
NiN ₃ @CNT	1.76	3.71	-
ZrN ₃ @CNT	-1.64	-0.19	-0.17
NbN3@CNT	-1.59	-1.47	-0.58
MoN ₃ @CNT	-1.13	-1.22	-0.61
TcN ₃ @CNT	-0.70	-0.92	-0.03
RuN ₃ @CNT	-0.21	0.47	-0.10
RhN ₃ @CNT	0.31	1.92	-
PdN ₃ @CNT	2.17	4.07	-
HfN ₃ @CNT	-2.08	-0.46	-0.49
TaN ₃ @CNT	-2.19	-2.05	-0.89
WN3@CNT	-1.83	-2.13	-0.75
ReN ₃ @CNT	-1.27	-1.74	-0.52
OsN ₃ @CNT	-0.64	-0.48	-0.59
IrN ₃ @CNT	0.13	1.27	-
PtN ₃ @CNT	2.11	3.33	-

^{*a*}The specific calculation processes have been provided as follows:

In the OER process, the dissociation of H_2O may result in several surface intermediates, involving OH, O, and H, so we will explore their possible occupation at the TM-site by calculating ΔG_{OH^*} , ΔG_{O^*} and ΔG_{H^*} . To be specific, the dissociation reactions connecting the different states are presented as follows:

$$H_2O + * \leftrightarrow OH^* + e^- + H^+$$
(1)

$OH^* + * \leftrightarrow O^* + e^- + H^+$	(2)
$* + e^- + H^+ \leftrightarrow H^*$	(3)

Based on these reactions, the adsorption free energy for OH, O and H can be calculated by the equation $\Delta G = \Delta E + \Delta ZPE - T\Delta S$, where ΔE is the change in the electronic energy before and after adsorption of these species. For the chemical equations (1) and (2), ΔE can be calculated by the formula $\Delta E = E_{ads} + n/2E_{H2}$. For the chemical equations (1) and (2), respectively. For equation (3), ΔE can be calculated by the formula $\Delta E = Eads + n/2E_{H2}$. Note that at standard conditions, the solvated hydrogen (H⁺ + e⁻ in solution) is in equilibrium with H₂ (gas).

Systems	ΔG_{OH^*}	ΔG_{0*}	ΔG_{OOH^*}	η
TiN ₄ @CNT	-0.11	1.21	3.34	0.90
VN4@CNT	0.42	0.43	3.66	2.00
CrN4@CNT	0.35	1.01	3.31	1.07
MnN ₄ @CNT	0.18	1.02	3.76	1.51
FeN ₄ @CNT	0.74	1.46	3.61	0.92
CoN4@CNT	0.89	2.25	3.99	0.51
NiN4@CNT	1.87	3.67	4.82	0.64
ZrN4@CNT	-0.59	1.29	2.99	0.70
NbN4@CNT	-0.54	1.03	2.95	0.74
MoN4@CNT	-0.57	-0.38	2.79	1.95
TcN4@CNT	0.71	1.60	3.73	0.90
RuN ₄ @CNT	0.04	0.88	3.25	1.14
RhN ₄ @CNT	1.30	2.82	3.97	0.29
PdN ₄ @CNT	2.03	4.66	5.10	1.40
HfN ₄ @CNT	-0.74	1.41	2.87	0.91
TaN ₄ @CNT	-0.84	0.96	2.68	1.01
WN4@CNT	-0.57	-0.38	2.94	2.09
ReN ₄ @CNT	0.30	0.60	3.39	1.55
OsN4@CNT	-0.24	0.04	2.60	1.33
IrN4@CNT	0.90	2.25	3.82	0.33
PtN ₄ @CNT	1.97	4.45	5.06	1.25

 Table S2 Gibbs free energy of three intermediates (OH*, O* and OOH*) and the obtained overpotential values of TMN4@CNT systems.

Systems	ΔG_{OH^*}	ΔG_{0}^{*}	ΔG_{OOH^*}	η
TiN ₃ @CNT	0.59	2.21	3.93	0.48
VN ₃ @CNT	0.81	1.38	4.13	1.52
CrN3@CNT	1.07	2.05	4.26	0.98
MnN ₃ @CNT	0.22	0.80	3.49	1.47
FeN ₃ @CNT	1.39	2.87	4.45	0.35
CoN3@CNT	0.72	2.16	3.79	0.39
NiN ₃ @CNT	1.76	3.71	4.73	0.72
ZrN ₃ @CNT	0.20	2.23	3.67	0.80
NbN ₃ @CNT	-0.16	0.53	3.23	1.47
MoN ₃ @CNT	-0.08	0.79	3.32	1.31
TcN ₃ @CNT	1.39	2.32	4.48	0.93
RuN ₃ @CNT	1.42	2.73	4.31	0.35
RhN ₃ @CNT	0.31	1.92	3.60	0.46
PdN ₃ @CNT	2.17	4.07	5.06	0.94
HfN ₃ @CNT	0.08	2.31	3.63	1.00
TaN ₃ @CNT	-0.69	0.34	2.95	1.38
WN3@CNT	-0.12	0.79	3.35	1.33
ReN ₃ @CNT	0.92	1.36	4.16	1.57
OsN3@CNT	0.79	1.79	3.87	0.85
IrN ₃ @CNT	0.13	1.27	3.35	0.85
PtN ₃ @CNT	2.11	3.33	4.86	0.88

Table S3 Gibbs free energy of three intermediates (OH*, O* and OOH*) and the obtained overpotential values of TMN_3 @CNT systems.