Supplementary Material for:

Sub-9 nm high-performance and low-power transistors based on in-plane

NbSe₂/MoSe₂/NbSe₂ heterojunction

Zeng-Lin Cao, Xiao-Hui Guo, Kai-Lun Yao, Lin Zhu *

School of Physics and Wuhan National High Magnetic field center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China

^{a)}Author to whom correspondence should be addressed: <u>linzh@hust.edu.cn</u>

The transport properties of vertical NbSe₂/MoSe₂ van der Waals heterojunction FET

The vertical NbSe₂/MoSe₂ van der Waals (vdW) heterojunction is constructed as shown in Fig. S1 (a), where the electrons are transported along z-axis. We have calculated the transport properties of vertical NbSe₂/MoSe₂ vdW heterojunction FET, and in-plane NbSe₂/MoSe₂/NbSe₂ heterojunction FET at the gate length of 5 nm as shown in Fig S1 (b). It is clear from Fig. S1 (b) that the in-plane NbSe₂/MoSe₂/NbSe₂ heterojunction FET has larger on-currents (I_{on}) and sharper slopes than the vertical NbSe₂/MoSe₂ vdW heterojunction FET. And in Table 1, the complete findings are displayed. These findings demonstrate that, in addition to having a smaller subthreshold swing (SS), the magnitude of the on-currents (I_{on}) of in-plane NbSe₂/MoSe₂/NbSe₂

heterojunction FET ($311\mu A\mu m^{-1}$) is more than 80 times that of vertical NbSe₂/MoSe₂ vdW heterojunction FET($3.52 \ \mu A\mu m^{-1}$). This could be because there is more overlap between the electrodes and the gate of the in-plane heterojunction when the gate size is smaller. As a result, the in-plane heterojunction has a larger built-in electric field for the same gate, which worsens the upward-bending of the valence band and narrows the channel barrier. Then carriers can transport between the source and drain more quickly, resulting in higher current and lower SS of in-plane NbSe₂/MoSe₂/NbSe₂ heterojunction FET.

Fig. S1 (a) Schematic of the vertical NbSe₂/MoSe₂ vdW heterojunction FET, where the electrons are transported along z-axis, (b) transport characteristic curves at a gate length of 5 nm, here, the black and red solids represent the I_{ds} for vertical NbSe₂/MoSe₂ vdW heterojunction FET and inplane NbSe₂/MoSe₂/NbSe₂ heterojunction FET, respectively, and green solid represents I_{off} for ITRS HP application.

	$I_{_{on}}\left[\mu A/\mu m\right]$	I_{on}/I_{off}	SS [mV/dec]
In-plane NbSe ₂ / MoSe ₂ /NbSe ₂ heterostructure FET	311	3.11×10 ⁴	118
Vertical NbSe ₂ / MoSe ₂ van der Waals heterostructure FET	3.52	35.2	144

Table S1 Comparison of transport properties between in-plane NbSe2/MoSe2/NbSe2 heterojunctionFET and vertical NbSe2/MoSe2 van der Waals heterojunction FET.