Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Supporting Information

The influence of H₂O or/and O₂ introduction during the lowtemperature gas-phase sulfation of organic COS+CS₂ on the conversion and deposition of sulfur-containing species in the sulfated CeO₂-OS catalyst for NH₃-SCR

Zhibo Xiong^{1*}, Yafei Zhu¹, Jiaxing Liu¹, Yanping Du², Fei Zhou³, Jing Jin^{1**}, Qiguo Yang^{1**}, Wei Lu¹

1. School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China

2. School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK

3. Jiangsu Guoxin Jingjiang Power Co. Ltd., Jingjiang 214500, Jiangsu, China

Catalyst characterization

The BET specific surface area, pore diameter and pore volume of catalysts were determined by N_2 adsorption-desorption analysis at 77 K using a micromeritics ASAP 2460 system instrument. The crystal phase diffraction pattern of catalysts was identified on the 6100 X-ray diffraction Analyzer with Cu Ka radiation (model D/max RA, Rigaku Co., Japan). The scanning range (2 θ) was collected from 10 $^{\circ}$ to 80 $^{\circ}$ at a scanning velocity of 5 $^{\circ}$ /min. The Raman spectra of samples were collected at a Raman Spectrometer (InVia Reflex, Renishaw), using a laser at 532 nm line as the excitation source. The surface morphology and structure of catalysts were observed by scanning electron microscopy (SEM) on a ZEISS SIGMA HD instrument. Transmission electron microscopy (TEM) was performed on a Thermo Fischer Talos F200x instrument with an operating voltage of 200 kV.

X-ray photoelectron spectroscopy (XPS) was performed to acquire the surface element information of the samples, which was conducted on ThermoFisher Scientific Escalab 250Xi using an Al K α X-ray source with an excitation energy of 1486.7 eV. The energy calibration of all elements were calibrated by normalizing the C 1s line of adsorbed amorphous hydrocarbons to 284.8 eV, and the spectra was fitted by XPS PEAK software with Gaussian-Lorentz function.

 H_2 temperature programmed reduction (H_2 -TPR) and NH_3 temperature programmed desorption (NH_3 -TPD) experiments were carried out on AutoChem II with TCD detection (Micromeritics, USA). For H_2 -TPR, 100 mg samples were pretreated at 300 °C for 30 min in Ar

atmosphere and then cooled to 50 °C. Subsequently, the data were collected at a heating rate of 10 °C/min from 50 to 900 °C in a 10% H₂-Ar (40 mL/min) atmosphere. In NH₃-TPD, 100 mg samples were pretreated at 500 °C for 1 h in He atmosphere and then cooled to 35 °C. The sample was purged with 10% NH $_3$ /He (50 mL/min) for 2 h at 35 °C, and then purged with high purity He for 1 h to remove the physical adsorption species. Finally, the desorption processes were initiated 500 $^{\circ}\mathrm{C}$ 10 from 35 to with of °C/min. a ramp rate

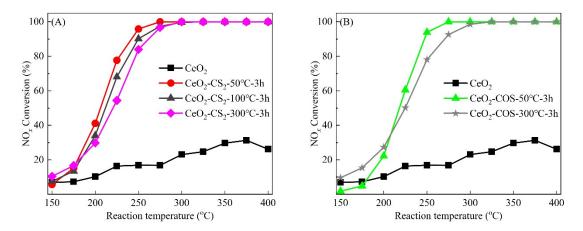


Fig. S1. Influence of sulfation temperature on the NH₃-SCR activity of the gas-phase sulfated CeO₂ catalysts by organic sulfur ((A) CS₂, (B) COS).

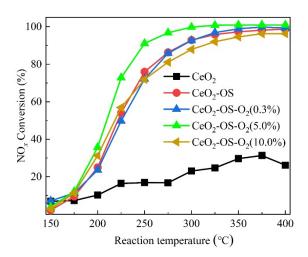
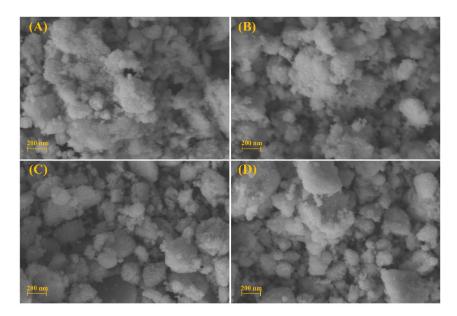
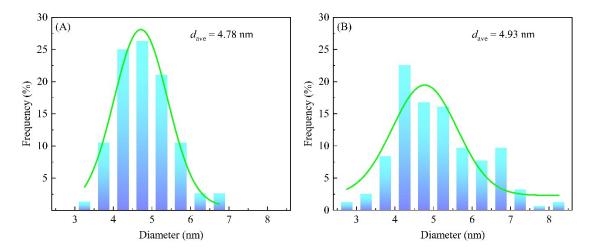




Fig. S2. Influence of oxygen concentration on the NH₃-SCR activity of the sulfated CeO₂-OS catalyst by the organic CS₂+COS at 50 °C. The simulated flue gas components during the sulfation: CS₂ 30 ppm + COS 140 ppm (when used, COS:CS₂=7:3); O₂=0.3 vol.%, 5.0 vol.%, 10.0 vol.% (when used); pretreated at 50 °C for 3 h.

Fig. S3. The SEM images of (A) CeO₂-OS, (B) CeO₂-OS-O₂, (C) CeO₂-OS-H₂O and (D) CeO₂-OS-O₂+H₂O catalysts.

 $\textbf{Fig. S4.} \ \text{Particle size distributions of CeO}_2 \ \text{and CeO}_2\text{-OS-O}_2\text{+H}_2\text{O catalysts}.$

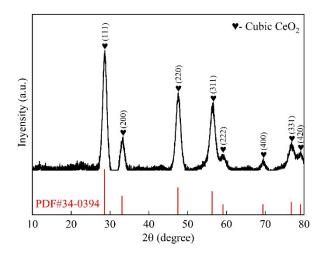


Fig. S5. The XRD patterns of the as-prepared CeO_2 catalyst.

Table S1. The chosen O_2 concentrations for the hydrolysis of organic $\mathrm{COS}/\mathrm{CS}_2$

Catalysts	O_2 concentrations	Optimal O ₂	GHSV	Ref.
Cu-Fe/TSAC	0%, 0.5%, 1%, 5%	0.5%	10000 /h	[1]
Cu-K-Co/AC	0%, 0.1%, 0.2%	0.1%	30000 /h	[2]
Al ₂ O ₃ -K/CAC	0%, 1.5%, 5.5%	1.5%	10000 /h	[3]
La ₂ O ₂ S, Nd ₂ O ₂ S	0%, 0.25%, 0.5%, 1%, 1.5%, 2%	0.5%, 1%, 1.5%	10000 /h	[4]
NaOH/Al ₂ O ₃	0%, 1%, 2%, 3%	0%	220000 /h	[5]

Table S2. Hydrolysis conditions and properties of different catalysts for organic COS/CS_2

Catalysts	Test condition t ₉₀ (mi		Ref.
$MgAlCeO_x$	COS=470 ppm, T=50 °C, GHSV=5000 /h	100	[6]
ZnAl-20Sm-Na MMO	COS=400 ppm, T=60 °C, WHSV=7500 mL/(g·h)	160	[7]
Ni-mAl ₂ O ₃	COS=300 ppm, T=70 °C, GHSV=9000 /h	150	[8]
5%Fe/MCAC	COS=400 ppm, T=70 °C, GHSV=6000 /h	210	[9]
10-KA	COS=400 ppm, T=50 °C, GHSV=20000 /h	300	[10]
$K_{0.1}Al_2O_3$ -PA	COS=200 ppm, T=50~150 °C, GHSV=24000 /h	-	[11]
K@Al	COS=150 ppm, CS ₂ =50 ppm, T=80~160 °C, GHSV=20000/h	-	[12]
Ni(5)ACF(400)	COS=400 ppm, CS ₂ =50 ppm, T=60 °C, GHSV=10000 /h	-	[13]
CSB-XXY	COS=450 ppm, CS ₂ =40 ppm, T=150 °C, GHSV=10000 /h	-	[14]

- [1] X. Sun, H. T. Ruan, X. Song, L. N. Sun, K. Li, P. Ning, C. Wang, Research into the reaction process and the effect of reaction conditions on the simultaneous removal of H₂S, COS and CS₂ at low temperature, RSC Adv., 2018, 8, 6996.
- [2] X. Li, X. Q. Wang, L. L. Wang, P. Ning, Y. X. Ma, L. Zhong, Y. Wu, L. Yuan, Efficient removal of carbonyl sulfur and hydrogen sulfide from blast furnace gas by one-step catalytic process with modified activated carbon, Appl. Surf. Sci., 2022, 579, 152189.
- [3] X. Sun, P. Ning, X. L. Tang, H. H. Yi, K. Li, D. He, X. M. Xu, B. Huang, R. Y. Lai, Simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide over Al₂O₃-K/CAC catalyst at low temperature, J. Energy Chem., 2014, 23, 221-226.
- [4] Y. Q. Zhang, Z. B. Xiao, J. X. Ma, Hydrolysis of carbonyl sulfide over rare earth oxysulfides, Appl. Catal., B, 2004, 48, 57-63.
- [5] Q. Cao, Y. T. Lin, Y. R. Li, J. L. Tian, H. Q. Liu, T. Y. Zhu, J. C. Wang, Hydrolysis of Carbonyl Sulfide in Blast Furnace Gas Using Alkali Metal-Modified γ-Al₂O₃ Catalysts with High Sulfur Resistance, ACS Omega, 2023, 8, 35608-35618.
- [6] X. Song, L. N. Sun, H. B. Guo, K. Li, X. Sun, C. Wang, P. Ning, Experimental and Theoretical Studies on the influence of Carrier Gas for COS Catalytic Hydrolysis over MgAlCe Composite Oxides, ACS Omega, 2019, 4, 7122-7127.
- [7] S. J. Hu, J. N. Gu, K. Li, J. X. Liang, Y. X. Xue, X. Min, M. M. Guo, X. F. Hu, J. P. Jia, T. H. Sun, Boosting COS catalytic hydrolysis performance over Zn-Al oxide derived from ZnAl hydrotalcite-like compound modified via the dopant of rare earth metals and the replacement of precipitation base, Appl. Surf. Sci., 2022, 599, 154016.
- [8] H. K. Jin, Z. Y. An, Q. C. Li, Y. Q. Duan, Z. H. Zhou, Z. K. Sun, L. B. Duan, Catalysts of Ordered Mesoporous Alumina with a Large Pore Size for Low-Temperature Hydrolysis of Carbonyl Sulfide, Energy Fuels, 2021, 35, 8895-8908.
- [9] P. Ning, K. Li, H. H. Yi, X. L. Tang, J. H. Peng, D. He, H. Y. Wang, S. Z. Zhao, Simultaneous Catalytic Hydrolysis of Carbonyl Sulfide and Carbon Disulfide over Modified Microwave Coal-Based Active Carbon Catalysts at Low Temperature, J. Phys. Chem. C, 2012, 116, 17055-17062.
- [10] J. N. Gu, J. X. Liang, S. J. Hu, Y. X. Xue, X. Min, M. M. Guo, X. F. Hu, J. P. Jia, T. H. Sun, Enhanced removal of COS from blast furnace gas via catalytic hydrolysis over Al₂O₃-based catalysts: Insight into the role of alkali metal hydroxide, Sep. Purif. Technol., 2022, 295, 121356.

- [11] P. Wu, Y. P. Zhang, Y. L. Liu, H. Q. Yang, K. Shen, G. B. Li, S. Wang, S. P. Ding, S. L. Zhang, Experimental and theoretical research on pore-modified and K-doped Al₂O₃ catalysts for COS hydrolysis: The role of oxygen vacancies and basicity, Chem. Eng. J., 2022, 450, 138091.
- [12] R. Cao, X. Q. Wang, P. Ning, Y. B. Xie, L. L. Wang, Y. X. Ma, X. Li, H. Zhang, J. Y. Liu, Advantageous Role of N-doping on K@Al in COS/CS₂ Hydrolysis: Diminished Oxygen Mobility and Rich basic sites, Fuel, 2023, 337, 126882.
- [13] K. L. Li, C. Wang, P. Ning, K. Li, X. Sun, X. Song, Y. Mei, Surface characterization of metal oxidessupported activated carbon fiber catalysts for simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide, J. Environ. Sci., 2020, 96, 44-54.
- [14] N. Liu, X. Song, C. Wang, K. Li, P. Ning, X. Sun, F. Wang, Y. X. Ma, Surface characterization study of corn-straw biochar catalysts for the simultaneous removal of HCN, COS, and CS₂, New J. Chem., 2020, 44, 13565.