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Supplementary note

1. Confirmation of lattice constants of Co;Xg (X = Cl and Br)

To get the stable structures of 12- and 156-Co3Xs, the full optimizations were firstly
carried out. We find that the optimized structure exhibits spontaneous symmetry
breaking, which results in different lattice constants (a # b) and changed lattice angle
(0 # 120°). Moreover, the magnetic properties of Co3Xg are complex during the
structure optimization, as the magnetic ground state changes when the lattice changes
(Table S4). Thus, we changed the lattice to a hexagonal lattice and redo the
optimization. After multiple optimizations, we obtain the energy-optimized lattice

constant.

To confirm whether the obtained lattice constants are accurate, the strain-energy
fitting was performed. According to the Born-Huang criteria, the strain energy density

of 2D material under biaxial strain fits a second-order relationship with strain, that is,

1. 2
U(e) = ECHE
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U(a) =U(ay) + U(e)

where U(€) is the energy change after applying strain, U(a) is the total energy when
lattice constant is 4, C11 is the elastic constant, and € is biaxial strain, which is defined
as

e=(a-apy/a,

where @ is lattice constant under strain, and %o is the lattice constant in equilibrium.
Thus, U(@) and @ has a second-order relationship:

U(a) =Aa’+Ba+C

Then, we can obtain the lattice constant in equilibrium:

_ B
(ZO = ﬂ
To simulate biaxial strain, a series of lattice constants were set, and lattice-fixed
optimization were performed to obtain the stable structure, and the energy of
magnetic ground states were used for energy-strain fitting (Figure S2-3). To improve
accuracy, we removed points that are not on the fitted curves clearly. The fitting
results show that the lattice constants obtained by the multiple optimizations are
accurate enough. For example, the lattice constant of 12-Co;Brg is 7.302 A by DFT,
and 7.33 A by fitting. The error is only 0.36%. Furthermore, we also showed that a
weak strain has little effect on the magnetic and electronic properties of Co3;Xg. Thus,

the optimized lattice constants were used in the study.

2. The label of different magnetic arrangements

To determine the magnetic ground states of Coz;Xg (X = CI and Br), ten kinds of
magnetic arrangements are considered in total (as listed in Table S3 & Figure S8).
However, some arrangements cannot exist, such as FM in 12-Co;Xs. We marked the
final states of these arrangements in Table S3. For the FM state in 156-Co;Xg and 12-
Co;Xg under strain (¢ < —6%), three Co ions have different magnetic moments, which
is different from the magnetic moments in ferromagnetic structures. Specially, the
optimized magnetic properties of AFM1, AFM3, and AFMS5 arrangements of 12-
Co;Xs are actually not antiferromagnetic arrangement, as Co2 shows very weak or no
magnetic moments (Figure S9), which is different from the definition of AFM. As the
total magnetic moments of them are zero, here we still use the original label to refer to
their optimized result. For the AFM2 state, the magnetic arrangement changed into a
unregular FIM state after the optimization, where two of twelve Co atoms are spin-up

only, resulting in a total magnetic moment of ~ 6 up (Table S3 & Figure S9).
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Table S1. The lattice parameters (a), thickness (t), total energy (E;), and
formation energy (E¢) of Co;Xg (X = Cl and Br).

SG

164

156

12

Co;Clg
CosBrg
Coslg
Co;Clg
Co;Brg
Coslg
Co;Clg
CosBrg
Coslg

lattice (A)

a t
6.755 2.544
7.148 2.682
7.725 2.928
6.769 2.500
7.199 2.663
7.710 2.930
6.888 2.500
7.302 3.066
7.721 2.931

Ey (eV)

-41.421
-37.154
-33.487
-41.428
-37.160
-33.492
-41.593
-37.279
-33.496

E¢ E¢
(eV/unitcell) (eV/atom)
-5.635 -0.512
-2.987 -0.271
-0.241 -0.022
-5.642 -0.513
-2.993 -0.272
-0.246 -0.022
-5.807 -0.528
-3.112 -0.282
-0.250 -0.023

Table S2. The calculated elastic constants of 12- and 156-Co03;X;g (X = Cl and Br).
Unit: (GPa).

C03Cls

C03Bl’8

SG
156
12
156
12

Cn
31.934
25.051
32.257
22.651

Cn
31.934
22.661
32.257
21.074

Ci Cy
9.291 11.322
6.846 8.308
9.378 11.441
5.693 7.401

Table S3. The total energy (E,), energy difference between ground state (AE)
and magnetic moment (magmom) for different magnetic configurations in a
supercell. The magnetic states in “magmom” indicates the final magnetic
configuration is changed into different configurations.

156-Co;Xg
CosClg CosBryg
Eo(eV) AE (meV) magmom (ug) | Eo(eV) AE (meV)  magmom (up)
FM -165.70 27.47 4 -148.62 33.5 4.0002
FIM -165.73 0 1.2439 -148.66 0 1.211
NM -165.35 375.45 0 -148.32 337.02 0
AFM1 -165.62 106.48 0 -148.55 109.72 0.0001
AFM2 -164.93 800.03 0 -148.59 66.15 0
AFM3 -165.57 158.00 0 -148.50 155.85 0
AFM4 -165.69 35.86 -0.0022 -148.62 37.29 0.0643
AMF5 -165.65 78.43 -0.0179 -148.52 132.7 0.0007
FIM-like | -165.65 75.89 0 -148.59 64.51 0



2_only | AFM-like | AFM-like
12-CosXg
Co;Clg CosBry
Eo(eV) AE (meV) magmom (up) | Eo(eV) AE (meV)  magmom (up)
FM FIM FIM
FIM -166.31 67.05 12.000 -148.96 159.96 11.998
NM -164.15 2224.47 0.001 -147.12 2004.43 0.000
AFM1 -166.34 42.32 0.000 -149.01 104.72 0.000
AFM2 -166.34 33.85 5.7368 -149.01 108.02 5.841
AFM3 -166.27 106.38 0.000 -148.87 248.26 0.000
AFM4 AFM-like AFM-like
AMF5 -166.37 2.42 0.000 -149.02 103.82 0.000
FIM-like | -166.37 0.00 0.000 -149.12 0.00 0.000
2 only FIM NM

Table S4. The energy (eV)-lattice parameter (a) data of AFM-like, FIM FM
states when applying biaxial strain on Co3;Xg (X = Cl and Br), and d,/d; in 12-
Co3Xg. The data in bracket is the energy of FIM-5 state.

" 12-Co;Clg 156-Co;Clg
2(8) d,/d, FIM-like FIM M FIM-like FIM FM
6.500 0.975 -41.187 -41.191 -41.188 -41.176 -41.174 -41.186
6.550 0.974 -41.273 -41.277 -41.270 | -41.261 -41.274 -41.271
6.600 0.913 -41.307 -41.312 FIM -41.326 -41.340 -41.335
6.650 0.896 -41.404 -41.389 FIM -41.373 -41.387 -41.382
6.700 0.889 -41.472 -41.454 FIM -41.401 -41.416 -41.410
6.800 0.880 -41.559 -41.541 FIM -41.407 -41.424 -41.417
6.900 0.873 -41.596 -41.579 FIM -41.355 -41.373 -41.367
7.000 0.865 -41.584 -41.567 FIM -41.245 -41.269 -41.260
7.050 0.857 -41.561 -41.545 FIM -41.225 -41.214 -41.186
7.100 0.852 -41.529 -41.512 FIM -41.181 -41.171 -41.133
7.150 0.848 -41.487 -41.471 FIM -41.130 -41.140 -41.069
7.200 0.864 -41.413 -41.300 FIM-5 -41.056 -41.128 -41.003
(-41.286)
7.250 0.857 -41.363 -41.244 FIM-5
(-41.237)
7.300 0.851 -41.304 -41.154 FIM-5 -40.883 -41.023 -40.876
(-41.179)
12-Co;zBryg 156-Co;Bryg
a(A)
d,/d, FIM-like FIM Y | FIM-like FIM FM




6.700 1.023 -36.357 -36.384 -36.383 | -36.375 -36.380 -36.383

6.750 1.005 -36.537 -36.546 -36.534 | -36.539 -36.544 -36.545
6.800 1.006 -36.678 -36.687 -36.686 | -36.682 -36.688 -36.687
7.000 0.978 -37.062 -37.064 FIM -37.053 -37.062 -37.055
7.050 0.980 -37.108 -37.110 FIM 0

7.100 0.905 -37.168 -37.138 FIM -37.134 -37.145 -37.137
7.250 0.890 -37.268 -37.230 FIM -37.133 -37.146 -37.138
7.350 0.882 -37.279 -37.236 FIM -37.064 -37.080 -37.072
7.400 0.880 -37.268 -37.224 FIM -37.012 -37.028 -37.019
7.600 0.864 -37.141 -37.094 FIM -36.828 -36.906 -36.779

7.650 | 0.849  -37.089  -37.043  FIM
7700 | 0871  -37.018  -36.889  FIM-5
(-36.927)

7.800 |0.853 -36.898  -36.761  FIM-5 | -36.534 36.681  -36.522
(-36.807)
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Structure, energy fitting and stability
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Figure S1. The strain-energy fitting of Cos;Clg. The points marked with a red
cross were not used for fitting.
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Figure S2. The strain-energy fitting of Cos;Brg. The points marked with a red
cross were not used for fitting.
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Figure S3. The total energies of Co3Xg with different phases.
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Figure S4. The phonon spectra of 156-CosFs.
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Figure S5. The phonon spectra of Co;Cls.
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Figure S6. The AIMD simulations of (a) 156-CosClg, (b) 12-CosClg, (c) 156-

Co;Brg and (d) 12-CosBrs.
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Figure S7. (a) The energy diagrams for the phase change from 156- to 12-Co3Brs.

The phonon spectra of (b) 164-Co3Clg and 164-Co3Brs.



Magnetic properties
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Figure S8. Magnetic configurations of 156- and 12-Co;Xg tested in the DFT
calculation.
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Figure S9. Spin density and magnetic moments of (a) FIM, (b) AFM-like, (c)
AFM3, (d) AFMI, (e) AFMS5, and (f) AFM2 12-Co3Brg. The yellow and cyan
denotes spin-up and spin-down, respectively. The isosurface is 0.02 e/A3. The

magnetic moments of some ions are marked.
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Figure S10. Strain-dependent magnetic properties of 12-Co;Clg. Ey 1s defined as
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Figure S11. The spin density of (a) FIM, (b) FM, and (c) FIM-like 156-Co;Cls.
The numbers are the magnetic moments. (d) Strain-dependent magnetic
properties of 156-Co;Clg.

Electronic properties

12-CosCls_ferri

12-CosCls_FIM-like
= (b) 1

Figure S12. The band structures of 12-Co;Cls.
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Figure S13. The pbands of Col, Co2, and Co3 in 12-Co;Brs.
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Figure S14. The PDOSs for 12-Co;Brg: (a) Col and (b) Co2 in the FIM-like state,
and (c) Col and (d) Co2 in the FIM state.
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Figure S15. The PDOSs for 12-CosClg: (a) elements, (b) Col and (c) Co2 in the
FIM-like state, and (d) elements, (e¢) Col and (f) Co2 in the FIM state.
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Figure S16. Band structures of AFM 12-Co3XG.
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Figure S17. The band structures of (a) FIM, (b) FM and (c¢) FIM-like 156-Co;Cls.
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Figure S18. The PDOSs of (a) FIM, (b) FM and (c) FIM-like 156-Co;Cls.
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Figure S19. The PDOSs of three Co atoms in 156-Co;Clg with different magnetic
states.
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Figure S20. The PDOSs of three Co atoms in
magnetic states.

Figure S21. The band structures of 156-Co;Xg without considering spin.
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Figure S22. The comparation of band structures for 164- and 156-Co;Xs.
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Figure S23. Spin-resolved transmission spectra of 12-Co;Brg under the 60° and

0° directions.
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Figure S24. Convergence test for structure optimization. The total energy as a
function of: (a) cut off energy, (b) K-mesh along xy plane, and (c) thickness of
vacuum layer. The K-mesh in (a) and (c) are set as 5x5%1, cut off energy in (b-c)
are set as 550 eV, and vacuum layer in (a-b) are set as 15 A. The condition used
in our calculations is marked in blue blocks.

14

27



