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Figure S1. Schematic diagram illustrating the process of us-Si/C preparation utilizing 

a FJH apparatus.

Figure S2. SEM image of CNCs, indicating that CNCs are freeze-dried and self-
assembled into large scale nanosheet structures.



Figure S3. The size distribution of SiNPs in (a) Si/C and (b) us-Si/C.

Figure S4. Temperature profile and stabilization trend of the FJH process.



Figure S5. SEM image of carbon nanosheets derived from assembled CNCs.

Figure S6. XRD pattern of the Si/C sample after continuous heating at 1700 °C for 50 

s.

Figure S7. The high-resolution Si 2p XPS spectra of (a) Si/C and (b) us-Si/C.



Figure S8. TG analysis of Si/C and us-Si/C under air condition.

Figure S9. XRD pattern of the Si/C sample after being heated to 1200 °C for 3 h 

during CVD.



Figure S10. (a) CV curves of Si/C at different scan rates. (b) Logarithm of peak current 

vs. logarithm of scan rate. (c) Capacitive contribution to charge storage collected at 1.0 

mV s−1. (d) Capacitive and diffusion-controlled contribution to the total capacity at scan 

rates from 0.1 to 1.0 mV s−1. 



Figure S11. Cross-sectional morphology of (a) Si/C and (c) us-Si/C electrodes at the 

initial state. Cross-sectional morphology of (b) Si/C and (d) us-Si/C electrodes after 

200 cycles.



Table S1. Electrochemical lithium storage properties of various Si/rGO composite 

electrode materials reported.

Materials Si particle 

size

Voltage 

window 

(V)

Current 

density 

(mA g1)

Capacity (mAh 

g1)/cycle numbers

Ref.

Si/graphite 0.5 m 0.01-1.5 1 mA cm-

2

0.909 mAh cm2/50 [1]

Nano-Si/graphite/carbon 

composite

100 nm 0.01-1.5 100 700/50 [2]

G/Si NP pellet 60 nm 0.01-1.5 0.5 C 3 mAh cm2/50 [3]

Si/rGO core-shell 12 m 0.01-1 1000 1258/300 [4]

Mesoporous Si/C 50 nm 0.01-2 100 617/100 [5]

Si/DDAC/N-GNS 80 nm 0.01-1 2000 1168/100 [6]

3D Si/G 50 nm 0.1-1 200 1909/100 [7]

Porous yin-yang hybrid 200 nm 0.01-1.5 3000 800/600 [8]

Spherical Si/G 2.5 m 0.01-2 1000 722/50 [9]

Si/G/C nanofibers 200 nm 0.1-1.5 3000 900/200 [10]

Si/G-bubble film 50 nm 0.01-1 100 998/1000 [11]

G/Si nanowires array 50 nm 0.01-1.5 2000 684/1000 [12]

Walnut Si@Gra@Pc 125 nm 0.01-1 300 450/1000 [13]

Alternating rGO/Si/ rGO 85 nm 0.01-1 1500 1849/200 [14]

Freestanding rGO/Si film ~500 nm 0.01-1.25 1000 713/200 [15]

Porous 3D G/Si/G sandwich ~7 nm 0.01-1 600 360/194 [16]

This work ~15 nm 0.01-1 2000 918/1000
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