Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Supplementary information

Direct synthesis of ultralight, elastic, high-temperature insulation N-doped TiO₂ ceramic nanofibrous sponges via electrospinning

Wei Cheng¹, Wenling Jiao^{1*}, Yifan Fei¹, Zaihui Yang¹, Xiaohua Zhang¹, Fan Wu¹, Yitao Liu¹, Xia Yin^{1*} and Bin Ding¹

¹ Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles and Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China

* Correspondence: wenlingjiao@dhu.edu.cn, xyin@dhu.edu.cn

Supplementary Movies

Movie S1 Spinning and stacking processes

Movie S2 Dynamic compression recovery process

Movie S3 Burning process of N-TiO2 CNSs at alcohol blowtorch

Figure S1. Schematic diagram of conjugate electrospinning. (a) A physical picture. (b) A mechanism image

Figure S2. Different regions of the Taylor cone in electrospinning

Figure S3. Structural characterization of SiO₂ nanofibrous sponges. (a) Physical picture of a SiO₂ nanofibrous sponge. (b) SEM image of SiO₂ nanofibers. (c) XRD data of SiO₂ nanofibers.

Figure S4. Structural characterization of carbon fiber metal compounds nanofibrous sponges. (a) Physical picture of a carbon nanofibrous sponge (b) SEM image of carbon nanofibers. (c) XRD data of carbon nanofibers

Figure S5. Structural characterization of TiBaO₃ nanofibrous sponges. (a) Physical picture of a TiBaO₃ nanofibrous sponge (b) SEM image of TiBaO₃ nanofibers. (c) XRD data of TiBaO₃ nanofibers.

Figure S6. The precursor of N-TiO₂ CNSs with a diameter of 7.5 cm and a thickness of 3.5 cm.

Figure S7. (a) SEM image of the surface lamellar of N-TiO₂ CNSs. (b) SEM image of the inner layer of N-TiO₂ CNSs.

Figure S8. The fiber diameter distribution in the surface layer of the sponge.

Figure S9. The fiber diameter distribution of the inner layer of the sponge.

Figure S10. SEM images of TiO₂ and N-TiO₂ nanofibers after calcination at 600 $\,^{\circ}$ C for 1h.

Figure S11. SEM images of TiO_2 and N-TiO₂ nanofibers after calcination at 800 $\,^{\circ}C$ for 1h.

Figure S12. SEM image of bonding points between N-TiO2 nanofibers

Figure S13. TEM images at the fracture site of $N-TiO_2$ nanofiber.

Figure S14. XRD spectra of TiO₂ and N-TiO₂ CNSs.

Figure S15. Compression resilience test results of TiO₂ CNSs and N-TiO₂ CNSs with a density of about 15 mg cm⁻³. (a) TiO₂ CNSs. (b) N-TiO₂ CNSs.

Figure S16. SEM image of N-TiO₂ after calcination at 1000 ° C for 1h, the inset is a physical picture.

Figure S17. Energy loss coefficient of 12 mg cm⁻³ N-TiO₂ CNSs at 80% strain.

Figure S18. Hydroscopicity of TiO₂ nanofibrous sponge.

Supplementary Tables

Table S1. Automatic fast surface and porosity tests results

BJH Pore Size Distribution Adsorption	Surface Area(m² g⁻¹)	Pore volume(cc g ⁻¹)
N-TiO ₂	14.258	0.038
TiO ₂	16.806	0.045
BJH Pore Size Distribution Desorption	Surface Area(m ² g ⁻¹)	Pore volume(cc g ⁻¹)
BJH Pore Size Distribution Desorption N-TiO ₂	Surface Area(m ² g ⁻¹) 36.946	Pore volume(cc g ⁻¹) 0.049