Supporting Information

Suppressed Auger recombination and enhanced emission of InP/ZnSe/ZnS quantum dots through inner-shell manipulation

 Huaibin Shen ${ }^{\text {b }}$, Zhen Chi ${ }^{\text {a }}$, Xia Ran ${ }^{\text {a }}$ and Lijun Guo ${ }^{\text {a, }}$,
${ }^{\text {a }}$ School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China
${ }^{\mathrm{b}}$ Key Laboratory for Special Functional Materials of Ministry of Education National \& Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China

Fig. S1. Representative PL decay curves of single $\mathrm{InP} / 2 \mathrm{ZnSe} / \mathrm{ZnS}$ QDs under different excitation powers.

Fig. S2. (a-e) Histograms of ON-states fraction for single $\mathrm{InP} / \mathrm{ZnSe} / \mathrm{ZnS}$ QDs with 2, 4, 5, 6 and 7 MLs of inner ZnSe shell. (f) The average ON-states fraction for single QDs with different number of ZnSe shell monolayers, based on the results from randomly selected ~ 50 dots of each $\operatorname{InP} / \mathrm{ZnSe} / \mathrm{ZnS}$ QDs.

Fig. S3. (a-e) Histograms of $\mathrm{g}^{2}(0)$ for single $\mathrm{InP} / \mathrm{ZnSe} / \mathrm{ZnS}$ QDs with 2, 4, 5, 6 and 7 MLs of inner ZnSe shell. (f) The average $\mathrm{g}^{2}(0)$ for single QDs with different number of ZnSe shell monolayers, based on the results from randomly selected ~ 50 dots of each InP/ZnSe/ZnS QDs.

Fig. S4. (a-d) Transient absorption (TA) map and corresponding TA spectra with different time delays for $\mathrm{InP} / \mathrm{ZnSe} / \mathrm{ZnS}$ QDs with $2,4,6,7 \mathrm{MLs}$, respectively.

Table S1. Bi-exponential fitting parameters of TA kinetics for $\mathrm{InP} / 5 \mathrm{ZnSe} / \mathrm{ZnS}$ QDs displayed in Fig. 5d with increasing pump power from $20 \mu \mathrm{~W}$ to $100 \mu \mathrm{~W}$.

Pump power	$\mathrm{A}_{\text {fast }} \%$	$\mathrm{~A}_{\text {slow }} \%$	$\tau_{\text {fast }}(\mathrm{ps})$	$\tau_{\text {slow }}(\mathrm{ns})$
$20 \mu \mathrm{~W}$	32.01	67.99	320	3.5
$40 \mu \mathrm{~W}$	38.13	61.87	161	3.5
$50 \mu \mathrm{~W}$	40.86	59.14	150	3.6
$80 \mu \mathrm{~W}$	46.84	53.18	100	3.7
$100 \mu \mathrm{~W}$	48.35	51.65	90	3.8

