Strongly Coupled Plasmonic Metal Nanoparticles with Reversible pH-Responsiveness and Highly Reproducible SERS in Solution

Zichao Wei, ${ }^{a}$ Audrey Vandergriff, ${ }^{\text {a }}$ Chung-Hao Liu, ${ }^{\mathrm{b}}$ Maham Liaqat, ${ }^{\text {a }}$ Mu-Ping Nieh,,${ }^{\mathrm{b}, \mathrm{c}, \mathrm{d}}$ Yu Lei ${ }^{\mathrm{d}}$ and Jie He ${ }^{\text {a,b,c* }}$

${ }^{\text {a }}$ Department of Chemistry, ${ }^{\mathrm{b}}$ Polymer Program, ${ }^{\mathrm{c}}$ Institute of Materials Science, and ${ }^{\text {d }}$ Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, United States

Emails: jie.he@uconn.edu (JH)

Figure S1. (a) SERS response of PAA-grafted AgNPs for 4-aminothiophenol at pH of 2.5 and 12. (b) Repeating SERS response of 4 -aminothiophenol at a concentration of $1.0 \mu \mathrm{M}$ with PAA-AgNPs at pH of 2.5. (c) Repeating SERS response of 4 -aminothiophenol at a concentration of $1.0 \mu \mathrm{M}$ with PAA-AgNPs at pH of 12 .

Figure S2. (a) SERS response of PAA-grafted AgNPs for 4-mercaptopyridine at pH of 2.5 and 12. (b) Repeating SERS response of 4-mercaptopyridine at a concentration of $1.0 \mu \mathrm{M}$ with PAA-AgNPs at pH of 2.5. (c) Repeating SERS response of 4-mercaptopyridine at a concentration of $1.0 \mu \mathrm{M}$ with PAA-AgNPs at pH of 12 .

Figure S3. (a) SERS response of PAA-grafted AgNPs for thiophenol at pH of 2.5 and 12. (b) Repeating SERS response thiophenol at a concentration of $1.0 \mu \mathrm{M}$ with PAA-AgNPs at pH of 2.5. (c) Repeating SERS response of thiophenol at a concentration of $1.0 \mu \mathrm{M}$ with PAA-AgNPs at pH of 12 .

Figure S4. (a) SERS response of PAA-grafted AgNPs for 4-mercaptophenylboronic acid at pH of 2.5 and 12. (b) Repeating SERS response 4-mercaptophenylboronic acid at a concentration of $1.0 \mu \mathrm{M}$ with $\mathrm{PAA}-\mathrm{AgNPs}$ at pH of 2.5. (c) Repeating SERS response of 4-mercaptophenylboronic acid at a concentration of $1.0 \mu \mathrm{M}$ with PAA-AgNPs at pH of 12 .

Figure S5. (a) SERS response of PAA-grafted AgNPs for 4-mercaptobenzoic acid at pH of 2.5 and 12. (b) Repeating SERS response 4-mercaptophenylboronic acid at a concentration of $1.0 \mu \mathrm{M}$ with PAA-AgNPs at pH of 2.5. (c) Repeating SERS response of 4-mercaptophenylboronic acid at a concentration of $1.0 \mu \mathrm{M}$ with PAA-AgNPs at pH of 12 .

Figure S6. (a) SERS response of PAA-grafted AgNPs for crystal violet at pH of 2.5 and 12. (b) Repeating SERS response crystal violet at a concentration of $0.4 \mu \mathrm{M}$ with PAA-AgNPs at pH of 2.5. (c) Repeating SERS response of crystal violet at a concentration of $0.4 \mu \mathrm{M}$ with PAA-AgNPs at pH of 12 .

Figure S7. (a) SERS response of PAA-grafted AgNPs for methylene blue at pH of 2.5 and 12. (b) Repeating SERS response methylene blue at a concentration of $0.4 \mu \mathrm{M}$ with PAA-AgNPs at pH of 2.5. (c) Repeating SERS response of methylene blue at a concentration of $0.4 \mu \mathrm{M}$ with PAA-AgNPs at pH of 12 .

Figure S8. (a) SERS response of PAA-grafted AgNPs for Nile blue at pH of 2.5 and 12. (b) Repeating SERS response Nile blue at a concentration of $0.4 \mu \mathrm{M}$ with PAA-AgNPs at pH of 2.5. (c) Repeating SERS response of Nile blue at a concentration of $0.4 \mu \mathrm{M}$ with PAA-AgNPs at pH of 12 .

Figure S9. Raman spectra of PAA-AgNPs at pH of 2.5 and 12.

Calculation of limit of detection (LOD)

LOD is calculated from the slope of the calibration cure and the standard deviation. The formula is:
$L O D=N \times \frac{S D}{S}$
Where N is the signal-to-noise ratio (~ 3.3), S is the slope of the linear fitting and SD is the standard deviation. For example, in Figure 4, the slope of the calibration curve is 0.58 and the SD is 0.058 , then the LOD is

$$
L O D=3.3 \times \frac{0.058}{0.58}=0.33 \mu M=
$$

SAXS Model

Core-shell spherical model:

The intensity $I(q)$ for the core-shell spherical is given by:
$I(q)=\frac{\text { scale }}{V} \times F(q)^{2}+$ background,
where
$F(q)=\frac{3}{V_{s}}\left[V_{c}\left(\rho_{c}-\rho_{s}\right) \frac{\sin \left(q R_{c}\right)-q R_{c} \cos \left(q R_{c}\right)}{\left(q R_{c}\right)^{3}}+V_{s}\left(\rho_{s}-\rho_{s o l v}\right) \frac{\sin \left(q R_{s}\right)-q R_{s} \cos \left(q R_{s}\right)}{\left(q R_{s}\right)^{3}}\right]$,
where V_{s} and V_{c} are the volume of the whole particle and core, respectively. R_{s} and R_{c} are the radius of particles (radius plus thickness) and core radius, respectively. $\rho_{\mathrm{c}}, \rho_{\mathrm{s}}, \rho_{\text {solv }}$ are the scattering length density of the core, the shell and the solvent, respectively.

