

Figure S1. (a) SEM image of Mg-BNSs. (b-d) EDX mapping of Mg-BNSs.

Scale bars, 200 nm.

Figure S2. EDX analysis results of Mg-BNSs.

Figure S3. The blank without catalyst test for ODHP. Reaction conditions: atmospheric pressure, $C_3H_8/O_2/N_2$ ratio = 1 :1 :3, WHSV = 24000 ml/g/h.

Figure S4. Catalytic performance of MgB₂ at different temperatures. Reaction conditions: atmospheric pressure, $C_3H_8/O_2/N_2$ ratio = 1 :1 :3, WHSV = 24000 ml/g/h.

Figure S5. Propane conversions and product selectivities of Mg-BNSs at 530 °C and 540 °C. Reaction conditions: atmospheric pressure, $C_3H_8/O_2/N_2$ ratio = 1 :1 :3, WHSV = 24000 ml/g/h.

Figure S6. Carbon balance of Mg-BNSs during the stability test at 530 °C.

Figure S7. TEM image of Mg-BNSs after the catalytic test for 100 h.

Figure S8. N_2 sorption isotherms of Mg-BNSs after the catalytic test for 100 h.

Figure S9. Long-term stability test of h-BN at 530 °C. Reaction conditions: atmospheric pressure, $C_3H_8/O_2/N_2$ ratio = 1 :1 :3, WHSV = 24000 ml/g/h.

Figure S10. XRD patterns of the fresh h-BN and the spent h-BN.

Figure S11. Propane conversion as a function of time on stream on the fresh Mg-BNSs at 530 °C. Reaction conditions: atmospheric pressure, $C_3H_8/O_2/N_2$ ratio = 1 :1 :3, WHSV = 24000 ml/g/h.

Figure S12. XRD pattern of commercial MgB₂.

Figure S13. Selected regions of the XRD patterns of bulk boron, Mg-BNSs and their spent forms.

Figure S14. FT-IR spectrum of MgB₂.

Figure S15. Propane conversion as a function of time on stream on the pristine AlB₂ at 530 °C. Reaction conditions: atmospheric pressure, $C_3H_8/O_2/N_2$ ratio = 1 :1 :3, WHSV = 24000 ml/g/h.

Figure S16.XRD pattern of AlB_2 and the spent AlB_2 .

Figure S17. TEM images of (a) AlB_2 and (b) Al-BNSs.

Figure S18. (a) XRD pattern, (b) FT-IR spectrum and (c) N_2 adsorption and desorption studies of Al-BNSs.

Figure S19. (a) Stability test of Al-BNSs at 530 °C over 100 h. (b) Carbon balance of Al-BNSs during the stability test at 530 °C. Reaction conditions: atmospheric pressure, $C_3H_8/O_2/N_2$ ratio = 1 :1 :3, WHSV = 24000 ml/g/h.

Table S1. ICP-OES analysis results of Mg-BNSs.

Sample	ICP-AES v	Stoichiometric ratio	
	Mg	В	Mg:B
MgB ₂ -HCl	1.16	8.57	$Mg_{0.12}B_2$

Note: the stoichiometric ratio was calculated by using the following formula:

Elemental concentration of Mg Elemental concentration of B

Atomic weight of Mg (24.3) : Atomic weight of B (10.8)

Table S2. Elements compositions of MgB₂, Mg-BNSs, and the spent Mg-BNSs based on XPS analysis results.

Samples	B (at.%)	Mg (at.%)	O (at.%)
MgB_2	17.81	16.73	65.46
Mg-BNSs-Fresh	80.57	1.61	17.82
Mg-BNSs-Spent	42.64	2.40	54.96

No.	Catalante	Temp. C [°C]	Conv.	Sel	Selectivity [%]		Productivity	D-f
	Catalysis		[%]	C ₃ =	C ₂ =	C ₂₋₃ =	[golefin gcat ⁻¹ h ⁻¹]	Kei.
1	WB	500	2.5	87.9	7.3	95.2	0.13	1
2	NiB	500	6.1	85.4	9.3	94.7	0.40	1
3	Ti ₂ B	500	5.8	85.4	9.1	94.5	0.50	1
4	B ₄ C	500	7.0	84.2	9.3	93.5	0.60	1
5	h-BN	490	14	79.0	12.0	91.0	0.50	2
6	High surface area BN	525	24	69.0	-	-	0.04	3
7	BS-1	540	23.8	55.4	27.2	82.6	0.12	4
8	B_2O_3/Al_2O_3	550	24.1	42.6	12.5	55.1	0.35	5
9	BOS-10	450	14.8	73.3	14.1	87.4	1.1	6
10	B2O3@BPO4	550	24.7	66.4	18.4	84.8	0.79	7
11	SiB_6	535	19.2	82.2	12.2	94.4	1.49	8
12	B-MWW	540	29.9	72.5	15.3	87.8	1.11	9
13	Mg-BNSs	530	39.8	63.5	18.4	81.9	2.48	This work
14	Mg-BNSs	540	53.8	48.8	25.6	74.4	2.91	This work

Table S3. Catalytic performance of Mg-BNSs in comparison with the reported boronbased catalysts in ODHP.

Samples	Yield of boron nanosheet (wt%)	Cost (CNY/g)	
MgB ₂	27.0	1.2	
AlB ₂	24.3	9.5	

Table S4. The prices of MgB₂ and AlB₂ from different resources.

Note: The price was calculated based on the price of MgB_2 from RHAWN (30.73 CNY/25g) as of when this work was submitted. And the price of AlB_2 from Acmec (47.55 CNY/5g) as of when this work was submitted.

References:

- 1. J. T. Grant, W. P. McDermott, J. M. Venegas, S. P. Burt, J. Micka, S. P. Phivilay, C.
- A. Carrero and I. Hermans, ChemCatChem, 2017, 9, 3623-3626.
- 2. J. T. Grant, C. A. Carrero, F. Goeltl, J. Venegas, P. Mueller, S. P. Burt, S. E. Specht,
- W. P. McDermott, A. Chieregato and I. Hermans, Science, 2016, 354, 1570-1573.
- 3. P. Chaturbedy, M. Ahamed and M. Eswaramoorthy, ACS Omega, 2018, 3, 369-374.
- 4. H. Zhou, X. F. Yi, Y. Hui, L. Wang, W. Chen, Y. C. Qin, M. Wang, J. B. Ma, X. F.
- Chu, Y. Q. Wang, X. Hong, Z. F. Chen, X. J. Meng, H. Wang, Q. Y. Zhu, L. J. Song, A. M. Zheng and F. S. Xiao, *Science*, 2021, **372**, 76-80.
- 5. O. V. Buyevskaya, M. Kubik and M. Baerns, in Heterogeneous Hydrocarbon Oxidation, ed. B. K. Warren and S. T. Oyama, 1996, ch. 11, pp. 155–169.
- W.-D. Lu, D. Wang, Z. Zhao, W. Song, W.-C. Li and A.-H. Lu, ACS Catal., 2019, 9, 8263-8270.
- Q. Liu, Y. Wu, F. Xing, Q. Liu, X. Guo and C. Huang, J. Catal., 2020, 381, 599-607.
 B. Yan, W.-C. Li and A.-H. Lu, J. Catal., 2019, 369, 296-301.
- B. Qiu, F. Jiang, W.-D. Lu, B. Yan, W.-C. Li, Z.-C. Zhao and A.-H. Lu, J. Catal., 2020, 385, 176-182.