Supporting Information

Tuning Electronic Structure of Pd by Surface Configuration of Al₂O₃ for Hydrogenation Reactions

Yinglei Liu^a, Chicheng Ma^a, Jiye Zhang^a, Huiying Zhou^a, Gaowu Qin^{a,b}, Song Li^{a,*}

^aKey Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China

^bInstitute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China

*Email: lis@atm.neu.edu.cn

Figure and table captions

Figure S1 TG-DTA curves of (a) Al(OH)₃ and (b) AlOOH in air flow.

Figure S2 27 Al MAS NMR of γ -Al₂O₃ and η -Al₂O₃.

Figure S3 N₂ sorption isotherm and pore size distributions of γ -Al₂O₃ (a and b) and η -Al₂O₃ (c and d).

Figure S4 TPD profiles of supports and Pd supported catalysts: (a) and (b) NH₃, (c) and (d) CO₂.

Figure S5 FT-IR spectra of OH groups on the surface of supports and catalysts.

Figure S6 Selectivity of nitrobenzene hydrogenation of Pd/γ -Al₂O₃ and Pd/η -Al₂O₃.

Figure S7 Recycling stability of Pd/γ -Al₂O₃ in the hydrogenation of nitrobenzene.

Figure S8 DF-STEM images, HR-TEM images and Pd size histograms of the used Pd/γ -Al₂O₃ and Pd/η-Al₂O₃ after the hydrogenation of nitrobenzene.

Figure S9 XPS spectra of the used catalysts after the hydrogenation of nitrobenzene.

Figure S10 Recycling stability of Pd/η-Al₂O₃ in the hydrogenation of phenylacetylene.

Table S1 Possible configuration and net charge on the γ -Al₂O₃ and η -Al₂O₃.

Table S2 Acidity and basicity of supports and Pd supported catalysts.

Table S3 The proportions of OH groups in the XPS spectra of Al 2p and O 1s.

Figure S1 TG-DTA curves of (a) $Al(OH)_3$ and (b) AlOOH in air flow.

Figure S2 ^{27}Al MAS NMR of $\gamma\text{-}Al_2O_3$ and $\eta\text{-}Al_2O_3.$

Figure S3 N_2 sorption isotherm and pore size distributions of γ -Al₂O₃ (a and b) and η -Al₂O₃ (c and d).

Figure S4 TPD profiles of supports and Pd supported catalysts: (a) and (b) NH₃, (c) and (d) CO₂.

Figure S5 FT-IR spectra of OH groups on the surfaces of supports and catalysts.

There are five types of OH stretching vibrations within the frequency range of 3700-3800 cm⁻¹.^{1–3} The band at 3785 cm⁻¹ corresponds to a terminal OH group coordinated with an octahedral Al³⁺ ion, while the band at 3760 cm⁻¹ corresponds to a terminal OH group coordinated with a tetrahedral Al³⁺ ion. The band at 3740 cm⁻¹ is assigned to a bridging OH group that links two octahedral Al³⁺ ions. The three OH configurations are more abundant on γ -Al₂O₃ and act as the sites accepting H-bonds. The bands at 3730 cm⁻¹ and 3700 cm⁻¹ are attributed to the stretching vibrations of a bridging OH group, which links an octahedral and a tetrahedral Al³⁺ ions, as well as a OH group coordinated to three Al³⁺ ions in octahedral interstices. The two types of OH configurations, which serve as H-bond donors, are more abundant on η -Al₂O₃. Loading Pd onto the supports results in a decrease in the intensity of OH vibration bands, and the similar spectra between Pd/ γ -Al₂O₃ and Pd/ η -Al₂O₃ eliminate the influence of OH groups on the catalytic performance in the hydrogenation reactions.

Figure S6 Selectivity of nitrobenzene hydrogenation of Pd/γ -Al₂O₃ and Pd/η -Al₂O₃.

Figure S7 Recycling stability of Pd/γ -Al₂O₃ in the hydrogenation of nitrobenzene.

Figure S8 DF-STEM images, HR-TEM images and Pd size histograms of the used Pd/ γ -Al₂O₃ (a, b, c) and Pd/ η -Al₂O₃ (d, e, f) after the hydrogenation of nitrobenzene.

Figure S9 XPS spectra of the used catalysts after the hydrogenation of nitrobenzene.

Figure S10 Recycling stability of Pd/η -Al₂O₃ in the hydrogenation of phenylacetylene.

Acid sites			Basic sites			
Configuration	Net charge	Acid strength	Configuration	Net charge	Basic strength	
Al ^{VI} -OH-Al ^{VI a}	0	Weak	Al ^{IV} -OH	-1/4	Weak	
Al ^{VI} -OH-Al ^{IV b}	+1/4	Weak	Al ^{vi} -OH	-1/2	Weak	
Al ^{VI} -OH-Al ^{VI b} Al ^{VI}	+1/2	Moderate	$Al^{VI}\text{-}O\text{-}Al^{IVb}$	-3/4	Strong	
Al ^{vı} -□	+1/2	Moderate	Al ^{VI} -O-Al ^{VI a}	-1	Strong	
$Al^{\mathrm{IV}}\text{-}\square^b$	+3/4	Strong				

Table S1 Possible configuration and net charge on the $\gamma\text{-Al}_2O_3$ and $\eta\text{-Al}_2O_3.^2$

 a More abundant for $\gamma\text{-}Al_2O_3$

^b More abundant for η -Al₂O₃

Samples -	Acidity (µmol NH ₃ /g)			Basicity (µmol CO ₂ /g)		
	Total	Weak	Strong	Total	Weak	Medium
γ-Al ₂ O ₃	200	89	111	471	268	203
Pd/γ - Al_2O_3	187	81	106	344	215	129
η -Al ₂ O ₃	247	96	151	357	228	129
Pd/η - Al_2O_3	172	80	92	309	204	105

Table S2 Acidity and basicity of supports and Pd supported catalysts.

	Al 2p	O 1s
γ-Al ₂ O ₃	28.5%	34.5%
Pd/γ - Al_2O_3	17.5%	27.3%
η -Al ₂ O ₃	25.1%	27.5%
Pd/η - Al_2O_3	19.3%	23.8%

Table S3 The proportions of OH groups in the XPS spectra of Al 2p and O 1s.

References

2 P.O. Scokart and P.G. Rouxhet, J. Colloid Interface Sci., 1982, 86, 96–104.

3 H. Knozinger, Studies in Surface Science and Catalysis, 1985, 20, 111–125.