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Figure S1. (a) Top view of transition metal (TM) doped into BN/G hybrid structure in which double
B and N vacancies were created for embedding TM. (b) Front view of the hybrid structure single
atom catalyst. The interlayer distance is around 3.4 A and TM was surrounded with B,N>. Color

code, TM: Red, nitrogen: blue, boron: green, carbon: brown.
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Figure S2. (a) Free energy changes of the first pronation step (*N2 to *N2H) versus adsorption
energy of *N2. (b) N-N bond elongation as a function of extra charge on adsorbed *No.
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Figure S3. (a) Possible NRR reaction paths of BN/G SACs through the associative mechanism. (b)
Two main intermediate species after *NH2-*NH: formation for releasing the first ammonia via an
enzymatic pathway and (c) adsorption energy of N2 on V-SAC after releasing ammonia.
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Figure S4. (a) Free energy diagram for N2 reduction to NHs on Cr-doped BN/G SAC via distal

mechanism and (b) its adsorption structures during the NRR reaction.
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Figure S5. (a) Free energy diagram for N2 reduction to NHs on Cr-doped BN/G SAC via

enzymatic mechanism and (b) its adsorption structures during the NRR reaction.



Figure S6. (a) Free energy diagram for N2 reduction to NHs on Ta-doped BN/G SAC via

distal mechanism and (b) its adsorption structures during the NRR reaction.
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Figure S7. (a) Free energy diagram for N reduction to NH3 on Ta-doped BN/G SAC via enzymatic

mechanism and (b) its adsorption structures during the NRR reaction.



Figure S8. (a) Free energy diagram for N2 reduction to NHz on Ru-doped BN/G SAC via distal

mechanism and (b) its adsorption structures during the NRR reaction.
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Figure S9. (a) Free energy diagram for N> reduction to NHz on Ru-doped BN/G SAC via

enzymatic mechanism and (b) its adsorption structures during the NRR reaction.
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Figure S10. (a) Free energy diagram for N2 reduction to NHsz on Mo-doped BN/G SAC via

distal mechanism and (b) its adsorption structures during the NRR reaction.

11



-
-
-
-
-

Reaction Coordinate

Figure S11. (a) Free energy diagram for N2 reduction to NHs on Mo-doped BN/G SAC via

enzymatic mechanism and (b) its adsorption structures during the NRR reaction.
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Figure S12. (a) Free energy diagram for N2 reduction to NH3z on Ir-doped BN/G SAC via

distal mechanism and (b) its adsorption structures during the NRR reaction.
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Figure S13. (a) Free energy diagram for N2 reduction to NH3z on Ir-doped BN/G SAC via

enzymatic mechanism and (b) its adsorption structures during the NRR reaction.
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Figure S14. (a) Free energy diagram for N2 reduction to NH3 on W-doped BN/G SAC via

enzymatic mechanism and (b) its adsorption structures during the NRR reaction.
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Figure S15. (a) Free energy diagram for N2 reduction to NHs on V-doped BN/G SAC via distal

mechanism and (b) its adsorption structures during the NRR reaction.
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Figure S16. (a) Free energy diagram for N2 reduction to NHz on V-doped BN/G SACs via distal

mechanism (bridge site) and (b) its adsorption structures during the NRR reaction.
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Figure S17. (a) Free energy diagram for N2 reduction to NHs on V-doped BN SACs via distal

mechanism and (b) its adsorption structures during the NRR reaction.
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Figure S18. Free energy diagram for N2 reduction to NHs on W-doped BN SACs via distal

mechanism.
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Figure S19. (a) Gibbs free energy for *NH; to *NHs elementary step employing implicit solvation
model or a mixed implicit + explicit solvation model on VV-doped BN/G SAC.
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Figure S20. Projected density of states (PDOS) for (a) s and p orbitals of adsorbed N2 and (b) d-
orbitals of Ir on Ir-doped BN/G SAC.
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Figure S21. Projected density of states (PDOS) for (a) s and p orbitals of adsorbed N>
and (b) d-orbitals of W on W-doped BN/G SAC.
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Figure S22. Projected density of states (PDOS) for (a) s and p orbitals of adsorbed N2
and (b) d-orbitals of Nb on Nb-doped BN/G SAC.

23



N (s) — N(p2)
N(py) — N(px)

PDOS

-15 -10 -5 0 5
Energy (eV)

Cr (dxy)
— Cr (dyz)
— Cr (dz2)
— Cr (dx2)
Cr (dx2)

PDOS
|

= ——————————————————————————————

-15 -10 -5
Energy (eV)

Figure S23. Projected density of states (PDOS) for (a) s and p orbitals of adsorbed N>
and (b) d-orbitals of Cr on Cr-doped BN/G SAC.
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Table S1. Magnetic moments of TM and its coordination environment (B2N2) on BN/G
hybrid SACs.

™

(1) N1(ps) | N2(us) | B1l(us) | B2(ns) | Total

Catalyst

W-BN/G | 1.16 -0.01 -0.01 | 0.010 | 0.010 1.28

Mo-BN/G| 123 | -0.012 | -0.012 | -0.002 | -0.002 1.29

V-BN/G 197 | -0.033 | -0.033 | 0.056 | 0.056 2.17

Cr-BN/G | 3.17 | -0.049 | -0.049 | 0.024 | 0.024 3.24

Nb-BN/G | 0.25 | -0.005 | -0.005 | 0.019 | 0.019 0.34

25



Table S2. Comparing potential determining step (PDS) of BN/G hybrid structures with some SACs
in previous studies

Substrate Active site PDS References
(eV)
Boron-Nitride Mo 0.35 1
Graphene W 0.25 2
Nitrogen doped- Mo 05 3
Graphene
Nitrogen doped- Ti 0.69 4
Graphene
Boron-Nitride/G \/ 0.22 This study
Boron-Nitride/G wW 0.41 This study
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Table S3. Computed zero-point energy and entropy corrections at 298.15 K for different adsorbate
species.

Adsorbate é’i}? TS (eV) | Adsorbate éF\’/I? TS (eV)
*N-N 0.2 0.18 *N-*N 0.2 0.13
*N-NH 0.43 0.12 *N-*NH 0.5 0.13
*N-NH: 0.74 0.15 *NH-*NH 0.79 0.14
*N 0.08 0.06 *NHz2-*NH 1.12 0.14
*NH 0.34 0.14 *NH2-*NHz2 | 1.45 0.16
*NH> 0.63 0.11 *NH2-*NHs | 1.75 0.2
*NHs 1.02 0.13
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