Supporting Information

Impact of Channel Nanostructures of Porous Carbon Particles on Their Catalytic Performance

Hyunkyu Oh^{1,†}, Young Jun Lee^{2,†}, Eun Ji Kim¹, Jinseok Park¹, Hee-Eun Kim¹, Hyunsoo Lee¹, Hyunjoo Lee¹, and Bumjoon J. Kim^{1,*}

[†]These authors contributed equally to this work.

¹Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea ²Carbon Composite Materials Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea *E-mail: bumjoonkim@kaist.ac.kr (B. J. K.)

Table of Contents

■ Supporting Figures S1-S7

Fig. S1 SEM images of BCP particles at different evaporation conditions. (a) $\varphi = 0.04$ h⁻¹, (b) $\varphi = 0.09$ h⁻¹, (c) $\varphi = 0.33$ h⁻¹, (d) $\varphi = 1.18$ h⁻¹.

Fig. S2 SEM images of (a) PCP1, (b) PCP2, (c) PCP3 and (d) PCP4.

Fig. S3 TEM images of PCP-PtFe catalysts: (a) PCP1-PtFe, (b) PCP2-PtFe, (c) PCP3-PtFe, and (d) PCP4-PtFe.

Fig. S4 SEM images of PCP-PtFe catalysts: (a) PCP1-PtFe, (b) PCP2-PtFe, (c) PCP3-PtFe, and (d) PCP4-PtFe.

Fig. S5 (a) TEM image, (b) high-resolution TEM image, (c) HAADF-STEM image, and (d-f) EDS mapping of the PCP4-PtFe catalyst: (d) Pt (red), (e) Fe (green), and (f) their overlay. The observed ratio of Pt and Fe is 1:3.

Fig. S6 UV-Vis absorption spectra of PCP4-PtFe catalyst, PCP4-Pt, PCP4-Fe, and PCP4-w/o PtFe for OPD oxidation.

Fig. S7 (a) Scheme for the anionic polymerization, (b) SEC, and (c) ¹H NMR spectra of PS-*b*-PDMS.

■ Supporting Tables S1-S2

Table S1. Structural characteristics of PCP

 Table S2. Elemental analysis of PCP-PtFe catalyst

Supplementary Note 1

 $Amount of DAP \ produced = \frac{Absobance}{molar \ absorption \ coefficient \ * \ optical \ path \ length \ (cm)}$

(1)

By applying the Beer-Lambert Law (equation (1)), the amount of DAP produced can be calculated from the UV-Vis spectrum (DAP's molar absorption coefficient = $1.67 \times 10^4 \text{ M}^{-1}\text{cm}^{-1}$ and the optical path length = 1 cm).¹ As DAP at a concentration of 1 M is generated from the reactant OPD at 2 M, the residual concentration of OPD over time can be determined. Plotting 1/[OPD] against time results in a linear graph, where the slope of this line represents the second-order reaction rate constant, $k \text{ (mM}^{-1}\text{s}^{-1})$, of OPD. The equation used for calculating 1/[OPD] is as follows:

$$\frac{1}{[OPD]} = \frac{1}{0.67 \ mM - \left(\frac{Absorbance \ of \ DAP}{1.67 \times 10 \ mM^{-1} cm^{-1}} \times 2\right)}$$
(2)

This equation assumes the conversion of 2OPD to DAP and sets a total concentration of 0.67 mM, where the total concentration is based on 100 μ L of 0.02 M OPD in 3 mL.

Fig. S1 SEM images of BCP particles at different chloroform evaporation conditions. (a) $\varphi = 0.04$ h⁻¹, (b) $\varphi = 0.09$ h⁻¹, (c) $\varphi = 0.33$ h⁻¹, (d) $\varphi = 1.18$ h⁻¹.

Fig. S2 SEM images of (a) PCP1, (b) PCP2, (c) PCP3 and (d) PCP4.

РСР	BET surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Pore diameter (nm)
PCP1	208	0.23	6.6
PCP2	314	0.35	37.9
РСР3	393	0.46	38.8
PCP4	562	0.69	37.3

Table S1. Structural characteristics of PCP determined by BET measurement.

Fig. S3 TEM images of PCP-PtFe catalysts: (a) PCP1-PtFe, (b) PCP2-PtFe, (c) PCP3-PtFe, and (d) PCP4-PtFe.

Fig. S4 SEM images of PCP-PtFe catalysts: (a) PCP1-PtFe, (b) PCP2-PtFe, (c) PCP3-PtFe, and (d)

PCP4-PtFe.

Fig. S5 (a) TEM image, (b) high-resolution TEM image, (c) HAADF-STEM image, and (d-f) EDS mapping of the PCP4-PtFe catalyst: (d) Pt (red), (e) Fe (green), and (f) their overlay. The observed ratio of Pt and Fe is 1:3.

Catalyst	Pt (wt%)	Fe (wt%)
PCP1-PtFe	1.31	4.74
PCP2-PtFe	1.32	4.57
PCP3-PtFe	1.37	4.79
PCP4-PtFe	1.29	4.76

Table S2. Elemental analysis of PCP-PtFe catalyst measured by ICP-OES.

Fig. S6 UV-Vis absorption spectra of PCP4-PtFe catalyst, PCP4-Pt, PCP4-Fe, and PCP4-w/o PtFe for

OPD oxidation.

g. S7 (a) Scheme for the anionic polymerization, (b) SEC, and (c) ¹H NMR spectra of PS-*b*-PDMS.

Reference

1. F. Vetr, Z. Moradi-Shoeili, S. Özkar, *Appl. Organomet. Chem.* **2018**, *32*, e4465.