Supporting Information

X-ray-Triggered Through-space Charge Transfer and Photochromism in Silver Nanoclusters

Zhen Ren ${ }^{\text {as }}$, Jun-Jun Sun ${ }^{\text {a§ }}$, Long $\mathrm{Xu}^{\text {c }}$, Peng Luo ${ }^{\text {a }}$, Zi-Wei Ma ${ }^{\text {a }}$, Si Lib ${ }^{\text {b }}$, Yu-Bing Si ${ }^{\text {b }}$, Xi-Yan Dong ${ }^{\text {a,b,*, }}$, Fangfang Pan ${ }^{\text {c,* }}$
${ }^{a}$ College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo
454000, China
${ }^{b}$ College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
${ }^{c}$ College of Chemistry, Central China Normal University, Wuhan 430079, China

Materials and chemicals.

All chemicals and solvents obtained from suppliers were used without further purification. Ethanol (EtOH, 99.5\%), Methanol (99.5\%), Silver oxide ($\mathrm{Ag}_{2} \mathrm{O}, 99.7 \%$), 3,3-Dimethyl-1-butyne (${ }^{\mathrm{t} B u C} \equiv \mathrm{CH}, 95 \%$), Ammonium hydroxide solution $\left(\mathrm{NH}_{4} \mathrm{OH}, 28 \%\right)$, Silver trifluoroacetate $\left(\mathrm{AgC}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}, 98 \%\right)$, Silver tetrafluoroborate $\left(\mathrm{AgBF}_{4}, 99 \%\right)$, Acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}, 99.5 \%\right)$, Sodium chloride ($\mathrm{NaCl}, 99.5 \%$), N,N-Dimethylformamide (DMF, 99.5\%) were obtained from Macklin.

Crystallographic data collection and structural refinement

Single-crystal X-ray diffraction measurement of $\mathbf{A g}_{14} \mathbf{- I I}$ were performed on a Rigaku XtaLAB Pro diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54184 \AA)$, Mo-K radiation $(\lambda=0.71073 \AA$) at 200 K and Bruker APEX-II CCD diffractometer with Ga-K α radiation $(\lambda=1.34139 \AA$) at 100 K and 300K. Cl@Ag14BF4 were performed on a Rigaku XtaLAB Pro diffractometer with Mo-Ka radiation $(\lambda=0.71073 \AA$) at $200 \mathrm{~K} . \mathrm{F} @ \mathrm{Ag} 14 \mathrm{OH}$ and $\mathrm{Br} @ \mathrm{Ag} 14 \mathrm{OH}$ were performed on a Bruker APEX-II CCD diffractometer with $\mathrm{Ga}-\mathrm{K} \alpha$ radiation $(\lambda=1.34139 \AA)$ at $100 \mathrm{~K} . \mathbf{A g}_{14}-\mathbf{I}$ were performed on a Bruker APEX-II CCD diffractometer with Ga-K radiation $(\lambda=1.34139 \AA)$ at 100 K. Data collection and reduction were performed using the program CrysAlisPro [1]. The structures were solved with direct methods (SHELXS) [2] and refined by full-matrix least squares on F^{2} using OLEX2 [3], which utilizes the SHELXL-2015 module [4]. All non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were placed in idealized position. The crystal structures are visualized by DIAMOND 3.2 [5]. Detailed information on the crystal data, data collection and refinement data for Ag_{14} are summarized in Table S1, S2, S3, S4 and S6.

DFT calculation.

To provide a better understanding of the photophysical properties of Ag cluster, the excited states were simulated by density functional theory (DFT) / time-dependent density functional theory (TDDFT) at PBE0/def2-SVP theoretical level with use of Q-Chem program [6]. Firstly, the ground state of Ag cluster was optimized based on the crystal structure, then the UV-Vis spectrum was mimicked at the same theoretical level. Considering the inner-sphere electron transfer was involved in the mixed-valent complex, the constrained density functional theory (CDFT) was thus employed to construct the excited state which triggered by X-ray spectrum [7]. Although the
$\mathrm{Ag}(0)$ was possibly contained in the compound, in the CDFT calculation, the charge of Ag still be set as 0.6 for the sake of convergence. The electrostatic potential surface and the molecular orbitals were calculated and visualized by Multiwfn program [8].

Experimental Section.

Synthesis of $\left({ }^{(} \mathbf{B u A g C} \equiv \mathbf{C}\right)_{\mathbf{n}}: \mathrm{Ag}_{2} \mathrm{O}(1 \mathrm{~g}, 4.3 \mathrm{mmol})$ was weighed into a 100 mL flask, and 50 mL of ammonium hydroxide was added. The solution was filtered after stirring for 10 min when almost all the silver oxide was dissolved. Then 3,3-dimethyL-1-butyne ($1164 \mu \mathrm{~L}, 9.46 \mathrm{mmol}$) in 5 mL of ethanol was added to the solution under stirring, and white precipitate was formed immediately. After stirring in the dark for 30 min , the whilte preciapitate with solution was filtered and subsquently washed with water, ethanol and ether to give $1.2 \mathrm{~g}\left({ }^{(} \mathrm{BuAgC} \equiv \mathrm{C}\right)_{\mathrm{n}}(74 \%$ yield based on Ag).

Caution! Due to the explosive nature of silver alkynyls, great care should be taken and only small amounts should be used.

Synthesis of Cl@Ag14BF $\mathbf{C l}_{4}: \mathrm{AgBF}_{4}(20 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\left({ }^{\mathrm{t}} \mathrm{BuAgC} \equiv \mathrm{C}\right)_{\mathrm{n}}(78 \mathrm{mg}, 0.4 \mathrm{mmol})$ was dissolved in $5 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{OH}$ under ultrasonication. To the resulting solution $\mathrm{NaCl}(3 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added. The mixture was sealed and heated $70^{\circ} \mathrm{C}$ for 24 h . After cooled to room temperature, the colorless solution was filtered and the filtrate was evaporated slowly in air at room temperature in the dark. Approximately three days later, colorless prismatic block crystals appeared at the bottom of the bottle. Yield: $60 \%(63.0 \mathrm{mg})$ (based on $\left.\left({ }^{\mathrm{t}} \mathrm{BuAgC} \equiv \mathrm{C}\right)_{\mathrm{n}}\right)$. Elemental analysis (found (calculated), \%; based on $\mathrm{C}_{72} \mathrm{H}_{108} \mathrm{ClBF}_{4} \mathrm{Ag}_{14}$: $\mathrm{C}, 33.23$ (33.18); H, 4.20 (4.18).

The compounds, $\left[\mathrm{F} @ \mathrm{Ag}_{14}\left(\mathrm{C} \equiv \mathrm{C}^{\mathrm{t}} \mathrm{Bu}\right)_{12}\right] \mathrm{OH}$, and $\left[\mathrm{Br} @ \mathrm{Ag}_{14}\left(\mathrm{C} \equiv \mathrm{C}^{\mathrm{t}} \mathrm{Bu}\right)_{12}\right] \mathrm{OH}$ were synthesized based on previous reports [9][10].

All of the $\mathbf{A g}_{14}-\mathrm{M}-\mathrm{X}$ in the picture represent $\mathrm{Ag}_{14}-\mathrm{M}$ after $\mathbf{C u}-\mathrm{Ko}_{1} \mathbf{X}$-ray irradiation!

Fig. S1. Fourier-transform infrared spectroscopy (FTIR) of $\mathbf{A g}_{14} \mathbf{- M}$ before and after $\mathrm{Cu}-\mathrm{K} \alpha_{1}$ X-ray irradiation.
The anomalous peak appearing at the 2300 position is attributed to instrumental error .

Fig. S2. TG curves of $\mathbf{A g}_{14}-\mathbf{M}$ and $\mathbf{A g}_{14}-\mathbf{M}-\mathbf{X}$ under N_{2} atmosphere with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$.

Fig. S3. Experimental and calculated absorption spectra of $\mathbf{A g}_{14}-\mathbf{M}$ cluster in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature.

Fig. S4. (a) Survey XPS spectrum of $\mathbf{A g}_{14} \mathbf{- M}$ before and after $\mathrm{Cu}-K \alpha_{1}$ X-ray irradiation. (b) XPS of Cl 2 p . (c) The powder of $\mathbf{A g}_{14}-\mathbf{M}$ after Al-K irradiation. (d) XPS signals of Ag3d for original $\mathbf{A g}_{14}-\mathbf{M}$ (red line), $\mathbf{A g}_{14}-\mathbf{M}$ after X-ray striking $\left(\mathbf{A g}_{14} \mathbf{- M}-\mathbf{X}\right)$ (purple line), AgTFA (Black line) and ${ }^{\mathrm{t}} \mathrm{BuC} \equiv \mathrm{CAg}$ (Magenta line).

Fig. S5. (a) $\mathbf{A g}_{14}$-II crystal was induced photochromism by X-rays in mother liquor. (b) $\mathbf{A g}_{14}-\mathbf{M}$ crystal was induced photochromism by X-rays in the atmosphere.

Fig. S6. The stacking pattern of the $\mathbf{A g}_{14}-\mathbf{I I}$ along the a (a), b (b) and c (c) axis. The most recent intercluster distance is $16.336(8) \AA$

Fig. S7. The stacking pattern of the $\mathbf{A g}_{14}-\mathbf{I}$ along the a (a), b(b) and c (c) axis. The most recent inter-cluster distance is $13.959(4) \AA$
(a)

(b)

Fig. S8. (a) $\mathbf{A g}_{14}-\mathbf{M}-\mathbf{X}$ heating at $60^{\circ} \mathrm{C}$ under visible light for 24 h . (b) $\mathbf{A g}_{\mathbf{1 4}} \mathbf{- M}-\mathbf{X}$ keeping in darkness for 24h.

Fig. S9. Electron spin resonance (ESR) spectrum of $\mathbf{A g}_{14} \mathbf{- M}, \mathbf{A g}_{14} \mathbf{- M}-\mathbf{X}$ and $\mathbf{A g}_{14}-\mathbf{M}-\mathbf{X}$ after heating. Due to the sample was slightly damaged after heating, the signal was not consistent with that before heating, but the signal did not disappear.

Fig. S10. UV-vis absorption spectrum of $\mathbf{A g}_{14}-\mathbf{M}$ in MeOH before and after X-ray irradiation.

Fig. S11. FTIR of $\mathbf{A g}_{14}-\mathbf{M}$ and $\mathrm{Ag}_{14} \mathrm{ClBF}_{4}$, the peak in $1083 \mathrm{~cm}^{-1}$ is $\mathrm{BF}_{4}{ }^{-}$.

Fig. S12. $\mathrm{Cl} @ \mathrm{Ag}_{14} \mathrm{BF}_{4}, \mathrm{~F} @ \mathrm{Ag}_{14} \mathrm{OH}, \mathrm{Br} @ \mathrm{Ag}_{14} \mathrm{OH}$ was induced photochromism respectively after being irradiated by $\mathrm{Ga}-K \alpha_{1}$.

Fig. S13. The independent lattice void in $\mathbf{A g}_{14}-\mathbf{I}$ (a) and $\mathbf{A g}_{14}-\mathbf{I I}$ (b), the yellow areas are voids.

Table S1. Crystal data and structure refinement of $\mathbf{A g}_{14}-\mathbf{I}$ which reported and collected with Ga-Ka.

Compound	$\mathbf{A g ~}_{14} \mathrm{I}^{\text {a }}$	$\mathrm{Ag}_{14} \mathbf{- I - G a}{ }^{\text {b }}$
CCDC	163113	2284351
Empirical formula	C72H109OClAg14	C72H109Ag 14ClO
Formula weight	2536.22	2536.22
Temperature/K	293(2)	100
Crystal system	Rhombohedral	trigonal
Space group	R-3	$R-3$
$a / \AA ̊$	22.438(2)	21.8873(7)
b / \AA	22.438(2)	21.8873(7)
c / \AA	15.601(2)	15.5998(8)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	90	90
$\gamma /{ }^{\circ}$	120	120
Volume/ \AA^{3}	6801.8(13)	6471.9(5)
Z	3	3
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.858	1.952
μ / mm^{-1}	3.010	17.327
$F(000)$	3672	3672
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\mathrm{GaK} \alpha(\lambda=1.34139)$
2θ range for data collection/ ${ }^{\circ}$	3.64 to 50	9.5 to 123.482
Index ranges	$\begin{gathered} 0 \leq h \leq 25,-26 \leq k \leq 0,0 \leq l \leq \\ 18 \end{gathered}$	$\begin{gathered} -28 \leq \mathrm{h} \leq 26,-25 \leq \mathrm{k} \leq 27,-20 \\ \leq 1 \leq 20 \end{gathered}$
Reflections collected	2823	16626
Independent reflections	$\begin{gathered} 2618\left[R_{\text {int }}=0.0353, R_{\text {sigma }}=\right. \\ 0.0660] \end{gathered}$	$\begin{gathered} 3352\left[R_{\text {int }}=0.0674, R_{\text {sigma }}=\right. \\ 0.0517] \end{gathered}$
Data/restraints/parameters	2618/234/156	3352/126/197
Goodness-of-fit on F^{2}	------	1.192
Final R indexes [$I>=2 \sigma(I)]$	$R_{1}{ }^{\text {c }}=------, w R_{2}=----$	$R_{1}=0.0969, w R_{2}=0.2236$
Final R indexes [all data]	$R_{1}=0.1332, w R_{2}=----$	$R_{1}=0.1041, w R_{2}=0.2266$
Largest diff. peak/hole / e \AA^{-3}	0.78/-0.44	1.73/-2.12

${ }^{\text {a }}$ The reported $\mathbf{A g}_{14} \mathbf{- I}$.
${ }^{\text {b }}$ The parameters of $\mathbf{A g}_{14}$-I collected with $\mathrm{Ga}-K \alpha$.
${ }^{\mathrm{c}} R_{1}=\sum| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \sum\left|F_{\mathrm{o}}\right| . w R_{2}=\left\{\sum\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \sum\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2}$.

Table S2. Typical bond length $[\AA]$ and angle $\left[{ }^{\circ}\right]$ of $\mathbf{A g}_{14} \mathbf{M o}, \mathbf{A g}_{14}-\mathbf{C u} \mathbf{- 1}$ and $\mathbf{A g}_{14} \mathbf{C u} \mathbf{- 2}$.

Bond distance/angle	$\mathbf{A g}_{14} \mathbf{- I I - M o}$	Bond distance/angle	$\mathrm{Ag}_{14} \mathbf{- I I - C u}-1$	Bond distance/angle	$\mathrm{Ag}_{14} \mathbf{- I I - C u - 2}$
Ag1-Ag2	2.9443(5)	Ag1-Ag2	2.9412(6)	Ag1-Ag2	$2.9414(10)$
Ag1-Ag3	2.920(4)	Ag1-Ag3	2.938(3)	Ag1-Ag3 ${ }^{\text {i }}$	2.942(3)
Ag1-Ag3 ${ }^{\text {b }}$	2.842(4)	Ag1-Ag3 ${ }^{\text {e }}$	2.937(3)	Ag1-Ag3	2.942(3)
Ag1-Ag3 ${ }^{\text {a }}$	$2.959(3)$	Ag1-Ag3 ${ }^{\text {f }}$	2.876(3)	Ag1-Ag3 ${ }^{\text {j }}$	$2.886(5)$
Ag2 -Ag1- $\mathrm{Ag} 3^{\text {a }}$	118.11(10)	Ag2 -Ag1-Ag3	73.97(6)	Ag2 -Ag1- Ag3	74.05(9)
Ag2 - Ag1 - Ag $3^{\text {b }}$	74.31(9)	Ag2 - Ag1 - $\mathrm{Ag} 3^{\text {f }}$	118.52(11)	Ag2 -Ag1-Ag3 ${ }^{\text {i }}$	118.58(15)
Ag3-Ag1-Ag2	73.18(9)	Ag3 ${ }^{\text {e }}$-Ag1 -Ag2	74.88(6)	$\mathrm{Ag}^{\mathbf{j}} \mathbf{- A g} 1-\mathbf{A g} 2$	74.88(7)
Ag3 ${ }^{\text {b }}$-Ag1 -Ag3	118.37(15)	$\mathbf{A g 3}^{\text {e }}$-Ag1-Ag3	118.52(2)	Ag3 ${ }^{\mathbf{j}} \mathbf{- A g} 1-\mathbf{A g} 3^{\mathbf{i}}$	118.8(3)
Ag3 - Ag1-Ag3 ${ }^{\text {a }}$	75.14(7)	Ag3 ${ }^{\text {f }}$-Ag1-Ag3	74.80(10)	Ag3 -Ag1 - Ag3 ${ }^{\text {i }}$	75.01(13)
$\mathbf{A g 3}^{\mathbf{a}}$ - $\mathbf{A g} 1-\mathrm{Ag} 3^{\text {b }}$	76.31(7)	Ag3 ${ }^{\text {f }}$ - $\mathrm{Ag} 1-\mathrm{Ag} 3^{\mathbf{e}}$	75.74(10)	Ag3 ${ }^{\text {j}}$-Ag1 -Ag3	75.85(11)
Ag1 ${ }^{\text {b }}$-Ag2 -Ag1	103.867(18)	Agi - Ag2 - Ag 1	104.04(2)	Ag1 ${ }^{\text {k }}$-Ag2 -Ag1	104.18(4)
Ag1 ${ }^{\text {c }}$-Ag2 -Ag1	103.868(18)	Ag ${ }^{\text {j }}$-Ag2 - $\mathrm{Ag}^{\text {f }}{ }^{\text {f }}$	104.04(2)	Ag1 ${ }^{\text {k }}$ - $\mathrm{Ag} 2-\mathbf{A g} 1^{\mathbf{j}}$	104.18(4)
Ag1 ${ }^{\mathbf{c}}$ - $\mathrm{Ag} 2-\mathrm{Ag} 1^{\text {b }}$	103.870(18)	Ag1 ${ }^{\text {f }}$-Ag2 -Ag1	104.04(2)	Ag1 ${ }^{\text {j }}$-Ag2 - Ag 1	104.18(4)
Ag1-Ag3 - Ag $1^{\text {d }}$	102.96(9)	Ag1 ${ }^{\text {h }}$-Ag3 -Ag1	103.50(12)	Ag1 ${ }^{\text {k }}$-Ag3 - $\mathbf{A g} 1^{1}$	104.78(17)
Ag1 ${ }^{\text {c - Ag }}$-Ag1	107.13(17)	Ag1 ${ }^{\text {- }}$-Ag3 - $\mathrm{Ag} 1^{\text {g }}$	105.06(13)	Ag1-Ag3 -Ag1 ${ }^{1}$	103.38(13)
Ag1 ${ }^{\text {c }}$-Ag3 - $\mathrm{Ag} 1^{\text {d }}$	104.90(9)	Ag1 ${ }^{\text {g -Ag }} \mathbf{- A g 1}$	105.77(13)	Ag1 ${ }^{\text {k }}$-Ag3 -Ag1	105.55(19)

Symmetry codes: a: $1 / 3-Y+X,-1 / 3+X, 2 / 3-Z \quad$ b: $1-Y,+X-Y,+Z \quad c: 1+Y-X, 1-X,+Z \quad d: 1 / 3+Y, 2 / 3-X+Y, 2 / 3-Z$
e: -1/3+Y,1/3-X+Y,4/3-Z f: +Y-X,1-X,+Z g: 1-Y,1+X-Y,+Z h: 2/3-Y+X,1/3+X,4/3-Z
i: $-1 / 3+Y, 1 / 3-X+Y, 4 / 3-Z \quad j:+Y-X, 1-X,+Z \quad$ k: $1-Y, 1+X-Y,+Z \quad 1: 2 / 3-Y+X, 1 / 3+X, 4 / 3-Z$

Table S3. Crystal data and structure refinement of Ag_{14} collected with $\mathrm{Ga}-K \alpha$ under different temperature.

Compound	Ag_{14}-II-Ga-100K	Ag_{14} - II-Ga-302K
CCDC	2303298	2303299
Empirical formula	C72H109OClAg14	C72H109Ag14ClO
Formula weight	2536.22	2536.22
Temperature/K	100	302
Crystal system	trigonal	trigonal
Space group	R-3	$R-3$
a / \AA	16.1523(6)	16.438(3)
b / \AA	16.1523(6)	16.438(3)
c / \AA	29.3979(16)	29.900(7)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	90	90
$\gamma /{ }^{\circ}$	120	120
Volume/ \AA^{3}	6642.3(6)	6996(3)
Z	3	3
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.936	1.806
μ / mm^{-1}	16.891	16.028
$F(000)$	3753.0	3672
Radiation	$\mathrm{Ga} \mathrm{K} \alpha(\lambda=1.34139)$	Ga $\mathrm{K} \alpha(\lambda=1.34139)$
2θ range for data collection/ ${ }^{\circ}$	9.528 to 106.126	9.362 to 84.986
Index ranges	$\begin{gathered} -18 \leq \mathrm{h} \leq 19,-19 \leq \mathrm{k} \leq 15,-20 \\ \leq 1 \leq 34 \end{gathered}$	$\begin{gathered} -16 \leq \mathrm{h} \leq 15,-16 \leq \mathrm{k} \leq 16,-27 \\ \leq 1 \leq 30 \end{gathered}$
Reflections collected	12933	7045
Independent reflections	$\begin{gathered} 2598\left[R_{\text {int }}=0.0630, R_{\text {sigma }}=\right. \\ 0.0438] \end{gathered}$	$\begin{gathered} 1645\left[R_{\text {int }}=0.0660, R_{\text {sigma }}=\right. \\ 0.0493] \end{gathered}$
Data/restraints/parameters	2598/174/208	1645/102/169
Goodness-of-fit on F^{2}	1.057	1.072
Final R indexes [$I>=2 \sigma(I)]$	$R_{1}{ }^{\text {a }}=0.0653, w R_{2}=0.1843$	$R_{1}=0.0660, w R_{2}=0.1889$
Final R indexes [all data]	$R_{1}=0.0758, w R_{2}=0.1940$	$R_{1}=0.0769, w R_{2}=0.2001$
Largest diff. peak/hole / e \AA^{-3}	1.19/-1.35	1.03/-1.02

Table S4. Typical bond length $[\AA]$ and angle $\left[{ }^{\circ}\right]$ of $\mathbf{A g}_{14}-\mathbf{I I}-\mathbf{G a}-\mathbf{1 0 0 K}$ and $\mathbf{A g}_{14}-\mathbf{I I}-\mathbf{G a}-\mathbf{3 0 2 K}$

Bond distance/angle	$\begin{gathered} \mathrm{Ag}_{14}-\mathrm{III}-\mathrm{Ga}- \\ 100 \mathrm{~K} \end{gathered}$	Bond distance/angle	$\begin{gathered} \text { Ag }_{14-\mathrm{II}-\mathrm{Ga}} \mathrm{302K} \end{gathered}$
Ag1-Ag2	2.9324(9)	Ag1-Ag3	$2.9494(15)$
Ag1-Ag3	2.873(3)	Ag1-Ag2	$2.9631(16)$
Ag1-Ag3 ${ }^{\text {a }}$	2.924(3)	Ag1-Ag2 ${ }^{\text {e }}$	2.9102(16)
Ag1-Ag3 ${ }^{\text {b }}$	$2.9382(19)$	Ag1-Ag2 ${ }^{\text {f }}$	2.982(2)
Ag3 - Ag1- $\mathrm{Ag} 3^{\text {a }}$	75.82(8)		76.45(4)
Ag3 ${ }^{\text {a }}$-Ag1 - Ag3 $^{\text {b }}$	74.83(10)	Ag2 - Ag 1 - $\mathrm{Ag} \mathbf{2}^{\text {f }}$	75.66(4)
	118.68(19)	Ag2 ${ }^{\text {e }}$ - $\mathbf{A g} 1$ - $\mathbf{A g} 2$	120.30(6)
Ag3 -Ag1 -Ag2	74.96(4)	Ag2 ${ }^{\text {e }}$-Ag1 -Ag3	75.29(4)
Ag2 -Ag1-Ag3 ${ }^{\text {a }}$	118.55(10)	Ag2 ${ }^{\text {- }}$-Ag1 -Ag3	119.47(6)
$\mathbf{A g} 2$ - $\mathbf{A g} 1$ - $\mathbf{A g 3 ~}^{\text {b }}$	73.99(6)	Ag3-Ag1 -Ag2	74.51(4)
Ag1 ${ }^{\text {b }}$-Ag2 -Ag1	104.18(3)	$\begin{array}{ccc} \mathbf{A g}^{\mathrm{g}} & -\mathbf{A g} 2 & - \\ \mathbf{A g 1} & \end{array}$	104.62(6)
Ag1 ${ }^{\text {d }}$-Ag2 -Ag1	104.18(3)	Ag1 ${ }^{\text {g -Ag2 -Ag1 }}{ }^{\text {f }}$	103.91(5)
Ag1 ${ }^{\text {d }}$-Ag2-Ag1 ${ }^{\text {b }}$	104.18(3)	Ag1 ${ }^{\text {h - Ag2 - Ag1 }}$	102.63(5)
Ag1-Ag3 -Ag1 ${ }^{\text {d }}$	105.55(12)	Ag1 ${ }^{\text {e }}$-Ag3 - $\mathbf{A g} 1$	103.99(5)
Ag1 ${ }^{\text {c - Ag }}$ - -Ag1	105.02(13)	Ag1 ${ }^{\text {- }}$-Ag3 -Ag1	103.99(5)
	103.37(10)		103.99(5)

Symmetry codes: $a:-1 / 3+Y, 1 / 3-X+Y, 4 / 3-Z \quad b:+Y-X, 1-X,+Z \quad c: 2 / 3-Y+X, 1 / 3+X, 4 / 3-Z \quad d: 1-Y, 1+X-Y,+Z$ e: $1 / 3-Y+X,-1 / 3+X, 2 / 3-Z \quad$ f: $1-Y,+X-Y,+Z \quad$ g: $1+Y-X, 1-X,+Z \quad h: 1 / 3+Y, 2 / 3-X+Y, 2 / 3-Z$

Table S5. XPS $\operatorname{Ag~} 3 \mathrm{~d}_{5 / 2}$ peak binding energy range for $\operatorname{Ag}(0)$ and $\operatorname{Ag}(\mathrm{I})$ states.

S. No.	compound		$\begin{gathered} \hline \mathbf{A g ~ 3 d}_{5 / 2} \\ \text { position } \\ \text { (in eV) for } \\ \mathbf{A g}^{\mathbf{I}} \\ \hline \end{gathered}$	Reference
1	$\mathrm{Ag}, \mathrm{Ag}_{2} \mathrm{CO}_{3}$	367.9	367.3	Anal. Chem. 1975, 47, 2193
2	$\mathrm{Ag}, \mathrm{Ag}_{2} \mathrm{O}$	368.0	367.7	J. Phys. Chem. 1994, 98, 8519
3	$\mathrm{Ag}, \mathrm{Ag}_{2} \mathrm{O}$	368.4	367.9	$\begin{gathered} \hline \text { Nano Lett. } \\ \mathbf{2 0 0 5 , 5 , 2 3 1 9} \\ \hline \end{gathered}$
4	$\mathbf{A g}, \mathbf{A g B r}$	368.3	367.5	$\begin{gathered} \hline \text { ACS Nano } \\ 2011,5,4529 \\ \hline \end{gathered}$
5	$\mathbf{A g}, \mathrm{Ag}_{2} \mathbf{S}$	368.2	367.8	$\begin{gathered} \hline \text { Angew. Chem. } \\ \text { Int. Ed. 2012, } \\ 51,11501 \\ \hline \end{gathered}$
6	(PDDA/PSS) $\mathbf{5}^{\mathbf{/ 2 A u} @ 2 \mathrm{Ag}}$	368.4	---	$\begin{gathered} \hline \text { Adv. Mater. } \\ \text { 2012, 24, } 4574 \\ \hline \end{gathered}$
7	$\left[\mathrm{Ag}_{15} \mathrm{Cu}_{6}(\mathrm{C} \equiv \mathbf{C R})_{18}(\mathrm{DPPE})_{2}\right]^{-}$	368.1	---	J. Am. Chem. Soc. 2023, 145, 6, 3401-3407
8	$\left[\mathrm{Ag}_{22} \mathrm{Cu}_{7}(\mathbf{C} \equiv \mathbf{C R})_{16}\left(\mathrm{PPh}_{3}\right)_{5} \mathrm{Cl}_{6}\right]\left(\mathrm{PPh}_{4}\right)$	368.0	---	$\begin{gathered} \text { Angew. Chem. } \\ 2023,135, \\ \text { e202217483 } \\ \hline \end{gathered}$
9	$\left.\mathrm{Ag}_{12} \mathbf{C u} \mathbf{u}_{4} \mathbf{C} \equiv \mathbf{C R}\right)_{14}\left(\mathrm{PPH}_{3}\right)_{4}$	368.1	----	$\begin{gathered} \hline \text { J. Phys. Chem. } \\ \text { C 2022, 126, } \\ \text { 20577-20583 } \\ \hline \end{gathered}$
10	$\left[\mathrm{PdHAg}_{19}\left(\mathbf{S}_{2} \mathbf{P}\left(\mathrm{O}^{\mathbf{i}} \mathrm{Pr}\right)_{2}\right)_{12}\right]$	368.43	----	$\begin{aligned} & \hline \text { Chem. Eur. J. } \\ & 2023,29, \\ & \text { e202300730 } \\ & \hline \end{aligned}$

Table S6. Crystal data and structure refinement of $\mathrm{Ag}_{14}-\mathrm{F}-\mathrm{OH}, \mathrm{Ag}_{14}-\mathrm{Br}-\mathrm{OH}$ and $\mathrm{Ag}_{14}-\mathrm{Cl}-\mathrm{BF}_{4}$ collected with $\mathrm{Ga}-\mathrm{Ka}$

Compound	Ag_{14}-F-OH	$\mathrm{Ag}_{14} \mathbf{- B r - O H}$	$\mathrm{Ag}_{14} \mathbf{- C l}-\mathrm{BF}_{4}$
CCDC	2313779	2313778	2314495
Empirical formula	C72H109OFAg14	C72H109Ag14BrO	C72H109Ag14ClBF4
Formula weight	2519.77	2580.68	2606.02
Temperature/K	100	100	200.01(10)
Crystal system	trigonal	trigonal	trigonal
Space group	R-3	R-3	R-3
a / \AA ¢	21.8992(8)	21.9600(6)	16.5410(9)
b / \AA	21.8992(8)	21.9600(6)	16.5410(9)
c / \AA	15.4850(8)	15.4656(7)	29.8249(19)
$\alpha /{ }^{\circ}$	90	90	90
$\beta /{ }^{\circ}$	90	90	90
$\gamma /{ }^{\circ}$	120	120	120
Volume/ \AA^{3}	6431.3(6)	6458.9(5)	7067.0(9)
Z	3	3	3
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.952	1.990	1.837
μ / mm^{-1}	16.949	17.533	2.905
$F(000)$	3648.0	3726.0	3768.0
Radiation	$\mathrm{Ga} \mathrm{K} \alpha(\lambda=1.34139)$	$\mathrm{GaK} \alpha(\lambda=1.34139)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2θ range for data collection/ ${ }^{\circ}$	9.514 to 110.99	9.498 to 116.042	3.942 to 57.514
Index ranges	$\begin{aligned} -26 \leq \mathrm{h} \leq & 25,-23 \leq \mathrm{k} \leq 26,-19 \\ & \leq 1 \leq 16 \end{aligned}$	$\begin{gathered} -23 \leq \mathrm{h} \leq 25,-27 \leq \mathrm{k} \leq 27,-19 \\ \leq 1 \leq 18 \end{gathered}$	$\begin{aligned} -21 \leq \mathrm{h} \leq & 21,-21 \leq \mathrm{k} \leq 18,-40 \\ & \leq 1 \leq 29 \end{aligned}$
Reflections collected	18282	16450	9459
Independent reflections	$\begin{gathered} 2778\left[R_{\text {int }}=0.0609, R_{\text {sigma }}=\right. \\ 0.0431] \end{gathered}$	$\begin{gathered} 2878\left[R_{\text {int }}=0.0559, R_{\text {sigma }}=\right. \\ 0.0448] \end{gathered}$	$\begin{gathered} 3550\left[R_{\text {int }}=0.0378, R_{\text {sigma }}=\right. \\ 0.0378] \end{gathered}$
Data/restraints/parameters	2778/57/169	2878/87/166	3550/162/194
Goodness-of-fit on F^{2}	1.070	1.075	1.060
Final R indexes [$I>=2 \sigma(I)]$	$R_{1}{ }^{\text {a }}=0.0501, w R_{2}=0.1320$	$R_{1}=0.0496, w R_{2}=0.1435$	$R_{1}=0.0466, w R_{2}=0.1364$
Final R indexes [all data]	$R_{1}=0.0745, w R_{2}=0.1446$	$R_{1}=0.0674, w R_{2}=0.1528$	$R_{1}=0.0698, w R_{2}=0.1480$
Largest diff. peak/hole / e \AA^{-3}	1.58/-1.39	1.00/-0.99	0.64/-0.60

${ }^{\mathrm{a}} R_{1}=\sum| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \sum\left|F_{\mathrm{o}}\right| . w R_{2}=\left\{\sum\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \sum\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}{ }^{1 / 2}$.

Supplementary References

[1] CrysAlis ${ }^{\text {Pro }}$ Version 1.171.36.31. Agilent Technologies Inc. Santa Clara, CA, USA, 2012.
[2] G. M. Sheldrick, Acta Cryst. A 64 (2008) 112-122.
[3] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., Appl. Cryst. 42 (2009) 339-341.
[4] G. M. Sheldrick, Acta Cryst. C 71 (2015) 3-8.
[5] Brandenburg, K. Diamond, 2010.
[6] Epifanovsky, A. T. B. Gilbert, X. Feng, J. Lee, Y. Mao, N. Mardirossian, P. Pokhilko, A. F. White, M. P. Coons, A. L. Dempwolff, Z. Gan, D. Hait, P. R. Horn, L. D. Jacobson, I. Kaliman, J. Kussmann, A. W. Lange, K. U. Lao, D. S. Levine, J. Liu, S. C. McKenzie, A. F. Morrison, K. D. Nanda, F. Plasser, D. R. Rehn, M. L. Vidal, Z.-Q. You, Y. Zhu, B. Alam, B. J. Albrecht, et al., J. Chem. Phys. 2021, 155, 084801.
[7] Wu, B. Kaduk, T. Van Voorhis. J. Chem. Phys. 2009, 130, 034109.
[8] Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580.
[9] D. Rais, J. Yau, D. M. P. Mingos, R. Vilar, A. J. P. White and D. J. Williams, Angew. Chem., Int. Ed., 2001, 40, 3464-3467.
[10] D. Rais, D. M. P. Mingos, R. Vilar, A. J. P. White and D. J. Williams, J. Organomet. Chem., 2002, 652, 87-93.

