Supporting Information

Potassium hydroxide treatment of layered WSe₂ with enhanced

electronic performances

Dewu Yue,^a Cheng Tang,^b Jiajing Wu,^a Xiaohui Luo,^c Hongyu Chen,^{d,*} Yongteng Qian^{c,*}

^aInformation Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China

^bGraduate School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea

^cCollege of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang Province, 321007, P. R. China

^dInstitute of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China.

Corresponding authors: E-mail: chenhy@m.scnu.edu.cn; qytwork@163.com

Experimental

Materials characterizations

The atomic force microscope (AFM,) with the no-contact mode was used to measure the thickness of the samples. synthesis process of the pristine WSe₂-based device is given in the following, at first, the WSe₂ film was exfoliated from the crystalline bulk material (HQ Graphene, the Netherlands) onto a 300 nm-thick SiO₂/Si substrate. The electrodes were then deposited through an electron beam lithography (EBL) with the Cr/Au (5 nm/70 nm). To obtain the p-type WSe₂-based FETs, the as-fabricated pristine WSe₂-based FETs was treated by an O₂ plasma (20 W, 120 s). We used XPS model is Thermo Fisher (Microlab350) with Magnesium light.

Fabrication of the pristine WSe₂-based FETs and p-type WSe₂-based FETs

The synthesis process of the pristine WSe₂-based device is given in the following, at first, the WSe₂ film was exfoliated from the crystalline bulk material (HQ Graphene, the Netherlands) onto a 300 nm-thick SiO₂/Si substrate. The electrodes were then deposited through an electron beam lithography (EBL) with the Cr/Au (5 nm/70 nm). To obtain the p-type WSe₂-based FETs, the as-fabricated pristine WSe₂-based FETs was treated by an O₂ plasma (20 W, 120 s). We used XPS model is Thermo Fisher (Microlab350) with Magnesium light.

Figure S1. OM and AFM image of Sample #1(3.5nm), #2(10nm), #3(6nm) and #4(5nm). The first line of (a-d) show the OM image of the device before and after layer etching. The second and third line in (a-d) show the AFM image of the device before and after layer etching. It can be seen that around 1 nm was etching after one removal process.

WO _x	Depth (20 points)				
	< 1 nm	1-2 nm	> 2 nm		
WO-	~ 0.56 (13 points)	~1.2 (5 points)	~2.1 (2 points)		
WO ₂ -	0.60 (13 points)	~1.2 (5 points)	~2.1 (1 points)		
WO ₃ -	0.58 (14 points)	~1.1 (6 points)	(0 points)		

Table S1. The SIMS results of the samples.

(a)						(b)			
	Ra	man shi	ft 2LA(M)	1-3Laye	rs			Raman	5
	Intensity	4L	3L	2L	1L		Intensity	4L	
	250.9625	945	1406	1245	1167		299, 892	739	
	252.2221	894	1221	1149	1045		301 142	734	
	253.4814	859	1111	981	869		302 391	738	-
	254.74	855	1018	870	816		202.591	740	-
	255.999	863	1024	856	806		303.64	743	-
	257.258	878	1011	866	811		304.888	746	
	258. 5161	866	1031	860	814		306. 137	748	
	259.7741	841	988	846	810		307.385	762	
	261.0318	829	928	839	807		308.633	760	
	262.2893	811	884	819	813		309.88	757	
	263. 5465	790	867	802	801		311.128	757	
	264.8035	772	825	783	783		312.375	743	
	266.0602	754	809	768	770		313,621	748	F
	·				1		010.021	. 10	-

 $(1B_{2g})$ ft 2L 1L L 314.868 739 747

Figure S2. Raman intensity of 2LA(M) and ${}^{1}B_{2g}$. (a) Shows the detailed data of 2LA(M) peak upshift of 2.52 cm⁻¹ from multilayer to monolayer. (b) Shows the ${}^{1}B_{2g}$ upshift of 2.5 cm⁻¹ with decreasing flake thickness from quadrilayer to bilayer.

Figure S2 (a) shows the detailed data of 2LA(M) peak upshift of 2.52 cm⁻¹ from multilayer to monolayer, which showed in the top of Figure 3(f). From the table, it is clearly that the 2LA(M) peak upshift. Figure S2 (b) shows the detailed data of ${}^{1}B_{2g}$ upshift of 2.5 cm⁻¹ with decreasing flake thickness from quadrilayer to bilayer, which showed in the down of Figure 3(f). The ${}^{1}B_{2g}$ peak upshift can be clearly seen. The ${}^{1}B_{2g}$ upshift of 2.5 cm⁻¹ with decreasing flake thickness from quadrilayer to bilayer, which showed in the down of Figure 3(f). The ${}^{1}B_{2g}$ peak upshift can be clearly seen. The ${}^{1}B_{2g}$ upshift of 2.5 cm⁻¹ with decreasing flake thickness from quadrilayer to bilayer, where no ${}^{1}B_{2g}$ peak is observed from monolayer WSe₂, is consistent with that observed from exfoliated various thicknesses from monolayer to quadrilayer.

Figure S3. Enhanced ambipolar performance in different thickness devices. (a-h) Show the detailed transfer performance in 4, 6, 8, 11, 14, 18, 23 and 35 nm WSe₂FETs to demonstrate the reliability of the etching process.

Samples	Mobility	Refs.		
	$(cm^2V^{-1}s^{-1})$			
Plasma etched WSe ₂	85	This work		
WSe ₂	22	Nanotechnology, 2016, 27, 225501.		
WSe ₂	2.2	Nat. Commun., 2020, 11, 1574.		
WSe ₂	82	Adv. Mater., 2019, 31, 1903613.		
WSe ₂	36.28	Adv. Mater., 2020, 32, 1906499.		
WSe ₂ /MoS ₂ heterojunction	8.42	Nano Lett., 2020, 20, 5741.		
$WSe_{2(1-x)}Te_{2x}$	46	Adv. Mater., 2017, 29, 1603991.		
WSe ₂ /ReS ₂ heterojunction	32	Nano Lett., 2020, 20, 1707.		
WSe ₂ /h-BN heterojunction	25.6	Adv. Mater., 2016, 28, 4824.		
WSe ₂ graphene heterostructure	84	ACS Nano, 2017, 11, 12817.		

Table S2. Comparison of the mobility of the WSe₂-based devices.