Supporting Information

Dual-Color Photoluminescence Modulation of Zero-Dimensional Hybrid Copper Halide Microcrystals

Rahul Ghosh Dastidar,^a Takuya Okamoto,^{a,b}* Kiyonori Takahashi,^{a,b} Yuta Takano,^{a,b} Chakkooth Vijayakumar,^{c,d} Challapalli Subrahmanyam,^e Vasudevanpillai Biju^{a,b,e}*

^aGraduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan. ^bResearch Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020 Japan. ^cChemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, India, ^dAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India, ^eIndian Institute of Technology Hyderabad, Kandi, Telangana 502285, India.

Table S1 Single crystal X-ray diffraction (SCXRD) data and structure refinement for Bmpip(Cu₂Br₄).

Formula	$C_{20}H_{44}N_2Cu_2Br_4$
	$[(Bmpip)_2Cu_2Br_4]$
Formula weight	759.28
Temperature (K)	293
Radiation, wavelength (Å)	Μο Κα, 0.71073
Crystal system	Orthorhombic
Space group, Z, Z	P _{bca} (68), 8, 1
$\alpha/^{\circ},\beta/^{\circ},\gamma/^{\circ}$	90, 90, 90
	a = 13.8255 (Å)
Unit cell parameters	b = 12.0429 (Å)
	c = 17.0850 (Å)
Volume/Å ³	2844.64
Density (g/cm ³)	1.773
2θ range for the data collection/°	2.384-30.723
Reflections collected	20287
Independent reflections	3713
Restraints/parameters	0/129
Goodness-of-fit on F ²	1.040
Final R indexes $[1 < 2\sigma(I)]$	$R_1 = 0.0432, wR_2 = 0.0716$
Final R indexes [all data]	$R_1 = 0.0824, wR_2 = 0.0803$

Fig. S1 (Bmpip)₂Cu₂Br₄ microcrystal (MC) preparation method.

Fig. S2 (a) A photoluminescence (PL) image and (b) a PL spectrum of $(Bmpip)_2Cu_2Br_4$ MCs showing an intense red emission with a faint yellow emission ($\lambda_{ex} = 404$ nm).

Fig. S3 PLE spectra (a,c: 600 nm; b,d, 540 nm) of (a,b) the (Bmpip)₂Cu₂Br₄ MCs prepared on a borosilicate glass plate and (c,d) an ITO-coated glass plate.

Fig. S4 (a) A PL image and (b) a PL spectrum of $(Bmpip)_2Cu_2Br_4$ MCs prepared with small amount (10 µL) of water ($\lambda_{ex} = 404$ nm).

Fig. S5 (a) An SEM image, (b-f) EDX elemental maps of (b) copper, (c) bromide, (d) carbon, (e) an overlaid image of copper, bromide, and carbon, (f) oxygen of the MC prepared on a borosilicate glass plate.

Fig. S6 (a-f) PL images and (g) PL spectral changes of the $(Bmpip)_2Cu_2Br_4$ MCs prepared on a borosilicate glass plate during five times cracking and powdering using a stainless-steel spatula ($\lambda_{ex} = 404$ nm).

Fig. S7 A powder-XRD pattern of (Bmpip)₂Cu₂Br₄ MCs prepared on a borosilicate glass plate after powdering it using a stainless-steel spatula.

Fig. S8 Photocount map of the $(Bmpip)_2Cu_2Br_4$ MCs prepared on a borosilicate glass plate (a) before and (b,c) after powdering using (b) a plastic spatula and (c) a stainless-steel spatula (λ_{ex} = 405 nm). The dense purple dots indicate detected photons from the sample. a, b and c are corresponding to Fig. 4b, 4d and 4e, respectively. The short decay below 500 nm in a is scattering and fluorescence from the glass substrate. The white lines in the photocount maps indicate the normalized PL spectra. (d) PL lifetime components of the decay curves in e and f. (e,f) PL decay curves of the MCs after powdering using (e) a plastic spatula and (f) a stainless-steel spatula. The red lines in e and f indicate biexponential fitting curves.