Metal chalcogenide nanorings for temperature-strain dualmode sensing

Xiaoshan Wang^{a,b,c}, Jinhao Zhang^a, Peiyuan Liu^c, Danlin Wei^b, Daobo Tian^b, Shipeng

Liu^c, Qian Chen^c, Jiacheng Cao^c, Zhiwei Wang^{a,c}, Xiao Huang^{a*}

^a Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Nanjing Tech

University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China

^b Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia

University, Yinchuan 750021, China

^c Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China

*Corresponding author. iamxhuang@njtech.edu.cn, <u>iamwhuang@nwpu.edu.cn</u>

Characterization methods.

Scanning electron microscope (SEM, JEOL JSM-7800F, Japan), transmission electron microscope (TEM, JEOL 2100Plus, Japan), high resolution transmission electron microscope (HRTEM, JEOL 2100F, Japan) coupled with energy dispersive Xray (EDX) spectroscope were used to investigate the materials morphological, compositional, and structural features. X-ray diffraction (XRD, Rigaku SmartLab, Japan) and X-ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe, Japan) were performed to reveal the materials crystal phase and structure. Raman spectra (Horiba HR800, France) were obtained with a 532 nm laser. The metallic properties of the Sn_{0.2}Mo_{0.8}S₂ nanorings were studied with a semiconductor characterization system (Keithley 4200).

Fig. S1 EDX analysis (a) and XRD pattern (b) of SnS₂ nanoplates.

Fig. S2 SEM image (a), EDX analysis (b), and XRD pattern (c) of Sn_{0.3}Mo_{0.7}O₃ nanorods.

Fig. S3 STEM image and EDX mapping of $Sn_{1-x}Mo_xS_2$ nanorings.

Fig. S4 STEM image (a) and EDX spectrum (b) of $Sn_{0.2}Mo_{0.8}S_2$ nanorings. A mean value of ~0.8 was determined for x.

Fig. S5 The SEM images of $Sn_{0.2}Mo_{0.8}S_2$ nanorings were synthesized 12 mg $Sn_{0.3}Mo_{0.7}O_3$ as precursors.

Fig. S6 XPS N 1s (a) and S 2p (b) spectra of $Sn_{0.2}Mo_{0.8}S_2$ nanorings.

Fig. S7 Raman spectrum of $Sn_{0.2}Mo_{0.8}S_2$ nanorings.

Fig. S8 Optimized crystal structure (a) and DOS (b) of a SnS_2 , showing the semiconducting property. The Fermi level is assigned at 0 eV.

Fig. S9 Drain current (I_d) characteristics of back-gated TFTs based Sn_{0.2}Mo_{0.8}S₂ nanorings for drainsource voltages (V_{ds}) varied from -4 to 4 V at 0 V gate voltage (V_g). The I_d - V_{ds} curves of Sn_{0.2}Mo_{0.8}S₂ nanorings at varied V_g from -20 to 20 V.

Fig. S10 (a) Calculation of temperature coefficient of resistance. (b) TCR of temperature sensors with different radius of curvature.

Fig. S11 The SEM images of $Sn_{0.2}Mo_{0.8}S_2$ nanorings based strain sensor before (a) and after (b) 300 cyclic bending tests.

Material type	Material	Fabrication method	Temperature range (°C)	Sensitivity	Stretchability	Ref.	
	$Sn_{0.2}Mo_{0.8}S_2$	inkjet printing	25-85	-0.013 °C ⁻¹	flexible		
	rGO fiber	wet spinning	30-80	-0.00636 °C ⁻¹	flexible	1	
	rGO-PU/PDMS	wet spinning	25-50	-0.01185 °C ⁻¹	50%	2	
	rGO film	spray coating	0-100	-	3%	3	
	graphene-						
	(PEDOT:PSS)/P	inkjet printing	35-45	-0.0006 °C-1	-	4	
	U						
	rGO/parlylene	spray coating	22-70	-0.0083 °C-1	flexible	5	
	rGO/PET	spray coating	30-100	-0.006345 °C-1	flexible	6	
	PEI-	Spray coating	25-45	-0.013 °C-1	bending	7	
	rGO/polyimide	opiay obaing	2J-7J	0.015 C	angle:40°		
	graphene/						
	polyorganosiloxa	freeze drying	20-100	-	80%	8	
Carbon	ne aerogels						
	graphene	writing or	30-80	-0.0127 °C ⁻¹	curvature	9	
	nanoribbons	spraying	20.00	010127 0	radius: 1 cm		
	graphene/porous						
	elastic	dip coating	20-100	-0.00815 °C ⁻¹	50%	10	
	polyurethane						
	rGO-Pu	spin coating	-	0.009 °C ⁻¹	70%	11	
	CNT	printing	21-80	~0.0025 °C-1	flexible	12	
	graphene	CVD	-	0.0042 °C-1	40%	13	
	$Ti_3C_2T_x$ /cellulose	vacuum filtration	27-140	~0.00222 °C-1	flexible	14	
	LIG/MXene- Ti ₃ C ₂ T _x @EDOT	laser-induced	26-45	0.0052 K ⁻¹	flexible	15	
metal	Ag NWs	electrospinnin g	30-45	0.0003 °C-1	flexible	16	
nanowire	Ag NWs-PI	filtration	-20-20	0.0033 °C-1	flexible	17	
	MoS ₂	CVD	27-120	0.01-0.02 K ⁻¹	flexible	18	
	MoS ₂	-	-	0.0057 K ⁻¹	-	19	
semicond	MoTe ₂	-	-	0.0064 K ⁻¹	-	19	
uctor	MoS ₂ -graphene	coating	-	-	flexible	20	
	MoS ₂	printing	-	0.0102 °C ⁻¹	80%	21	
	MoS ₂	inkjet printina	30-70	-0.0095 °C ⁻¹	flexible	22	

T 1	1	1	$\mathbf{\alpha}$	•	C	•	• •	· · 1	1 1	.1	
1.2	าเค		()	omnarison	ot	various	inorganic	materials.	.hased	thermoresistive tem	oerafiire sensors
Iц		1	\sim	omparison	UI	various	morgame	materials	ouseu		Joratare Sensors.

Referance

- 1 T. Q. Trung, H. S. Le, T. M. L. Dang, S. Ju, S. Y. Park and N. E. Lee, *Adv. Healthc. Mater.*, 2018, 7, e1800074.
- 2 T. Q. Trung, T. M. L. Dang, S. Ramasundaram, P. T. Toi, S. Y. Park and N. E. Lee, ACS Appl. Mater. Interfaces, 2019, 11, 2317-2327.
- 3 D. H. Ho, Q. Sun, S. Y. Kim, J. T. Han, D. H. Kim and J. H. Cho, Adv. Mater., 2016, 28, 2601-2608.
- 4 T. Vuorinen, J. Niittynen, T. Kankkunen, T. M. Kraft and M. Mantysalo, Sci. Rep., 2016, 6, 35289.
- 5 G. Y. Bae, J. T. Han, G. Lee, S. Lee, S. W. Kim, S. Park, J. Kwon, S. Jung and K. Cho, *Adv. Mater.*, 2018, **30**, e1803388.
- 6 G. Liu, Q. Tan, H. Kou, L. Zhang, J. Wang, W. Lv, H. Dong and J. Xiong, Sensors, 2018, 18
- 7 Q. Liu, H. Tai, Z. Yuan, Y. Zhou, Y. Su and Y. Jiang, Adv. Mater. Technol., 2019, 4
- 8 G. Zu, K. Kanamori, K. Nakanishi and J. Huang, Chem. Mater., 2019, 31, 6276-6285.
- 9 X. Gong, L. Zhang, Y. Huang, S. Wang, G. Pan and L. Li, RSC Adv., 2020, 10, 22222-22229.
- 10 X. Hu, M. Tian, T. Xu, X. Sun, B. Sun, C. Sun, X. Liu, X. Zhang and L. Qu, ACS Nano, 2020, 14, 559-567.
- 11 T. Q. Trung, S. Ramasundaram, B. U. Hwang and N. E. Lee, Adv. Mater., 2016, 28, 502-509.
- 12 S. Harada, K. Kanao, Y. Yamamoto, T. Arie, S. Akita and K. Takei, ACS Nano, 2014, 8, 12851-12857.
- 13 S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M. Schnyer, D. Akinwande and N. Lu, *ACS Nano*, 2017, **11**, 7634-7641.
- 14 V. Adepu, V. Mattela and P. Sahatiya, J Mater. Chem. B, 2021, 9, 4523-4534.
- 15 S. Zhang, A. Chhetry, M. A. Zahed, S. Sharma, C. Park, S. Yoon and J. Y. Park, *npj Flex. Electron.*, 2022, 6
- 16 B. W. An, S. Heo, S. Ji, F. Bien and J. U. Park, Nat. Commun., 2018, 9, 2458.
- 17 D. Y. Youn, U. Jung, M. Naqi, S. J. Choi, M. G. Lee, S. Lee, H. J. Park, I. D. Kim and S. Kim, ACS Appl. Mater. Interfaces, 2018, 10, 44678-44685.
- 18 A. Daus, M. Jaikissoon, A. I. Khan, A. Kumar, R. W. Grady, K. C. Saraswat and E. Pop, *Nano Lett.*, 2022, 22, 6135-6140.
- 19 A. I. Khan, P. Khakbaz, K. A. Brenner, K. K. H. Smithe, M. J. Mleczko, D. Esseni and E. Pop, *Appl. Phys. Lett.*, 2020, 116
- 20 Y. Xie, T.-M. Chou, W. Yang, M. He, Y. Zhao, N. Li and Z.-H. Lin, *Semicond. Sci. Technol.*, 2017, 32
- 21 Y. Lu, J. Wang, J. He, L. Zou, D. Zhao and S. Song, ACS Appl. Mater. Interfaces, 2022, 14, 29250-29260.
- 22 W. Li, M. Xu, J. Gao, X. Zhang, H. Huang, R. Zhao, X. Zhu, Y. Yang, L. Luo, M. Chen, H. Ji, L. Zheng, X. Wang and W. Huang, *Adv. Mater.*, 2023, **35**, e2207447.