Supporting Information

A Sensitive Lateral Flow Test Strip Sensor for Visual Detection of Acid

Red 18 in Food Using Bicentric-Emission Carbon Dots

Houwen Hu^{a,1}, Zewei Chen^{b,1}, Tingting Li^a, Linfan Wang^a, Haoming Xing^a, Guoqiang Guo^{a,c}, Gang Wang^{a,d,*}, Da Chen^{a,*}

^aDepartment of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.

^bDepartment of Electrical and Electronic Engineering, Synchrotron Light Application Center, Saga University, Saga 840-8502, Japan.

^cDepartment of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen 518055, P. R. China.

^dNational Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China.

*Corresponding author:

E-mail address: <u>gangwang@nbu.edu.cn</u> (G. Wang); <u>chenda@nbu.edu.cn</u> (D. Chen) Houwen Hu and Zewei Chen contributed equally to this work.

Fig. S1 XRD pattern of N-CDs.

Fig. S2 Raman pattern of N-CDs.

Fig. S3 High-resolution XPS spectrum of O 1s.

Fig. S4 The linear relationship between 425 nm (a) and 541 nm (b) fluorescence integrated intensity and optical density from the absorbance of N-CDs and Rhodamine B.

Fig. S5 Fluorescence stability of N-CDs under different concentrations of NaCl (a), storage time in daylight (b) and ultraviolet light (c).

Fig. S6 Selectivity of N-CDs. The concentration of interferent is $100 \ \mu$ M.

Fig. S7 UV-vis absorption spectra of N-CDs, AR18, the mixture of N-CDs and AR18 and the fitting curve of the mixture.

Fig. S8 Tauc plots of N-CDs (orange line) and AR18 (green line).

Fig. S9 Zeta potential of AR18, N-CDs and N-CDs+AR18.

Fig. S10 Benesi-Hildebrand plot of N-CDs upon the addition of AR18.

Fig. S11 Normalized 3D fluorescent matric scanning map of N-CDs with different concentrations of AR18.

Fig. S12 The images of N-CDs with different concentration of AR18 under UV light of 365 nm (left) and 470 nm (right).

Fig. S13 The relationship between fluorescence intensity ratio (F/F_0) and the concentration of AR18 under the emission wavelength of 425 nm (a) and 541 nm (b). Linear fitting between F/F_0 and the concentration of AR18 under the emission wavelength of 425 nm (c) and 541 nm (d).

0 s	10 s	30 s
120 s	90 s	60 s

Fig. S14 The solution flow on the LFTS sensing platform.

Metho	ods	Analyte	Materials	Linear Range (µM)	LOD (µM)	Ref.
SERS	-	AR18	UiO- 66 (NH ₂) @Au	1.65-82.7	0.664	1
SERS	-	AR18	AuNPs	5-500	5	2
HPLC	-	AR18	-	1.65-33.09	0.414	3
HPLC-UV	-	AR18	-	0.165- 16.54	0.0993	4
Fluorescence	Single fluorescence	AR18	F-SiQDs	1-100	0.33	5
Fluorescence	Ratiometric fluorescence	AR18	Fan, N-CDs	20-55	0.0548	6
Fluorescence	3D- ratiometric fluorescence	AR18	N-CDs	0.0539-30	0.0539	This work

 Table S1. Comparations among different detection methods of AR18.

References

- 1. L. Wu, H. Pu, L. Huang, D. Sun, Food Chem., 2022, 328, 127105.
- 2. X. Tian, Z. Fan, Spectrochim. Acta A, 2012, 96, 600-604.
- 3. M. Khanavi, M. Hajimahmoodi, A. Ranjbar, M. Oveisi, M. Ardekani, G. Mogaddam, *Food Anal. Method.*, 2012, **5**, 408-415.
- 4. S. Dixit, S. Khanna, M. Das, J. AOAC INT., 2010, 93, 1503-1514.
- 5. Y. Liu, M. Zan, L. Cao, J. Peng, P. Wang, X. Pang, Y. Zhang, L. Li, Q. Mei, W. Dong, *Microchem. J.*, 2022, **179**, 107453.
- Y. Tu, Z. Liu, L. Jiang, Y. Xiang, F. Song, L. Meng, X. Ji, L. Yuan, *Dyes Pigm.*, 2023, 210, 111024.