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Experimental section

Materials: D-sodium gluconate (C6H11NaO7, 99%), Ammonium metavanadate (NH4VO3, 99.95%), 

Zinc sulfate (ZnSO4·7H2O, 99%) and N-methyl pyrrolidone (NMP, >99%) were purchased from 

Shanghai Aladdin Biochemical Technology Co., Ltd. Ethanedioic acid dihydrate (H2C2O4·2H2O, 

≥99.8%) was purchased from Sinopharm Chemical Reagent Co., Ltd. Super P (battery grade) and 

polyvinylidene fluoride (PVDF, battery grade) were purchased from Soochow DoDoChem 

Technology Co., Ltd.

Electrolyte preparation：ZnSO4·7H2O was dissolved into deionized (DI) water to prepare the 2 M 

ZnSO4 (ZS) electrolyte. Different concentrations (10, 20, 50, 80, 100 mM) of sodium gluconate (SG) 

were added into the 2 M ZnSO4 solutions (denoted as SG10, SG20, SG50 and SG80) to obtain the 

electrolytes for subsequent tests.

Preparation of NH4V4O10 cathode materials: 2.106 g of NH4VO3 was dissolved in 90 mL of DI 

water and stirred at 80 °C until the solution became yellow. Then, 3.4038 g of H2C2O4·2H2O was 

added slowly and kept stirring to obtain a dark blue-green solution. The obtained solution was 

transferred to a 50 mL Teflon-lined autoclave and kept at 140 °C for 48 hours. The solid materials 

were collected and repeatedly washed with DI water and then dried at 80 °C overnight to obtain the 

NH4V4O10 powers.

Material characterizations: X-ray diffraction (XRD) measurements were carried out on the Rigaku 

Mini Flex 600 diffractometer with Cu Kα-radiation (λ=1.5418 Å). The surface morphology of Zn 

anodes was characterized by optical microscope (LW50LJT) and scanning electron microscope 

(SEM, MIRA3 TESCAN, 10 kV).

Electrochemical measurements: All CR2016-type coin cells using glass fiber separator were 

assembled in open-air environment. Galvanostatic charge-discharge (GCD) cycling tests were 

conducted at room temperature on NEWARE battery tester (CT-4008T-5V50mA-164) and LAND 

battery tester (LAND CT2001, China). Cyclic voltammetry (CV), chronoamperometry (CA) and 
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electrochemical impedance spectroscopy (EIS) tests were performed on electrochemical workstation 

(CHI660E, China). Linear sweep voltammetry (LSV) tests were performed at a scan rate of 5 mV s-1 

in a three-electrode configuration, in which Ag/AgCl electrode was used as the reference electrode. 

In the LSV tests, all the electrolytes were based on 1 M Na2SO4 solutions.

Computational methods: Density functional theory (DFT) calculations were utilized to investigate 

the interactions of H2O, SG, Zn2+ on different Zn crystal planes. The adsorption energies of them 

were calculated by the Vienna ab-initio simulation package (VASP). The generalized gradient 

approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) function was used as the exchange-

correlation function. Firstly, we generated k-point meshes using VASPKIT with a 3×5×1 k-point 

mesh in the Monkhorst-Pack scheme, and the cutoff energy was set as 500 eV. Next, the convergence 

criteria of energy and force were set as 1×10-6 eV and 0.02 eV/atom, respectively. The Zn(002) 

surface had a 4×4 supercell in ab dimension. The absorption energies between Zn slab and various 

particles were defined as the following equation:

𝐸𝑎𝑏𝑜𝑟𝑏= 𝐸𝑡𝑜𝑡 ‒ 𝐸𝑍𝑛 ‒ 𝑠𝑙𝑎𝑏 ‒ 𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

where , ,  and  represent the adsorption energy, total energy of the 𝐸𝑎𝑏𝑜𝑟𝑏 𝐸𝑡𝑜𝑡 𝐸𝑍𝑛 ‒ 𝑠𝑙𝑎𝑏 𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

system, energy of the Zn slab and energy of the isolated adsorbed molecules, respectively.
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Fig. S1. Long-term cycling performance of Zn||Zn symmetric cells based on SG10, SG50, SG80 and 

SG100 electrolytes at 1 mA cm-2, 1 mA h cm-2.
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Fig. S2. Cross-sectional SEM images of the Zn anodes after 25 cycles at 5 mA cm-2, 2.5 mA h cm-2 

in (a) SG20 and (b) ZS electrolytes.

Fig. S3. EDS spectrum and elemental mappings of the Zn anode surface after cycling in SG20 

electrolyte at 5 mA cm-2, 2.5 mA h cm-2.
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Fig. S4. EDS spectrum and elemental mappings of the Zn anode surface after cycling in ZS electrolyte 

at 5 mA cm-2, 2.5 mA h cm-2.

Fig. S5. XRD patterns of the Zn anodes in SG-based Zn||Zn symmetric cells after 50 cycles at 1 mA 

cm-2, 1 mA h cm-2.
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Fig. S6. The hexagonal close-packed structure of Zn.

Fig. S7. Adsorption energies of SG and Zn2+ on the Zn (100) plane.

Fig. S8. Optical images of Zn soaked in SG20 and ZS electrolytes.
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Fig. S9. Standard XRD pattern of Zn4SO4(OH)6·3H2O.

Fig. S10. XRD pattern of NH4V4O10.

Fig. S11. EIS of Zn||NH4V4O10 full cells based on SG20 and ZS electrolytes.
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Fig. S12. Capacity decay rates of Zn||NH4V4O10 full cells based on SG20 and ZS electrolytes at a 

current density of 5 A g-1.

Fig. S13. Voltage profiles of Zn||NH4V4O10 full cell based on (a) SG20 and (b) ZS electrolytes at a 

current density of 5 A g-1.


