Supporting Information

Collagenase Motors in Gelatine-Based Hydrogels

Nanying Wang,^a Thaís Marcelino,^{a,b} Carina Ade,^a Stefan Pendlmayr,^{a,b} Miguel A. Ramos Docampo,^a and Brigitte Städler^{*a}

a. Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustave Wieds Vej 14, 8000, Aarhus, Denmark b. Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China Email: *bstadler@inano.au.dk

Silica Particle	Mass (mg) ^{a)}	Surface area (µm²) ^{a)}	Diameter (µm) ^{a)}
^{0.5} M	1 × 10 ⁻¹⁰	0.8	0.5
^{0.8} M	6 × 10 ⁻¹⁰	2.0	0.8
¹ M	1 × 10 ⁻⁹	3.1	1.0
⁴ M	9 × 10 ⁻⁹	12.6	2.0
RM	2 × 10 ⁻¹⁰	1.4	1.5 (width)
			0.3 (length)
			5.6 (aspect ratio)

Table S1. Overview of the silica particle properties

^{a)} of a single particle

Table S2.	Overview	of the c	ollagenase	immobilization	characteristics
	0.001	01 01 0	onagenase	In the bin Eacloth	onaracteristics

Motor	Silica particle stock solution (mg mL ⁻¹)	Particle V (polymer brush coated) (μL) ^{α)}	Mass of Coll for immobilization (mg) ^{b)}	Total mass of Coll/Total area of motor (μg μm ⁻²) ^{c)}
^R M ^{Coll}			1.5	4 × 10 ⁻⁸
^{0.5} M ^{Coll}	30	66	1.4	5 × 10 ⁻⁸
^{0.8} M ^{Coll}	50	60	1.6	9 × 10 ⁻⁸
	50	80	3.2	3 × 10 ⁻⁸
² M ^{Coll}	50	180	2.4	8 × 10 ⁻⁸
0.5MColl(low)	30	45	0.4	NA ^{d)}

^{a)}particle volume used for Coll coating to have comparable total surface area of $1 \times 10^{10} \mu m^2$; ^{b)}from a 4 mg ml⁻¹ Coll stock solution in HEPES buffer;^{c)}experimentally determined from a BCA analysis (n=2); ^{d)}below the detection limit of the BCA analysis.

Figure S1. Photo of ^{0.5}M^{Coll} after being coated with different amounts of collagenase. ^{0.5}M^{Coll}(low) and ^{0.5}M^{Coll} correspond to the frist tube (0.4 mg collagenase) and third tube (1.4 mg collagenase).

Figure S2. Locomotion properties of ^{0.5}M^{Coll(low)}. Trajectories maps (a) and MSD plots (b) of ^{0.5}M^{Coll(low)} moving in different viscosity gelatine-based environments when triggered with 2 mM calcium. Scale bar is 50 μ m. c) Velocities of ^{0.5}M^{Coll(low)} represented as whisker plots. ^{0.5}M^{BSA} is used as control.

Figure S3. a) Mixture of motors ^{0.5}M and ^{0.5}M^{Coll} in the regions A (close to the inlet) and C (at the other end of the microfluidic channel). Trajectories maps (i) and MSD plots (ii) of ^{0.5}M^{Coll} and ^{0.5}M moving in an environment made of 1% GelMA when triggered with 2 mM calcium. Scale bar is 100 μ m. iii) Velocities of ^{0.5}M^{Coll} and ^{0.5}M represented as whisker plots. b) i) MSD plots of ^{0.5}M^{BSA} and ^{0.5}M in 1 % GelMA using 2 mM calcium as the trigger (not as a mixed population). ii) Velocities of ^{0.5}M^{BSA} and ^{0.5}M represented as whisker plots.

Figure S4. MSD plots of ^{0.5}M^{Coll} in the region A (a), the region B (b) and the region C (c) in 1 % GelMA using 2 mM calcium as the trigger.

Figure S5. Motors ^{0.5}M and ^{0.5}M^{Coll} in different positions. Trajectories maps (a) and MSD plots (b) of ^{0.5}M^{Coll} and ^{0.5}M moving in an environment made of 1% GeIMA when triggered with 2 mM calcium. Scale bar is 50 μ m. c) Velocities of ^{0.5}M^{Coll} and ^{0.5}M represented as whisker plots.

Figure S6. Trajectory maps (a) and MSD plots (b) of $^{0.8}M^{Coll}$ in hydrogels made from 0.1, 2.5, or 5 % GelMA using 2 mM calcium as the trigger. Scale bar is 100 μ m.

Figure S7. Trajectory maps (a) and MSD plots (b) of ${}^{1}M^{Coll}$ in hydrogels made from 0.1, 2.5, or 5 % GelMA using 2 mM calcium as the trigger. Scale bar is 100 μ m.

Figure S8. Trajectory maps (a) and MSD plots (b) of ${}^{2}M^{Coll}$ in hydrogels made from 0.1, 2.5, or 5 % GelMA using 2 mM calcium as the trigger. Scale bar is 50 μ m.

Figure S9. Plot of velocity vs. motor's radius comparing a linear (red) and an exponential fit (blue). Theory predicts a linear dependence of velocity and particle radius for slow particles moving in continuous fluids, while a non-linear dependence is expected for fast particles and complex environments.

Figure S10. a) Representative fluorescence inverted microscope image of GUV^{Gel} in glucose buffer before and after UV crosslinking. b) Representative fluorescence inverted microscope image of GUV^{Gel} in crosslinked gelatine.