Supplemental Material

Sliding ferroelectricity and moiré effect in Janus bilayer MoSSe

Liyan Lin,^{1, 2} Xueqin Hu,^{1, 2} Ruijie Meng,^{1, 2} Xu Li^{3, 4}, Yandong Guo,^{1, 2, 5,*} Yue Jiang,⁶ Dongdong Wang,^{1, 2} Haixia Da,^{1, 2} Yurong Yang^{3, 4,*} and Xiaohong Yan^{1, 2,7,*}

¹College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China

²Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China
³National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced
Microstructures, Department of ⁴Materials Science and Engineering, Nanjing University, Nanjing 210093, China
⁵College of Natural Science, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
⁶College of Science, Jinling Institute of Technology, Nanjing 211169, China
⁷Jiangsu University, Zhenjiang 212013, China

Table S1. The relaxed lattice parameters, and structural parameters such as bond lengths and bond angles of the Janus bilayer MoSSe structure with AA stacking. The parameter D represents the interlayer distance between the nearest neighboring atomic layers of the upper and lower layers.

	Lattice parameter						
_	(Å)	Bond length (Å)		Angle (°)			D (Å)
configuration	a=b	Mo-S	Mo-Se	∠SMoSe	∠SMoS	∠SeMoSe	
Se-Se	3.22	2.41	2.52	82.08	83.83	79.25	3.73
S-S	3.22	2.41	2.52	82.01	83.94	79.25	3.55
S-Se	3.22	2.41	2.52	82.04	83.92	79.22	3.64

Table S2. The energy difference of AB stacking for S-S, Se-Se, and S-Se configurations. The parameter D represents the interlayer distance between the nearest neighboring atomic layers of the upper and lower layers.

Structure	AB stacking				
	Se-Se	S-S	S-Se		
ΔE (meV)	0	13.78	0.30		
D (Å)	3.24	2.99	3.08		

Fig. S1. (a) Illustration of the structural space group of the S-S configuration sliding in the ab-plane. Each honeycomb data point represents a slided structure. Different colors indicate different space groups. (b) The energy contour plot of bilayer Se-Se configuration versus the sliding distance (l_x, l_y) . The contour colors illustrate the energy difference of the unit cell relative to the energy of ground state (AB stacking and BA stacking). (c)-(d) The top and side views of the two lowest-energy groundstate structures in Fig. S1(b), the AB stacking and the BA stacking, respectively.

Fig. S2. (a) Illustration of the structural space group of the S-Se configuration sliding in the ab-plane. Each honeycomb data point represents a slided structure. Different colors indicate different space groups. (b) The energy contour plot of bilayer Se-Se configuration versus the sliding distance (l_x, l_y) . The contour colors illustrate the energy difference of the unit cell relative to the energy of ground state (AB stacking and BA stacking). (c)-(d) The top and side views of the two lowest-energy groundstate structures in Fig. S2(b), the AB stacking and the BA stacking, respectively.

Fig. S3. (a)-(b) The top and side views of untwisted and $\pi/3$ -twisted of AA stacking structures in Se-Se configuration. (c) The top and side views of AC stacking. (d) Illustration of the structural space group of the $\pi/3$ -twisted Se-Se configuration sliding in the ab plane. Each honeycomb data point represents a slided structure. Different colors indicate different space groups. (e) The energy contour plot of bilayer Se-Se configuration versus the sliding distance (l_x, l_y) . The contour colors illustrate the energy difference of the unit cell relative to the energy of ground state (AC stacking).

Fig. S4. (a)-(b) The top and side views of untwisted and $\pi/3$ -twisted of AA stacking structures in S-S configuration. (c) The top and side views of AC stacking. (D) Illustration of the structural space group of the $\pi/3$ -twisted S-S configuration sliding in the ab plane. Each honeycomb data point represents a slided structure. Different colors indicate different space groups. (E) The energy contour plot of bilayer S-S configuration versus the sliding distance (l_x , l_y). The contour colors illustrate the energy difference of the unit cell relative to the energy of ground state (AC stacking).

Fig. S5. (a)-(b) are the top and side views of untwisted and $\pi/3$ -twisted of AA stacking structures in S-Se configuration. (c) The top and side views of AC stacking. (d) Illustration of the structural space group of the $\pi/3$ -twisted S-Se configuration sliding in the ab plane. Each honeycomb data point represents a slided structure. Different colors indicate different space groups. (e) The energy contour plot of bilayer S-Se configuration versus the sliding distance (l_x , l_y). The contour colors illustrate the energy difference of the unit cell relative to the energy of ground state (AC stacking).

	OP & D						
Configuration	(pC/m)	DFT-	DFT-	vdW-	and DQ(h and W)		optPBE-vdW
	& (Å)	D3	D2	DF2	0ptB80D-va w	0ptB88-vu w	
Se-Se	ОР	-0.42	-0.45	-0.25	-0.45	-0.40	-0.28
	D	3.24	3.23	3.49	3.22	3.27	3.422
S-S	ОР	-0.84	-0.77	-0.55	-0.87	-0.79	-0.58
	D	3.00	3.04	3.20	2.98	3.02	3.16

Table S3. The interlayer distance (D) and out-of-plane polarization (OP) of the optimized AB stacking are corrected with different vdW functionals.

Fig. S6. Diagram of in-plane and out-of-plane polarization of sliding structures for S-S configuration. The color contour map shows the magnitude and direction of out-of-plane polarization. The arrow indicates the direction of in-plane polarization. The length of the arrows in the diagram represents the magnitude of the in-plane polarization, with longer arrows indicating a greater polarization. The longest arrow signifies the maximum in-plane polarization of 1.28 pC/m.

Fig. S7. The in-plane and out-of-plane polarization of the sliding structure in the Se-Se configuration, were computed using six different vdW functionals, specifically (a) DFT-D3, (b) DFT-D2, (c) vdW-DF2, (d) optB86b-vdW, (e) optB88-vdW, and (f) optPBE-vdW, respectively. The color contour map shows the magnitude and direction of out-of-plane polarization. The arrow indicates the direction of in-plane polarization. The length of the arrows in the diagram represents the magnitude of the in-plane polarization, with longer arrows indicating a greater polarization.

Materials	P_{\perp}	P _{II}	Thickness
BN [1]	2.08 pC/m	-	Bilayer
InSe [1]	0.24 pC/m	-	Bilayer
MoS ₂ [1]	0.97 pC/m	-	Bilayer
GaSe [1]	0.46 pC/m	-	Bilayer
GaN [1]	9.72 pC/m	-	Bilayer
MoSi ₂ N ₄ [2]	3.36 pC /m	-	Bilayer
MoGe ₂ N ₄ [2]	3.05 pC/m	-	Bilayer
CrSi ₂ N ₄ [2]	2.49 pC/m	-	Bilayer
WSi ₂ N ₄ [2]	3.44 pC/m	-	Bilayer
BP [3]	1.07 pC/m	-	Bilayer
BAs [3]	0.96 pC/m	-	Bilayer
BSb [3]	3.70 pC/m	-	Bilayer
AlN [3]	7.19 pC/m	-	Bilayer
GaN [3]	5.76 pC/m	-	Bilayer
InN [3]	13.83 pC/m	-	Bilayer
SiC [3]	2.89 pC/m	-	Bilayer
GeC [3]	2.78 pC/m	-	Bilayer
SnC [3]	4.41 pC/m	-	Bilayer
MnSe [4]	2.70 pC/m	-	Bilayer
$MoSe_2[5]$	0.59 pC/m	-	Bilayer
WS ₂ [5]	0.69 pC/m	-	Bilayer
WSe ₂ [5]	0.73 pC/m	-	Bilayer
MoSSe-SS (AB stacking)	0.86 pC/m	-	Bilayer
MoSSe-SS (TS stacking)	-	1.2 pC/m	Bilayer

Table S4. Predicted 2D sliding ferroelectric. The " P_{\perp} " symbol denotes out-of-plane polarization. And the "P||" denotes in-plane polarization.

[1] Li, Lei and Menghao Wu. Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS nano 11 6 (2017): 6382.

[2] Zhong, Tingting et al. Sliding ferroelectricity in two-dimensional MoA_2N_4 (A = Si or Ge) bilayers: high polarizations and Moiré potentials. Journal of Materials Chemistry A 9 35 (2021): 19659.

[3] Wang, Zhe et al. Sliding ferroelectricity in bilayer honeycomb structures: A first-principles study. Physical Review B 107 3 (2023): 035426.

[4] Liu, Kehan et al. Tunable sliding ferroelectricity and magnetoelectric coupling in two-dimensional multiferroic MnSe materials. npj Computational Materials 9 (2023): 1.

[5] Jafari, Homayoun et al. Robust Zeeman-type band splitting in sliding ferroelectrics. arXiv 2308 (2023): 15241.

Figure R8. The electronic band structures of Se-Se configuration. (a) and (b) are the electronic band structures for AB stacking with PBE and PBE+SOC, respectively. (c) and (d) are the electronic band structures for BA stacking with PBE and PBE+SOC, respectively. The color depth indicates the quantity of the projected contribution.

Figure S9. The electronic band structures of S-S configuration. (a) and (b) are the electronic band structures for AB stacking with PBE and PBE+SOC, respectively. (c) and (d) are the electronic band structures for BA stacking with PBE and PBE+SOC, respectively. The color depth indicates the quantity of the projected contribution.