## Supplementary file

## Flexible solid-state Zn-Air battery based on polymer-oxygen functionalized g-C<sub>3</sub>N<sub>4</sub> composite membrane

Arkaj Singh, Ravinder Sharma, Aditi Halder\*

School of Chemical Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005.

Corresponding author email: aditi@iitmandi.ac.in



Figure 1. XRD pattern of MnO<sub>2</sub>



Figure 2. XPS plot of Mn and O present in MnO<sub>2</sub>



Figure 3. IR plot of g-C3N4 and o-g-C3N4

## Conductivity data along with the value of resistance

Thickness – 0.55mm

Area – 3 cm<sup>2</sup>

Formula – Thickness/resistance\*area

Units for the conductivity- mScm<sup>-1</sup>

| Sr. No | PVA | 0.16 wt% | 0.32 wt% | 0.48 wt% | 0.64 wt% |
|--------|-----|----------|----------|----------|----------|
| 1      | 18  | 19       | 21       | 17       | 6        |
| 2      | 18  | 19       | 27       | 17       | 7        |
| 3      | 19  | 22       | 25       | 17       | 10       |



Figure 4. Cross-sectional SEM of the composite membrane



Figure 5. DSC curve of PVA and 0.32wt % o-g-C3N4@PVA



Figure 6. (a) Specific capacity measurements (b) Discharge polarisation and Power density plot (c) step discharge

Table for literature comparison of various gel polymer electrolytes for Zinc-air batteries.

| Material for membrane                            | Feature of the                                                                 | Electrolyte                                                    | Device                                                                                              | Reference |
|--------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------|
| 0.32 wt % o-g-C <sub>3</sub> N <sub>4</sub> /PVA | Conductivity-27 mS<br>cm <sup>-1</sup><br>Young's modulus-<br>107.63 MPa       | 6М КОН                                                         | OCP - 1.48V<br>GCD stability-<br>greater than 40<br>hours at<br>2mA/cm <sup>2</sup>                 | This work |
| PVAA-Cellulose                                   | Conductivity- 123 mS<br>cm <sup>-1</sup><br>Maximum tensile<br>stress-0.87 MPa | $KOH + Zn(Ac)_2$                                               | OCP - 1.41V<br>GCD stability-<br>53 hours                                                           | 1         |
| PANa-St-0.5                                      | Conductivity- 82 mS $cm^{-1}$<br>Tensile strength- 10.85 KPa                   | 6М КОН                                                         | OCP - 1.40 V<br>GCD stability-<br>70 hours                                                          | 2         |
| BC/PVA membrane                                  | Conductivity- 81.7 mS $cm^{-1}$<br>Tensile strength - 0.951 MPa                | 6.0 M KOH<br>and 0.2 M<br>Zn(CH <sub>3</sub> COO) <sub>2</sub> | OCP-1.35V<br>GCD stability-<br>more than 400<br>hours at 0.5<br>current density                     | 3         |
| PAMPS-K/MC hydrogel                              | Conductivity- 105 mS cm <sup>-1</sup>                                          | 5M KOH                                                         | OCP-1.35V<br>GCD stability-<br>more than 70<br>cycles 40<br>hours.                                  | 4         |
| Porous PVA-5 wt% SiO2<br>nanocomposite GPEs      | Conductivity -57.3 mS<br>cm <sup>-1</sup><br>Maximum stress – 705<br>KPa       | 6М КОН                                                         | OCP- 2.54 V<br>two batteries<br>connected in<br>series.<br>GCD stability-<br>more than 50<br>hours. | 5         |

1. Li, W.; Wang, Y.; Liu, R.; Chen, W.; Zhang, H.; Zhang, Z., Gel Polymer-Based Composite Solid-State Electrolyte for Long-Cycle-Life Rechargeable Zinc–Air Batteries. *ACS Sustainable Chemistry & Engineering* **2023**, *11* (9), 3732-3739.

2. Zhang, Y.; Chen, Y.; Alfred, M.; Huang, F.; Liao, S.; Chen, D.; Li, D.; Wei, Q., Alkaline sodium polyacrylate-starch hydrogels with tolerance to cold conditions for stretchable zinc-air batteries. *Composites Part B: Engineering* **2021**, *224*, 109228.

3. Zhao, N.; Wu, F.; Xing, Y.; Qu, W.; Chen, N.; Shang, Y.; Yan, M.; Li, Y.; Li, L.; Chen, R., Flexible hydrogel electrolyte with superior mechanical properties based on poly (vinyl alcohol) and bacterial cellulose for the solid-state zinc–air batteries. *ACS applied materials & interfaces* **2019**, *11* (17), 15537-15542.

4. Sun, N.; Lu, F.; Yu, Y.; Su, L.; Gao, X.; Zheng, L., Alkaline double-network hydrogels with high conductivities, superior mechanical performances, and antifreezing properties for solid-state zinc–air batteries. *ACS applied materials & interfaces* **2020**, *12* (10), 11778-11788.

5. Fan, X.; Liu, J.; Song, Z.; Han, X.; Deng, Y.; Zhong, C.; Hu, W., Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc–air batteries. *Nano Energy* **2019**, *56*, 454-462.