# **Electronic Supplementary Information (ESI)**

# Light-controlled morphological development of self-organizing bioinspired nanocomposites

Marloes H. Bistervels<sup>a</sup>, Niels T. Hoogendoorn<sup>a</sup>, Marko Kamp<sup>a</sup>, Hinco Schoenmaker<sup>a</sup>, Albert M. Brouwer<sup>b</sup>, Willem L. Noorduin<sup>a,b</sup>

<sup>a</sup> AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands. <sup>b</sup> Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam 1090 GD, The Netherlands.

E-mail: noorduin@amolf.nl

# Content:

- 1. Supplementary Figure S1
- 2. Supplementary Figure S2
- 3. Supplementary Figure S3
- 4. Supplementary Figure S4
- 5. Supplementary Figure S5
- 6. Supplementary Movie 1
- 7. Supplementary Movie 2

#### **Supplementary Figure S1**



Fig. S1. Light microscope images showing switching between growth regimes due to modulations in light intensity at 275 nm UV in a solution of  $BaCO_3/SiO_2$  precursor solutions (20 mM  $BaCl_2$ , 9 mM  $Na_2SiO_3$ ) with A) 2 mM KP, 20 mM DTAB, pH 10.89, 250  $\mu$ m radius (coral  $\rightarrow$  helix) ; B) 5 mM KP, 50 mM DTAB, pH 10.89, 200  $\mu$ m radius (helix  $\rightarrow$  coral); and C) 2 mM KP, 20 mM DTAB, pH 10.85, 200  $\mu$ m radius (helix  $\rightarrow$  coral). The yellow circle indicates the illuminated area.

# **Supplementary Figure S2**



Fig S2. Light-induced nucleation and growth of  $BaCO_3/SiO_2$  structures using low and high light intensity irradiation to induce consecutive switching between coral and helical growth modes. The precursor solution contains 20 mM  $BaCl_2$ , 11 mM  $Na_2SiO_3$ , 5 mM KP, and 50 mM DTAB at pH 11.3. The circles represent the illuminated areas (250  $\mu$ m radius) for high (dark purple) and low (light purple) light intensity, moving from T1 to T3.

# Supplementary Figure S3



Fig. S3. Switching growth modes with single structures using first (T1) high light intensity irradiation of 275 nm on a precursor solution of 20 mM  $BaCl_2$ , 9 mM  $Na_2SiO_3$ , 5 mM KP, 50 mM DTAB, pH 10.9, 200  $\mu$ m radius, followed by (T2) low light intensity irradiation. Consistent transitioning from coral to helical growth is observed upon reduction of the light intensity.

### **Supplementary Figure S4**



Fig. S4. Switching growth modes with single structures using first high light intensity irradiation of 275 nm on a precursor solution of 20 mM  $BaCl_2$ , 11.5 mM  $Na_2SiO_3$ , 5 mM KP, 50 mM DTAB, pH 10.9, 150  $\mu$ m radius, followed by low light intensity irradiation.

#### **Supplementary Figure S5**



Fig. S5. Sculpting of  $BaCO_3/SiO_2$  structures by decreasing and increasing the light intensity, causing narrowing and opening of the growth direction respectively. A) Timelapse; and B) resulting SEM images of 275 nm UV irradiation on a precursor solution of 20 mM  $BaCl_2$ , 9 mM  $Na_2SiO_3$ , 5 mM KP, 50 mM DTAB, pH 11.5, 100  $\mu$ m radius.

### **Supplementary Movies**

- 1. **Supplementary Movie 1:** Light-controlled switching from coral to helical growth mode. In this movie, the light-controlled transition from coral growth to helical growth of a single  $BaCO_3/SiO_2$  nanocomposite is presented. The movie is a zoom in from a larger illuminated area. The first 2 seconds show the growth of an architecture with light intensity ( $I_{UV}$ ) = 75 µm mm<sup>-2</sup>, yielding growth of a coral shape. Then  $I_{UV}$  is reduced to 10 µm mm<sup>-2</sup>, inducing helical growth. The purple line is an indicative representation of the light intensity. The movie consists of 78 frames that cover a timespan of 140 minutes real-time growth.
- 2. **Supplementary Movie 2:** Light-controlled switching from helical to coral growth mode. In this movie, the light-controlled the transition from helical growth to coral growth of a single  $BaCO_3/SiO_2$  nanocomposite is presented. The movie is a zoom in from a larger illuminated area. The first 4 seconds show the growth of an architecture with  $I_{UV} = 10 \ \mu m \ mm^{-2}$ , yielding helical growth. Then  $I_{UV}$  is briefly increased to 100  $\mu m \ mm^{-2}$ , and subsequently set to 50  $\mu m \ mm^{-2}$  inducing the growth of a coral shape. The purple line is an indicative representation of the light intensity. The movie consists of 35 frames that cover a timespan of 120 minutes real-time growth.