Doping Strategy to Regulate the Adsorption Energy of Li₂S₄ and Li₂S to Promote Sulfur Reduction on Chevrel Phase Mo₆Se₈ in Lithium–Sulfur Battery

Tengfei Duan, Dong Fan, Zhongyun Ma*, Yong Pei*

T. Duan, D. Fan, Z. Ma, Y. Pei

^aDepartment of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applicationics of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Hunan Province, Xiangtan 411105, China.

E-mail: <u>zhyma@xtu.edu.cn</u> (Zhongyun Ma); <u>ypei2@xtu.edu.cn</u> (Yong Pei)

Tabel of contents

1.1 Adsorption of LiPSs	3
1.2 Charge density difference	6
1.3 Projected density of states (PDOS)	7
1.4 Changes of PDOS for total d orbitals and its five partial orbitals	8
1.5 Gibbs free energy plots of SRR process	.16
1.6 Tests for solvation effects	.18
1.7 Table S1 ~ S3	.19
1.8 References	.22

1.1 Adsorption of LiPSs

(a)						i
(4)		Li ₂ S ₈ *	Li ₂ S ₆ *	Li ₂ S ₄ *	Li ₂ S ₂ *	Li ₂ S*
	Sc@Mo ₆ Se ₈ ●	-3.47 eV	-3.07 eV	-3.08 eV	-3.60 eV	-4.11 eV
	Cr@Mo ₆ Se ₈	-2.97 eV	-2.78 eV	-2.74 eV	-3.45 eV	-4.09 eV
	Mn@Mo ₆ Se ₈ ●	-3.33 eV	-2.79 eV	-2.63 eV	-3.44 eV	-4.02 eV
	Fe@Mo ₆ Se ₈	-3.27 eV	-3.05 eV	-2.82 eV	-3.34 eV	-3.91 eV
	Co@Mo ₆ Se ₈	-3.23 eV	-2.72 eV	-3.01 eV	-3.44 eV	-3.97 eV
	Ni@Mo ₆ Se ₈ ●	-2.55 eV	-2.40 eV	-2.81 eV	-3.23 eV	-3.76 eV
		Mo 💿	Se •	Li 💿	S •	

(h)			i		
(0)		Li ₂ S ₂ * Mo site	Li ₂ S ₂ * M site	Li ₂ S* Mo site	Li ₂ S* M site
	Ca@Mo ₆ Se ₈	-3.33 eV	-2.73 eV	-3.98 eV	-3.60 eV
	Sc@Mo ₆ Se ₈	-3.21 eV	-3.67 eV	-3.74 eV	-4.11 eV
	Ti@Mo ₆ Se ₈ ●	-3.30 eV	-3.57 eV	-3.94 eV	-4.43 eV
	V@Mo ₆ Se ₈	-3.38 eV	-3.46 eV	-4.09 eV	-4.23 eV
	Cr@Mo ₆ Se ₈	-3.45 eV	-3.23 eV	-4.09 eV	-3.91 eV
	Mn@Mo ₆ Se ₈ ●	-3.43 eV	-3.01 eV	-4.09 eV	-3.67 eV
	Fe@Mo ₆ Se ₈ ●	-3.34 eV	-3.05 eV	-3.97 eV	-3.65 eV

Co@Mo ₆ Se ₈ ♥	-3.42 eV	-2.85 eV	-4.04 eV	-3.48 eV
Ni@Mo ₆ Se ₈ ●	-3.20 eV	-2.46 eV	-3.82 eV	-3.35 eV
	Mo •	Se •	Li O	S •

Figure S1. (a) Adsorption energies and adsorption configurations of LiPSs on $M@Mo_6Se_8$ systems (b) Adsorption energies and adsorption configurations of Li_2S_n (n = 2 and 1) at different active sites on $M@Mo_6Se_8$ systems.

1.2 Charge density difference

Figure S2. The charge density difference between the Li_2S_4 and various catalyst surfaces. The yellow and cyan represent the gain and loss regions of the electrons, respectively. The equivalence plane is set to 0.002 eV/Å³.

1.3 Projected density of states (PDOS)

Figure S3. The projected density of states of Mo_6Se_8 and $M@Mo_6Se_8$ systems after Li_2S_4 adsorption

1.4 Changes of PDOS for total d orbitals and its five partial orbitals

Figure S4. The changes of total d orbitals and its five components $(d_z^2, d_{xz}, d_{yz}, d_x^2-y^2)$ and d_{xy} orbitals of doped metal before and after Li₂S₄ adsorption for (a) Sc@Mo₆Se₈ (b) V@Mo₆Se₈ (c) Cr@Mo₆Se₈ (d) Mn@Mo₆Se₈ (e) Fe@Mo₆Se₈ (f) Co@Mo₆Se₈ (g) Ni@Mo₆Se₈ (h) Mo₆Se₈ systems.

1.5 Gibbs free energy plots of SRR process

Figure S5. Gibbs free energy plots of SRR at U = 0 V, limiting potential and equilibrium potential (U = 2.24 V) for Mo₆Se₈ and M@Mo₆Se₈ (M = Ca, Sc, V, Mn, Fe, Co and Ni) systems.

1.6 Tests for solvation effects

Figure S6. (a) Trends in adsorption energies of LiPSs on Mo_6Se_8 in vacuum environments and solvation effects (b) Trends in adsorption energies of LiPSs on Ti- Mo_6Se_8 in vacuum environments and solvation effects

1.7 Table S1 ~ S3

Material	Unit Cell Parameter	Experimental Value (Å)	Calculated Value (Å)	% Difference
	1 drumeter			
$\begin{array}{c} a \\ b \\ c \\ \alpha \\ \beta \\ \gamma \end{array}$	а	6.66[1]	6.63	0.45
	b	6.66	6.61	0.75
	с	6.66	6.64	0.30
	α	91.70	91.49	0.23
	β	91.70	91.56	0.15
	γ	91.70	91.41	0.32

Table S1 Experimental and calculated values of lattice constants of Mo_6Se_8

Systems	η (V)	E _d (eV)	d _n (eV)	W (eV)	Q _m (e)	<i>r</i> _d (Å)	A _m (eV)	I _m (eV)	$N_{\rm m}$
Sc@Mo ₆ Se ₈	0.41	1.68	3	4.88	-2.87	1.44	0.19	6.56	1.36
Ti@Mo ₆ Se ₈	0.21	0.94	4	4.89	-2.53	1.32	0.08	6.83	1.54
V@Mo ₆ Se ₈	0.32	0.40	5	4.97	-1.98	1.22	0.53	5.75	1.63
Cr@Mo ₆ Se ₈	0.36	0.44	6	5.15	-1.43	1.18	0.68	6.77	1.66
Mn@Mo ₆ Se ₈	0.37	-0.22	7	5.20	-0.96	1.17	-0.50	7.43	1.55
Fe@Mo ₆ Se ₈	0.44	-0.46	8	5.19	-0.63	1.17	0.15	7.90	1.83
Co@Mo ₆ Se ₈	0.42	-1.31	9	5.14	-0.39	1.16	0.66	7.88	1.88
Ni@Mo ₆ Se ₈	0.62	-1.94	10	5.11	-0.30	1.15	1.16	7.64	1.91
Mo ₆ Se ₈	0.27	0.13	6	5.01	-1.48	1.30	0.75	7.09	2.16

Table S2. Descriptors of metal-doped Mo_6Se_8 and Mo_6Se_8 systems (see footnotes for definitions of each descriptor).

 ε_d is the d band center the doped metal from -6 eV to 6 eV

 d_n is the number of valence electrons of the doped metal atom

W is the work function of the catalyst

 $Q_{\rm m}$ is the bader charge transfer number of the doped metal atom, negative values

represent loss of electrons

 $N_{\rm m}$ is electronegativity of doped metal atom

 $A_{\rm m}$ is the electron affinity energy of doped metal atom

 $I_{\rm m}$ is the first ionization energy of doped metal atom

 $r_{\rm d}$ is the atomic radius of the doped metal

Systems		Li_2S_8*	Li_2S_6 *	Li_2S_4 *	$Li_2S_2^*$	Li ₂ S*
Ca@Mo ₆ Se ₈	ZPE	0.82	0.68	0.49	0.35	0.29
	TS	1.89	1.46	1.10	0.71	0.47
So@Mo So	ZPE	0.82	0.64	0.47	0.36	0.26
SC@M06Se8	TS	1.91	1.52	1.13	0.67	0.52
Ti@Ma Sa	ZPE	0.81	0.64	0.46	0.35	0.26
$11@Mo_6Se_8$	TS	1.92	1.38	1.12	0.70	0.52
V@Ma Sa	ZPE	0.83	0.63	0.46	0.35	0.26
v@M06Se8	TS	1.87	1.52	1.13	0.68	0.49
Cr@Ma Sa	ZPE	0.80	0.65	0.46	0.35	0.26
$CI @M0_6Se_8$	TS	1.83	1.50	1.15	0.70	0.53
Mn@Ma Sa	ZPE	0.84	0.63	0.46	0.35	0.26
wini@wi063e8	TS	1.86	1.52	1.19	0.70	0.51
Ea@Ma Sa	ZPE	0.84	0.64	0.48	0.35	0.26
re@M06Se8	TS	1.87	1.54	1.19	0.70	0.52
Co@Mo So	ZPE	0.84	0.62	0.50	0.35	0.26
$Co@Mo_6Se_8$	TS	1.86	1.43	1.12	0.72	0.51
NGOMA SA	ZPE	0.81	0.63	0.50	0.35	0.26
$m(w)mo_6Se_8$	TS	1.94	1.53	1.12	0.72	0.52
Mo ₆ Se ₈	ZPE	0.82	0.63	0.48	0.32	0.27
	TS	1.89	1.50	1.12	0.70	0.48

Table S3. The correction of zero-point energy and entropy of adsorption species and

molecules involved in SRR. T is the room temperature (298.15 K) and * denotes the

active site on the catalyst surface

1.8 References

[1] G. Concas, F. Congiu, A. G. Lehmann, C. Muntoni, S. Sanna, G. Spano, Z NATURFORSCH A, 2002, 57, 221.