Supporting Information for

Structural and Optical Control through Anion and Cation Exchange Processes for Sn-Halide Perovskite Nanostructures

Kushagra Gahlot,¹ Julius Meijer¹ and Loredana Protesescu^{1,*}

Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands.

Corresponding author: Dr. Loredana Protesescu, E-mail: <u>l.protesescu@rug.nl</u>

Contents

	Description	Page
Figure S1	Powder X-ray diffraction pattern of 2D RP structures	3
	quenched with and without ice-water.	
Figure S2	Powder X-ray diffraction pattern and UV-Visible	4
	spectroscopy before and after cation exchange in 2D [R-	
	NH ₃] ₂ SnBr ₄ RP perovskite nanostructures.	
Figure S3	SEM images (transmission mode at 18 kV) of FASnI ₃ NCs	5
	formed via cation exchange of $2D [R-NH_3]_2SnI_4 RP$	
	nanostructures.	
Figure S4	Extended time-dependent UV-Visible spectroscopy	6
	measurements of the cation exchange reaction.	
Figure S5	Concentration dependent UV-Visible spectroscopy	7
	measurements of cation exchange in 2D [R-NH ₃] ₂ SnBr ₄ RP	
	perovskite nanostructures.	
Figure S6	SEM images (transmission mode at 18 kV) of 2D [R-	8
	$NH_3]_2SnX_4$ RP perovskite nanostructures in lens detector	
	mode.	
Figure S7	Cation Exchange in thin-films - Annealing temperature	9
	dependence in Sn-halide perovskite thin-films with A cation	
	addition at different concentrations.	
Figure S8	X-ray diffraction pattern of degraded thin-film after excess	10
	Cs(Ol) addition for cation exchange.	
Figure S 9	UV-Visible and PL spectroscopy of anion exchange on	10
	CsSnI ₃ NCs.	
Figure S10	Anion exchange process via SEM Micrographs from $CsSnI_3$	11
	NCs to CsSnBr ₃ NCs and CsSnBr ₃ NCs to CsSnCl ₃ NCs.	
Figure S11	Powder X-ray diffraction pattern, UV-Visible and PL	11
	spectroscopy of anion exchange on CsSnBr ₃ NCs.	
Figure S12	X-ray diffraction pattern evolution with different amount of	12
	BzI added for anion exchange	

Figure S1. Powder X-ray diffraction pattern of the 2D $[R-NH_3]_2SnBr_4$ n = 1 RP nanostructures with reaction quenched with ice-water (green) and without ice-water (red).

Figure S2. (a) and (d) Schematic representation of conversion of 2D $[R-NH_3]_2SnBr_4$ to 3D FASnBr_3 and CsSnBr_3NCs respectively. (b) and (e) Powder X-ray diffraction pattern of the converted 3D FASnBr_3 (red) and CsSnBr_3 (blue) NCs from 2D $[R-NH_3]_2SnBr_4$ respectively. (c) and (f) In-situ UV-Visible spectroscopy of the formation of 3D FASnBr_3 (red) and CsSnBr_3 (blue) NCs from 2D $[R-NH_3]_2SnBr_4$ RP structure with the addition of A cation. The XRD references were adapted from ref.¹ for FASnBr_3 (cubic, Pm3m) and ref.² for CsSnBr_3 (cubic, Pm3m).

Figure S3. SEM images of FASnI₃ NCs formed via cation exchange of 2D $[R-NH_3]_2SnI_4RP$ nanostructures at decreasing magnifications from (a) to (c).

Figure S4. Extended time-dependence optical measurements (a) and (b) Insitu UV-Visible spectroscopy of the formation of 3D FASnI₃ and FASnBr₃ NCswith the addition of FA(Ol) in 2D [R-NH₃]₂SnI₄ and [R-NH₃]₂SnBr₄ RP structures respectively over the time of 30 minutes. (c) and (d) Insitu UV-Visible spectroscopy of the formation of 3D CsSnI₃ and CsSnBr₃ NCswith the addition of Cs(Ol) in 2D [R-NH₃]₂SnI₄ and [R-NH₃]₂SnI₄ and [R-NH₃]₂SnI₄ and [R-NH₃]₂SnI₄ and [R-NH₃]₂SnBr₄ RP structures respectively over the time of 30 minutes.

Figure S5. Concentration dependence (a) and (b) Insitu UV-Visible spectroscopy of the formation of 3D $FASnBr_3$ (red) NCswith the addition of FA(Ol) in 2D $[R-NH_3]_2SnBr_4$ RP structures over the time of 30 minutes. (c) and (d) Insitu UV-Visible spectroscopy of the formation of 3D $CsSnBr_3$ (blue) NCswith the addition of Cs(Ol) in 2D $[R-NH_3]_2SnBr_4$ RP structures over the time of 30 minutes.

Figure S6. SEM images in the through the lens (TLD) mode. (a) Thin-film of 2D $[R-NH_3]_2SnBr_4 RP$ nanostructures. (b) Thin-film of 2D $[R-NH_3]_2SnI_4 RP$ nanostructures.

Figure S7. Annealing temperature dependence in Sn-halide perovskite thin-films with A cation addition at different concentrations. UV-Visible spectroscopy of the formation of 3D FASnI₃ and 3D FASnBr₃ nanostructures with the addition of FA(Ol) on thin-film of 2D [R-NH₃]₂SnI₄RP nanostructures annealed at room temperature ((e) and (f)), 50°C ((c) and (d)) and 100°C ((a) and (b)) for an hour.

Figure S8. Powder X-ray diffraction pattern of the degraded thin-film with excess addition of Cs(Ol) solution (30 μ L of 0.05 M solution) on 2D [R-NH₃]₂SnBr₄ (green) and 2D [R-NH₃]₂SnI₄ (blue). .The XRD bulk references are plotted for CsI (cubic, Pm3m) and CsBr (cubic, Pm3m).³

Figure S9. Anion exchange processes in solution of $CsSnI_3$ NCs. (a) UV-Visible spectroscopy of 3D $CsSnBr_3$ NCs formed via Br anion exchange of 3D $CsSnI_3$ NCs performed at room temperature which further exchanged with Cl to form 3D $CsSnCl_3$ NCs. (b) Photoluminescence spectroscopy of 3D $CsSnBr_3$ NCs formed via Br anion exchange of 3D $CsSnI_3$ NCs performed at room temperature which further exchanged with Cl to form 3D $CsSnI_3$ NCs. (b) Photoluminescence spectroscopy of 3D $CsSnBr_3$ NCs formed via Br anion exchange of 3D $CsSnI_3$ NCs performed at room temperature which further exchanged with Cl to form 3D $CsSnCl_3$ NCs.

Figure S10. Anion exchange processes in solution of $CsSnI_3$ NCs. (a) and (b) show the SEM micrographs of anion-exchanged 3D $CsSnBr_3$ NCs formed via Br exchange of 3D $CsSnI_3$ NCs and 3D $CsSnCl_3$ NCs via a Cl exchange of 3D $CsSnBr_3$ NCs formed earlier respectively. (c) SEM micrographs of $CsSnI_3$ NCs before anion exchange.

Figure S11. Anion exchange processes in solution of $CsSnBr_3 NCs$. (a) Powder X-ray diffraction pattern of the Iodide exchanged $CsSnBr_3 NCs$ which yield $Cs_2SnI_6 NCs$ with excess BzI addition. (b) and (c) UV-Visible and PL spectroscopy anion exchanged sample of $CsSnCl_3 NCs$ (blue) and $Cs_2SnI_6 NCs$ (dark orange) with starting composition $CsSnBr_3 NCs$ for comparison. The XRD bulk references are plotted from $CsSnBr_3$ (cubic, Pm3m)² and Cs_2SnI_6 (cubic, Fm3m)⁴

Figure S12. Evolution of powder X-ray diffraction pattern with increasing amount of BzI added for anion exchange. The XRD bulk references are plotted from $CsSnI_3$ (orthorhombic, Pnma)⁵ and Cs_2SnI_6 (cubic, Fm3m)⁴

References:

- 1. M. Morana, J. Wiktor, M. Coduri, R. Chiara, C. Giacobbe, E. L. Bright, F. Ambrosio, F. De Angelis and L. Malavasi, *J. Phys. Chem. Lett.*, 2023, **14**, 2178-2186.
- D. H. Fabini, G. Laurita, J. S. Bechtel, C. C. Stoumpos, H. A. Evans, A. G. Kontos, Y. S. Raptis, P. Falaras, A. Van der Ven, M. G. Kanatzidis and R. Seshadri, *J. Am. Chem. Soc.*, 2016, **138**, 11820-11832.
- 3. R. W. G. Wyckoff, Crystal Structures Volume 1, Interscience Publishers New York, New York, 2nd ed edn., 1963.
- 4. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, *Inorg. Chem.*, 2013, **52**, 9019-9038.
- 5. I. Chung, J.-H. Song, J. Im, J. Androulakis, C. D. Malliakas, H. Li, A. J. Freeman, J. T. Kenney and M. G. Kanatzidis, *J. Am. Chem. Soc.*, 2012, **134**, 8579-8587.