| 1<br>2       | Supplementary Data                                                                                                                                                                    |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4<br>5  | Boron Nanosheets Boosting Solar Thermal Water<br>Evaporation                                                                                                                          |
| 6<br>7       | Xin Stella Zhang, Shudi Mao, Jiashu Wang, Casey Onggowarsito, An Feng, Rui Han, Hanwen Liu, Guojin Zhang, Zhimei Xu, Limei Yang, Qiang Fu <sup>*</sup> and Zhenguo Huang <sup>*</sup> |
| 8<br>9<br>10 | School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo,<br>New South Wales 2007, Australia                                                            |
| 11           |                                                                                                                                                                                       |

1. Supplementary figures and tables 12



Fig. S1. (a) SEM image of CBNS, (b) AFM image of CBNS, (c-d) AFM analysis of CBNS 14 showing the thickness of CBNS (green line and red line). 15



Fig. S2. (a) SEM image of ABNS, (b) AFM image of ABNS, (c-d) AFM analysis of ABNSshowing the thickness of ABNS (green line and red line).





Fig. S3. Elemental mapping images of (a) CBNS and (b) ABNS.

- 22 X-ray photoelectron spectroscopy (XPS) data were calibrated using adventitious C1s peak at
- 23 a fixed value of 284.4 eV.



24

Fig. S4. Full-scale XPS survey spectra of (a) bulk crystalline boron, (b) bulk amorphous
 boron, (c) CBNS and (d) ABNS.

28

 Table S1. The percentage of B-B and B-O bonds based upon the XPS spectra.

| Samplag                | Ratio of bond peak |        |  |
|------------------------|--------------------|--------|--|
| Samples                | B-B                | B-O    |  |
| ABNS                   | 82.26%             | 17.74% |  |
| Bulk Amorphous Boron   | 80.07%             | 19.93% |  |
| CBNS                   | 74.75%             | 25.25% |  |
| Bulk Crystalline Boron | 75.35%             | 24.65% |  |



Fig. S6. XRD patterns of (a) bulk crystalline boron (JCPDF: 04-007-2390) and CBNS, (b) bulk amorphous boron (JCPDF: 00-031-0207-β-rhombohedral) and ABNS. 

CBNS

JCPDF: 00-031-0207

2θ (°)

ABNS

JCPDF: 04-007-2390

2θ (°)



Fig. S7. FT-IR spectra of CBNS and bulk crystalline boron.



Fig. S8. FT-IR spectra of ABNS and bulk amorphous boron.





45 Fig. S9. SEM images of (a-b) 0.5%-ABNS-PVA, (c-d) 0.5%-CBNS-PVA, (e-f) 1.0%-ABNS 46 PVA, (g-h) 1.5%-CBNS-PVA PVA, (i-j) PVA, and (k-l) 1.0%-GO-PVA.







Fig. S10. UV-vis-NIR spectra of x-CBNS-PVA hydrogel and x-ABNS-PVA.



52 Fig. S11. Raman spectrum of 1.0%-GO-PVA shows the intermediate water content.53





55 Fig. S12. FTIR spectra of 1.0%-CBNS-PVA (black line) and 1.0%-GO-PVA (blue line).



Fig. S13. Thermal infrared images of (a) CBNS and (b) ABNS powders under 1 sun after 60 mins







60

Fig. S14. Thermal infrared images of x-CBNS-PVA after 60 mins of SVG testing.



Fig. S15. Thermal infrared images of x-ABNS-PVA after 60 mins of SVG testing





Fig. S16. Thermal infrared images of the pristine PVA and 1.0%-GO-PVA after 60 mins of
 SVG testing.

|                 |       |       | Ten   | operature | • (°C) |       |       |
|-----------------|-------|-------|-------|-----------|--------|-------|-------|
| Hydrogels       | 0     | 10    | 20    | 30        | 40     | 50    | 60    |
|                 | mins  | mins  | mins  | mins      | mins   | mins  | mins  |
| 0.5%-CBNS       | 23.10 | 35.40 | 36.00 | 36.10     | 36.40  | 36.10 | 36.60 |
| Water-0.5%-CBNS | 24.20 | 26.60 | 27.40 | 28.30     | 28.80  | 29.00 | 29.30 |
| 1.0%-CBNS       | 20.30 | 34.80 | 37.10 | 36.00     | 37.10  | 37.40 | 38.20 |
| Water-1.0%-CBNS | 23.60 | 24.10 | 26.10 | 26.20     | 27.50  | 28.70 | 29.10 |
| 1.5%-CBNS       | 20.20 | 33.90 | 35.80 | 35.70     | 36.20  | 36.80 | 37.70 |
| Water-1.5%-CBNS | 20.10 | 23.70 | 26.10 | 26.40     | 27.10  | 28.50 | 28.30 |
| 0.5%-ABNS       | 19.10 | 31.00 | 32.20 | 34.90     | 35.10  | 35.90 | 35.90 |
| Water-0.5%-ABNS | 21.90 | 23.60 | 26.70 | 27.60     | 28.10  | 29.60 | 29.60 |
| 1.0%-ABNS       | 22.80 | 33.60 | 34.10 | 35.00     | 35.90  | 36.40 | 36.50 |
| Water-1.0%-ABNS | 23.00 | 24.20 | 26.40 | 26.90     | 28.60  | 29.70 | 29.60 |
| 1.5%-ABNS       | 21.80 | 35.30 | 35.10 | 36.60     | 37.10  | 37.20 | 37.50 |
| Water-1.5%-ABNS | 22.40 | 24.10 | 25.60 | 27.00     | 28.40  | 28.60 | 29.50 |
| PVA             | 21.00 | 32.30 | 32.50 | 34.60     | 33.70  | 34.00 | 34.20 |
| Water-PVA       | 24.90 | 26.80 | 29.20 | 29.60     | 30.40  | 30.40 | 30.10 |

**Table S2**. The temperatures based on thermal infrared images of hydrogels at every 10 mins.



Fig. S17. The calculated equivalent water evaporation enthalpy at various temperatures using
 DSC data.

Table S3. An estimate of the equivalent water vaporisation enthalpy at the surface
 equilibrium temperature for the hydrogels.

| Hydrogels     | Equilibrium<br>temperature | Equivalent<br>evaporation enthalpy |
|---------------|----------------------------|------------------------------------|
|               | °C                         | J g <sup>-1</sup>                  |
| 0.5%-CBNS-PVA | 35.73                      | 951.87                             |
| 1.0%-CBNS-PVA | 36.60                      | 845.11                             |
| 1.5%-CBNS-PVA | 36.30                      | 1148.96                            |
| 0.5%-ABNS-PVA | 34.60                      | 1438.60                            |
| 1.0%-ABNS-PVA | 35.90                      | 1276.44                            |
| 1.5%-ABNS-PVA | 36.55                      | 1071.47                            |
| 1.0%-GO-PVA   | 36.28                      | 1253.06                            |
| PVA           | 31.60                      | 1483.95                            |

|                | •                                  |                                       |            |
|----------------|------------------------------------|---------------------------------------|------------|
| Hydrogels      | Evaporation<br>rate                | Equivalent<br>evaporation<br>enthalpy | Efficiency |
|                | kg m <sup>-2</sup> h <sup>-1</sup> | J g-1                                 | %          |
| 0.5%-CBNS-PVA  | 3.28                               | 951.87                                | 86.73      |
| 1.0%-CBNS-PVA  | 4.03                               | 845.11                                | 94.61      |
| 1.5%-CBNS-PVA  | 3.17                               | 1148.96                               | 101.17     |
| 0.5%-ABNS-PVA  | 2.71                               | 1438.60                               | 108.29     |
| 1.0%-ABNS -PVA | 3.02                               | 1276.44                               | 107.08     |
| 1.5%-ABNS-PVA  | 3.19                               | 1071.47                               | 94.94      |
| 1.0%-GO-PVA    | 3.08                               | 1253.06                               | 107.21     |
| PVA            | 1.31                               | 1483.95                               | 54.00      |

**Table S4**. The comparison of evaporation rate, equivalent evaporation enthalpy andefficiency of all the hydrogels.



86 Fig. S18. The digital image of the 1.0%-CBNS-PVA surface after desalination for 14 days.

## **2.** Comparison with state-of-the-art hydrogel evaporators

Table S6. The comparison among various functional sheets-based hydrogels.

| Reference | Polymor                                   | Materials                                                                                                                                      |           | Energy<br>conversion<br>efficiency |  |
|-----------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------|--|
| 1         |                                           |                                                                                                                                                | Kg III II | /0                                 |  |
| 1         | PVA                                       | Nanoscale Surface Topography                                                                                                                   | 2.6       | 91                                 |  |
| 2         | PVA                                       | $T_{13}C_2T_x$ MXene/r-GO                                                                                                                      | 3.62      | 91                                 |  |
| 3         | PVA                                       | Konjac glucomannan (KGM),<br>iron-based metal-organic<br>framework (Fe-MOF)                                                                    | 3.2       | 90                                 |  |
| 4         | PVA                                       | trichloro(octadecyl)silane<br>(OTS) patchy-surface hydrogel<br>Conducting polymer hollow                                                       | 4         | 93                                 |  |
| 5         | PVA                                       | spheres (CPHSs),<br>superhydrophobic silica aerogel<br>microparticles (SAMs)                                                                   | 1.83      | 82.2                               |  |
|           | PVA.                                      | interoparticles (or livis)                                                                                                                     |           |                                    |  |
| 6         | polyacrylamide<br>(PAM)                   | SA powder; Squid ink nanoparticles                                                                                                             | 2.3       | 71.38                              |  |
| 7         | PVA                                       | Carboxylated multi-walled<br>carbon nanotube (MWCNTs-<br>COOH), hydrophobic PDMS as<br>the top layer                                           | 1.34      | 85.71                              |  |
| 8         | PVA                                       | Polypyrrole (PPy) and<br>FeCl <sub>3</sub> .6H <sub>2</sub> O, 1H,1H,2H,2H-<br>perfluoro octyl trichlorosilane<br>(PFOTS) on the upper surface | 1.68      | 94.7                               |  |
| 9         | PVA                                       | Powdered activated carbon,<br>glucose and yeast                                                                                                | 1.611     | 95.15                              |  |
| 10        | PVA                                       | A tree-inspired SSG system<br>with Mxene $(Ti_3C_2T_x)$                                                                                        | 2.71      | 90.7                               |  |
| 11        | PVA                                       | Consists of internal gaps,<br>micron channels and molecular<br>meshes, polypyrrole (PPy)                                                       | 3.2       | 94                                 |  |
| 12        | PVA                                       | r-GO, capillarity facilitated<br>Water Transport                                                                                               | 2.5       | 95                                 |  |
| 13        | PVA and chitosan                          | Polypyrrole (PPy)                                                                                                                              | 3.6       | 92                                 |  |
| 14        | PVA and<br>polystyrene<br>sulfonate (PSS) | Activated carbon                                                                                                                               | 3.86      | 92                                 |  |
| 15        | polydimethylsiloxan<br>e (PDMS)           | plasmonic Cu <sub>7</sub> S <sub>4</sub> -MoS <sub>2</sub> -Au<br>nanoparticles (CMA NPs)                                                      | 3.824     | 96.6                               |  |
| 16        | PVA                                       | titanium sesquioxide $(Ti_2O_3)$                                                                                                               | 3.6       | 90                                 |  |

| 17 | PVA                                        | molybdenum carbide (MoCx)                              | 1.59  | 83.6  |
|----|--------------------------------------------|--------------------------------------------------------|-------|-------|
| 18 | PVA                                        | Graphene/graphene oxide composite nanosheet            | 1.44  | 86    |
| 19 | PVA                                        | Graphene and N-Methyl pyrrolidone                      | 1.77  | 92    |
| 20 | PVA                                        | hydrogel-based ultrathin<br>membrane (HUM)             | 2.4   | 75    |
| 21 | PVA and chitosan (CS)                      | $Ti_3C_2T_x$ (MXene) and $La_{0.5}Sr_{0.5}CoO_3$ (LSC) | 2.73  | 92.3  |
| 22 | PVA                                        | Polydopamine (PDA)                                     | 2.94  | 94.5  |
| 23 | PVA                                        | Polypyrrole (PPy), micro-tree array                    | 3.64  | 96    |
| 24 | Nanofibrous PVA<br>based membrane<br>(NPM) | Polypyrrole (PPy) and graphene oxide (GO)              | 2.87  | 87.5  |
| 25 | PVA and chitosan (CS)                      | Red Mud                                                | 2.185 | 90.74 |
| 26 | PVA                                        | Nanocarbon                                             | 1.67  | 86.8  |
| 27 | PVA                                        | Conjugated small molecule<br>(DPP-2T)                  | 2.6   | 89    |

## **3. Supporting references**

| 93  | 1.  | Y. Guo, F. Zhao, X. Zhou, Z. Chen and G. Yu, Nano Lett, 2019, 19, 2530-2536.                      |
|-----|-----|---------------------------------------------------------------------------------------------------|
| 94  | 2.  | Y. Lu, D. Fan, Y. Wang, H. Xu, C. Lu and X. Yang, ACS Nano, 2021, 15, 10366-                      |
| 95  |     | 10376.                                                                                            |
| 96  | 3.  | Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi and G. Yu, Adv Mater, 2020, 32, e1907061.                 |
| 97  | 4.  | Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou and G. Yu, Energy & Environmental                      |
| 98  |     | Science, 2020, 13, 2087-2095.                                                                     |
| 99  | 5.  | M. Tan, J. Wang, W. Song, J. Fang and X. Zhang, Journal of Materials Chemistry A,                 |
| 100 |     | 2019, 7, 1244-1251.                                                                               |
| 101 | 6.  | L. Zhao, J. Tian, Y. Liu, L. Xu, Y. Wang, X. Fei and Y. Li, Environmental Science:                |
| 102 |     | Water Research & Technology, 2020, 6, 221-230.                                                    |
| 103 | 7.  | H. Jian, Q. Qi, W. Wang and D. Yu, Separation and Purification Technology, 2021,                  |
| 104 |     | <b>264</b> , 118459.                                                                              |
| 105 | 8.  | B. Wen, X. Zhang, Y. Yan, Y. Huang, S. Lin, Y. Zhu, Z. Wang, B. Zhou, S. Yang and                 |
| 106 |     | J. Liu, Desalination, 2021, <b>516</b> , 115228.                                                  |
| 107 | 9.  | X. Liang, X. Zhang, Q. Huang, H. Zhang, C. Liu and Y. Liu, Solar Energy, 2020, 208,               |
| 108 |     | 778-786.                                                                                          |
| 109 | 10. | Z. Yu and P. Wu, Advanced Materials Technologies, 2020, 5, 2000065.                               |
| 110 | 11. | F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L.                  |
| 111 |     | Qu and G. Yu, Nat Nanotechnol, 2018, 13, 489-495.                                                 |
| 112 | 12. | X. Zhou, F. Zhao, Y. Guo, Y. Zhang and G. Yu, <i>Energy &amp; Environmental Science</i> ,         |
| 113 |     | 2018, <b>11</b> , 1985-1992.                                                                      |
| 114 | 13. | X. Zhou, F. Zhao, Y. Guo, B. Rosenberger and G. Yu, <i>Science Advances</i> , 2019, 5,            |
| 115 |     | eaaw5484.                                                                                         |
| 116 | 14. | X. Zhou, Y. Guo, F. Zhao, W. Shi and G. Yu, <i>Advanced Materials</i> , 2020, <b>32</b> ,         |
| 117 |     | 2007012.                                                                                          |
| 118 | 15. | H. Wang, R. Zhang, D. Yuan, S. Xu and L. Wang, <i>Advanced Functional Materials</i> ,             |
| 119 | 16  | 2020, <b>30</b> , 2003995.                                                                        |
| 120 | 16. | Y. Guo, X. Zhou, F. Zhao, J. Bae, B. Rosenberger and G. Yu, ACS Nano, 2019, 13, 7012, 7010        |
| 121 | 17  | 1913-1919.<br>E. Ver, Y. Mine, M. Ver, Z. Chen, D. Mene, H. Cheng, Z. Chi, D. Chenger, J.Y. Weng, |
| 122 | 1/. | F. YU, X. Ming, Y. XU, Z. Chen, D. Meng, H. Cheng, Z. Shi, P. Shen and X. Wang,                   |
| 123 | 10  | Advanced Materials Interfaces, 2019, <b>0</b> , 1901108.                                          |
| 124 | 10. | J. Hall, A. Huang and W. Wu, <i>Industrial &amp; Engineering Chemistry Research</i> , 2020,       |
| 125 | 10  | 37, 1133-1141.<br>W Lei S Khan I Chen N Suzuki C Terashima K Liu A Eujishima and M Liu            |
| 120 | 17. | Nano Research 2021 14 1135-1140                                                                   |
| 127 | 20  | H Lu W Shi F Zhao W Zhang P Zhang C Zhao and G Vu Advanced                                        |
| 120 | 20. | Functional Materials 2021 <b>31</b> 2101036                                                       |
| 130 | 21  | D Fan Y Lu H Zhang H Xu C Lu Y Tang and X Yang Applied Catalysis B.                               |
| 131 | 21. | <i>Environmental</i> . 2021. <b>295</b> . 120285.                                                 |
| 132 | 22. | Z. Huang, J. Wei, Y. Wan, P. Li, J. Yu, J. Dong, S. Wang, S. Li and CS. Lee, Small.               |
| 133 |     | 2021. <b>17</b> . 2101487.                                                                        |
| 134 | 23. | Y. Shi, O. Ilic, H. A. Atwater and J. R. Greer, <i>Nature Communications</i> , 2021, <b>12</b> .  |
| 135 |     | 2797.                                                                                             |
| 136 | 24. | S. Chen, Y. Liu, Y. Wang, K. Xu, X. Zhang, W. Zhong, G. Luo and M. Xing.                          |
| 137 |     | Chemical Engineering Journal, 2021, <b>411</b> , 128042.                                          |
| 138 | 25. | P. Wang, X. Wang, S. Chen, J. Zhang, X. Mu, Y. Chen, Z. Sun, A. Wei, Y. Tian, J.                  |
| 139 |     | Zhou, X. Liang, L. Miao and N. Saito, ACS Applied Materials & Interfaces, 2021, 13.               |
| 140 |     | 30556-30564.                                                                                      |
|     |     |                                                                                                   |

- 141 26. Y. Li, W. Hong, H. Li, Z. Yan, S. Wang, X. Liu, B. Li, H. Jiang and X. Niu,
- 142 *Desalination*, 2021, **511**, 115113.
- 143 27. Q. Zhao, Z. Huang, Y. Wan, J. Tan, C. Cao, S. Li and C.-S. Lee, Journal of Materials
- 144 *Chemistry A*, 2021, **9**, 2104-2110.