Supporting Information

for

Simple hybrid polymeric nanostructures encapsulating macrocyclic Gd/Eu based complexes: luminescence properties and application as MRI contrast agent

Marjorie Yon,^a Lucie Esmangard, ^a Morgane Enel,^b Franck Desmoulin,^{c,d} Carine Pestourie,^d Nadine Leygue,^b Christophe Mingotaud,^a Chantal Galaup,^{*,b} Jean-Daniel Marty^{*,a}

^a Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III – Paul Sabatier, France.118, route de Narbonne 31062 Toulouse Cedex 9, France

^b Laboratoire SPCMIB, CNRS UMR 5068, University of Toulouse, University Toulouse III - Paul Sabatier 118, route de Narbonne 31062 Toulouse Cedex 9, France

° Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France

^d CREFRE-Anexplo, University of Toulouse, Inserm, UT3, ENVT, Toulouse, France

Page

Scheme S1: Synthesis of the PCTA-COOH ligand	S3
Figure S1. ESI ⁺ HRMS spectrum of Eu ³⁺ .PCTA-COOH complex	S4
Figure S2. UPLC/UV-MS analysis of Eu ³⁺ .PCTA-COOH complex	S5
Figure S3. ESI ⁺ HRMS spectrum of Gd ³⁺ .PCTA-COOH complex	S 6
Figure S4. UPLC/UV-MS analysis of Gd ³⁺ .PCTA-COOH complex	S 7
Figure S5. Evaluation of relative amount of Ln ions for the different systems of interest	t
being submitted to a dialysis/centrifugation process.	S 8
Figure S6. Correlation function obtained on Gd ³⁺ /Zr@HPICs, Gd ³⁺ .PCTA-	
COOH/Zr@HPICs and Gd ³⁺ .PCTA-COOH from DLS measurements S9	
Figure S7. Effects of added ions on the emission lifetimes of HPICs particles S10	
Figure S8. Effects of pH on the emission intensityS10	
Figure S9. Change in the longitudinal relaxation time as a function of the concentration of	
Gd ³⁺ ions in water at physiological pH	S11

Scheme S1. Synthesis of the PCTA-COOH ligand described in "Efficient Synthesis of a Family of Bifunctional Chelators Based on the PCTA[12] Macrocycle Suitable for Bioconjugation". N. Leygue, M. Enel, A. Diallo, B. Mestre-Voegtlé, C. Galaup, and C. Picard. *Eur. J. Org. Chem.* 2019, 2899–2913.

Reagents and conditions: (a) (NH₄)₂S₂O₈, H₂SO₄ cat., MeOH, H₂O, reflux, 2 h; (b) PBr₃, CH₂Cl₂, reflux, 2 h; (c) i) BrCH₂CO₂*t*Bu, K₂CO₃, CH₃CN, rt, 24 h, 100%; ii). *N*-bromosuccinimide, PPh₃, CH₂Cl₂, rt 16 h, 85%; (d) i) NH₂CH₂CO₂*t*Bu Hydrochloride salt, K₂CO₃, CH₃CN, reflux, 24 h, 82%; ii) Pd/C (10%), H₂ gas (6 bars), MeOH, rt, 12 h; 100%; (e) [reagents] = 2×10^{-3} M, Na₂CO₃, CH₃CN, reflux, 64 h. (f) 6*N* HCl_{aq}, reflux, 24 h.

Figure S2. UPLC/UV-MS analysis of **Eu³⁺.PCTA-COOH complex**. a) Chromatogram monitored at 290 nm (inset: UV absorption spectrum in arbitrary unit -AU- at 4.114 min) and b) trace chromatogram of m/z = 573 ([M + H]⁺) (inset = ESI positive mode mass spectrum at 4.186 min). UPLC conditions are provided in the experimental part.

WILEY-VCH

Figure S4. UPLC/UV-MS analysis of Gd^{3+} .**PCTA-COOH complex**. a) Chromatogram monitored at 290 nm (inset: UV absorption spectrum in arbitrary unit -AU- at 4.246 min) and b) trace chromatogram of m/z = 580 ([M + H]⁺) (inset = ESI positive mode mass spectrum at 4.311 min). UPLC conditions are provided in the experimental part.

Figure S5. Evaluation of relative amount of Ln ions for the different systems of interest being submitted to a dialysis/centrifugation process. Solutions of $Ln^{3+}/Zr@HPICs$, $Ln^{3+}.PCTA-COOH/Zr@HPICs$ and $Ln^{3+}.PCTA-COOH$ were prepared according to the method depicted in supporting information. The composition of HPICs was adjusted in such way that electroneutrality between the positive charges of ZrO^{2+} and Ln^{3+} ions and the potentially available negative charges from the ionized or ionizable carboxylic acid, was reached. Once prepared, these samples were filtered with centrifugal filters (molecular weight cut-off 3 kDa) (Ultracel®-3K - Millipore Ireland Ltd) at 6500 rpm for 40 min. ICP-AES was further used to evaluate the relative amount of Ln ions in both retentate and filtrate. As expected, whereas $Ln^{3+}/Zr@HPICs$ is exclusively present in the retentate part, most (90%) of $Ln^{3+}.PCTA-COOH$ complex was found in the filtrate. In the case of $Ln^{3+}.PCTA-COOH/Zr@HPICs$, 40% of introduced complex was filtered through the dialysis membranes. This should correspond to complexes which are not trapped in HPIC structures.

Figure S6. Correlation function (A) obtained for $Gd^{3+}/Zr@HPICs$ (orange), $Gd^{3+}.PCTA-COOH/Zr@HPICs$ (blue) and $Gd^{3+}.PCTA-COOH$ (grey) solutions by DLS measurements (polymer concentration equal to 0.1%wt) at pH 7 and the corresponding the number-averaged hydrodynamic diameter distribution (B). In the case of $Gd^{3+}.PCTA-COOH$ measured signal is too low to give an usable correlation function.

Figure S7. Effects of added ions on the emission lifetimes of HPIC particles. (a) Eu^{3+} .PCTA-COOH/Zr@HPICs or $Eu^{3+}/Zr@HPICs$ ([Eu] = 0.12 mM) in Tris buffered saline 50 mM pH 7.4 ([NaCl] = 0.15 M), and after adding (b) phosphate (0.10 mM) and (c) calcium ions (0.25 mM).

Figure S8. Effects of pH on the emission intensity (area-normalized emission spectra, $l_{exc} = 249 \text{ nm}$) in HPIC particles. (blue circle) $Eu^{3+}/Zr@HPICs$ ([Eu] = 0.14 mM) and (green circle) $Eu^{3+}@HPICs$ ([Eu] = 1.96 mM)

Figure S9. Change in the longitudinal relaxation time as a function of the concentration of Gd^{3+} ions in water at physiological pH (T = 298 K) for $Gd^{3+}/Zr@HPICs$ (orange), $Gd^{3+}.PCTA-COOH/Zr@HPICs$ (blue) and $Gd^{3+}.PCTA-COOH$ (grey).