Supporting Information

Magnetotransport Spectroscopy of Electroburnt Graphene

Nanojunctions

Zhengyang Jin^{#,1}, Caigan Xi^{#1}, Jun Chen^{*,1}, Yiping Ouyang¹, Feng Wang¹, Minhao

Zhang^{*,1,2} and Fengqi Song^{1,2}

¹ National Laboratory of Solid State Microstructures, Collaborative Innovation Center

of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing

210093, China.

² Atom Manufacturing Institute (AMI), Nanjing 211805, China.

[#]These authors contributed equally to this work.

^{*}Corresponding author. Email: J.C.(dz1922001@smail.nju.edu.cn);

M.Z.(zhangminhao@nju.edu.cn)

S1. Device design

Figure S1. The CAD design drawing of the device, The enlarged section shows the preparation scheme of graphene bands.

S2. Graphene nanoribbons in a partially broken state

Figure S2. (a) Differential conductance map of the divice in Figure 2d with V_g from -70 V to 70 V and V_{sd} from -0.1 V to 0.1V. (b) Differential conductance map with Vg from 40V to 60V and Vsd from -0.02 V to 0.02 V cut from (a). The Coulomb diamond with $E_{add} = 8.5$ meV is marked by the solid line. The diameter of the 'dot' is at least 100 nm. so it illustrates the situation that graphene nanoribbons in a partially broken state. There are also some articles [*Nano Lett.* **16**, 4210-4216 (2016); *Physical Review B.* **90** 115405 (2014)] that observed the similar transport characteristics which the author defined as graphene constrictions.

S3. The change in conductance of the device C

Figure S3. The raw data of conductance change of device C in a magnetic field showed in Figure 4(a), (b), (c) and (d).

S4. The change in conductance of the device A

Figure S4. Conductance and applied vertical magnetic field relationship of device A. The bias voltage is 2 mV, the magnetic field changes from 0 to 3 T and then from 3 to 0 T, and the gate voltage is -10V, near the intersection point of diamond 1 and 2 in Figure 3a.