Supporting Information

Rational Electrolyte Design and Electrode Regulation Boosting High Capacity Zn-iodine Fiber-Shaped Batteries with Four-Electron Redox Reactions

Jiuqing Wang ^{a,#}, Hai Xu^{a,#}, Ruanye Zhang ^a, Gengzhi Sun^b, Hui Dou ^{a,*}, Xiaogang Zhang ^a

^a Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College

of Materials Science and Technology, Nanjing University of Aeronautics and

Astronautics, Nanjing 210016, P. R. China

Email: dh_msc@nuaa.edu.cn (H. Dou)

^b Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, P.

R. China

[#] These authors contributed equally to this work.

^{*} E-mail: *dh_msc@nuaa.edu.cn* (H. Dou)

Fig. S1. Schematic illustration of the fabrication of AZIFBs.

Fig. S2. (a-c) SEM images of GF-160. (d-f) SEM images of GF-200.

Fig. S3. (a-c) EDS images of GF-160.

(d-f) EDS images of GF-200.

Fig. S4. The Raman spectra of different electrolytes.

Fig. S5. GCD curves of GF-180 based on various electrolyte of

(a) 10-1, (b) 15-1 and (c) 20-1.

Fig. S6. CV curves of the GF-180 based on 20-1 at a scan rate of 1 mV s⁻¹.

Fig. S7. GCD curves of GF-180 based on 20-1 at 8 A cm⁻³.

Fig. S8. (a) CV curves and (b) GCD curves of the GF-180 based on 15 m ZnCl₂.

Fig. S9. Photographs of the AZIFBs into textile.

Materials	Electrolytes	Cycle	Capacity	Refs.
GF-180 (cathode) Zn Wire (anode)	$20 \text{ m ZnCl}_2 + 1 \\ \text{m MAI}$	2500	82.1%	This work
MnO ₂ -based fiber (cathode) Zn-based fiber (anode)	2 M ZnSO ₄ + 0.1 M MnSO ₄	400	65.7%	1
InHCF (cathode) NTP@CNTF (anode)	Na ₂ SO ₄ -CMC gel electrolyte	300	91.5%	2
Na (cathode) ReS ₂ @CNT fiber (anode)	1 M NaPF ₆ + EC/DMC/EMC	1500	65.4%	3
Na (cathode) G@CNT fiber (anode)	1 M NaPF ₆ + EC/DMC/EMC	1000	96.8%	3
ZnHCF (cathode) Zn NSAs (anode)	ZnSO ₄ -CMC	200	91.8%	4
MnHCF (cathode) GO/MoO ₃ fiber (anode)	1 M Al(CF ₃ SO ₃)	100	91.6%	5
KCY@PANI (cathode) Zn wire (anode)	0.5 M HCl	2000	88.1%	6
KNHCF/CNTF (cathode) Zn wire (anode)	2 M ZnSO ₄ +0.07 M K ₂ SO ₄	1700	86.3%	7
CNTF-NCA-Ag ₂ O@ PEDOT:PSS (cathode) CNT@Zn nanoflakes (anode)	PVA-KOH gel	200	79.5%	8
LMO NWAs/CNTF (cathode) LTP NFs/CNTF (anode)	Li ₂ SO ₄ -CMC gel	2000	54.7%	9
V-MOF-48@CNTF (cathode) Zn@CNTF (anode)	PVA-ZnCl ₂ gel	400	84.6%	10

Table S1. Number of cycles and capacity retention for fibrous batteries.

References:

- 1. T. Gao, G. Yan, X. Yang, Q. Yan, Y. Tian, J. Song, F. Li, X. Wang, J. Yu and Y. Li, *Journal of Energy Chemistry*, 2022, **71**, 192-200.
- 2. Q. Zhang, P. Man, B. He, C. Li, Q. Li, Z. Pan, Z. Wang, J. Yang, Z. Wang and Z. Zhou, *Nano Energy*, 2020, **67**, 104212.
- 3. Y. Li, Q. Guan, J. Cheng and B. Wang, *Energy & Environmental Materials*, 2022, **5**, 1285-1293.
- 4. Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun, Z. Zhou, B. He, P. Man, L. Xie and L. Kang, *Nano letters*, 2019, **19**, 4035-4042.
- 5. T. Xiong, B. He, T. Zhou, Z. Wang, Z. Wang, J. Xin, H. Zhang, X. Zhou, Y. Liu and L. Wei, *EcoMat*, 2022, 4, e12218.
- 6. G. Shim, M. X. Tran, G. Liu, D. Byun and J. K. Lee, *Energy Storage Materials*, 2021, **35**, 739-749.
- F. Liu, S. Xu, W. Gong, K. Zhao, Z. Wang, J. Luo, C. Li, Y. Sun, P. Xue and C. Wang, ACS nano, 2023, 17, 18494–18506.
- 8. C. Li, Q. Zhang, E. Songfeng, T. Li, Z. Zhu, B. He, Z. Zhou, P. Man, Q. Li and Y. Yao, *Journal of Materials Chemistry A*, 2019, **7**, 2034-2040.
- 9. X. Zhang, Z. Xu, S. Kong, X. Wang, X. Lan, Z. Ma, Y. Feng, Z. Yong, Y. Yao and Q. Li, *Journal of Energy Storage*, 2023, **64**, 107249.
- 10. B. He, Q. Zhang, P. Man, Z. Zhou, C. Li, Q. Li, L. Xie, X. Wang, H. Pang and Y. Yao, *Nano Energy*, 2019, **64**, 103935.