Supporting Information

Solid-waste-recycled CuO/C3N4 S-scheme heterojunction for efficient photocatalytic antibiotic degradation

Jiawen Liu, Jiahui Lin, Kai Yi, Fangyan Liu, Feng Gao, Feng Huang and Mengye Wang*

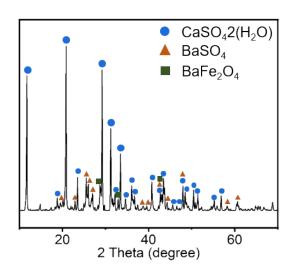


Figure S1. XRD pattern of sludge after acid leaching.

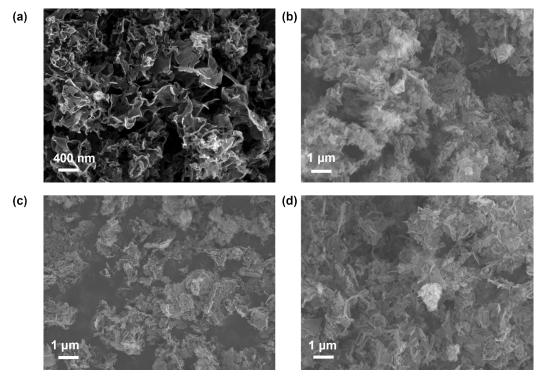


Figure S2. SEM images of (b) pure-C3N4, (c) CuO/C $_3N_4$ -1, (d) CuO/C $_3N_4$ -2 and (e) CuO/C $_3N_4$ -3.

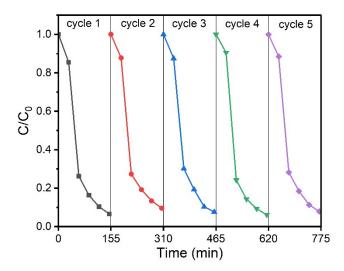


Figure S3. The performance if the recycled sample CuO/C3N4-2 in the degradation of TC.

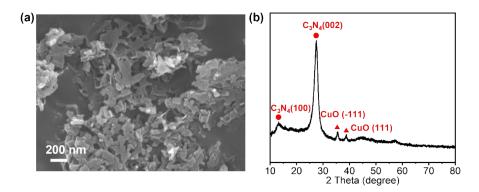


Figure S4. (a) SEM image and (b) XRD pattern of CuO/C3N4-2 after five catalytic cycles.

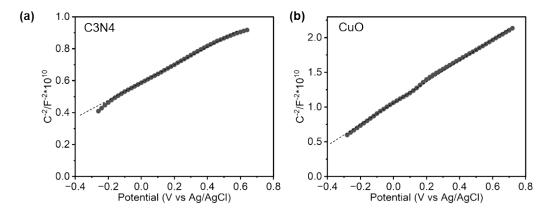


Figure S5. Mott-Schottky plots of (a) pure- C_3N_4 and (b) CuO.

Catalysts	Concentration	Concentration	Mineralization	References
	of catalysts	of TC (mg/L)	(h^{-1})	
	(mg/L)			
CuO/C_3N_4-2	200	30	24.0	this work
Meso-TiO ₂	500	50	8.95	1
Meso-Gra/TiO ₂	10	20	13.64	2
Ag ₂ O/Ta ₃ N ₅	2500	10	18.8	3
Ag/Ag ₆ Si ₂ O ₇ /	120	50	21.85	4
Bi ₂ MoO ₆				
Ag ₆ Si ₂ O ₇ /Bi ₂ WO ₆	625	20	25.6	5

Table S1. Summary of the mineralization rate per hour of photocatalytic degradation of tetracycline (TC) using different catalysts.

Reference:

1. LYU J Z, SHAO J W, WANG Y H, et al. Construction of a porous core-shell homojunction for the photocatalytic degradation of antibiotics [J]. Chemical Engineering Journal, 2019, 358: 614-620.

2. LI C X, HU R B, LU X F, et al. Efficiency enhancement of photocatalytic degradation of tetracycline using reduced graphene oxide coordinated titania nanoplatelet [J]. Catalysis Today, 2020, 350: 171-183.

3. LI S J, HU S W, XU K B, et al. Construction of fiber-shaped silver oxide/tantalum nitride p-n heterojunctions as highly efficient visible-light-driven photocatalysts [J]. Journal of Colloid and Interface Science, 2017, 504: 561-569.

4. ZHAO Q, WANG J L, LI Z P, et al. Heterostructured graphitic-carbon-nitridenanosheets/copper(I) oxide composite as an enhanced visible light photocatalyst for decomposition of tetracycline antibiotics [J]. Separation and Purification Technology, 2020, 250: 117238.

5. HUANG L Y, YANG L, LI Y P, et al. P-n BiOI/Bi3O4Cl hybrid junction with enhanced photocatalytic performance in removing methyl orange, bisphenol A, tetracycline and Escherichia coli [J]. Applied Surface Science, 2020, 527: 146748.