

Figure S1. EDS point scanning energy spectrum of CPL PEDOT.

Figure S2. EDAX mapping of Ni-Co(OH)₂/CC@PEDOT.

Figure S3. (a-c) FE-SEM images of Co(OH)₂/CC, Ni/CC, and Ni-Co(OH)₂/CC. (d-f) The images are partial enlargement of Figure S3 a-c.

Figure S4. (a) The overall XPS spectrum of the Ni-Co $(OH)_2/CC@PEDOT$ composite and high-resolution spectra of (b) Co 2p, (c) Ni 2p, and (d) O 1s.

Figure S5. (a) The overall XPS spectrum of the Ni-Co(OH)₂/CC composite and high-resolution spectra of (b) Co 2p, (c) Ni 2p, and (d) O 1s.

Figure S6. (a-d) SEM images of Ni-Co(OH)₂/CC@PEDOT deposited with PEDOT at 1.0 V, 1.1 V, 1.2 V, and 1.3 V.

Figure S7. SEM images of Ni-Co(OH)₂/CC@PEDOT with deposition potential of 1.2 V and different deposition time (a) 10 s, (b) 20 s, (c) 4 min, (d) 5 min, (e) 6 min, (f) 7 min.

Figure S8. SEM images of Ni-Co(OH) $_2$ /CC@PEDOT with deposition potential of 1.2 V and time of 30 min.

Figure S9. SEM images of cross-section of single CPL PEDOT.

Time	0 s	5 s	10 s	15 s	20 s	25 s
Average width (µm)	0.08695	0.08956	0.10022	0.11391	0.12583	0.13043
Length (µm)	6.20043	5.83501	5.37782	5.22390	5.10500	4.95717

 Table S1. The length and average width changes of CPL PEDOT in the bending process.

Figure S10. (a) The current response of Ni-Co(OH)₂/CC@PEDOT electrodes with different H_2O_2 concentrations at different potentials is continuously decline. (b) Enlarged view of the a-figure section after unification of the initial current platforms.

	Length (nm)	Width (nm)	Height (nm)	Bottom area (nm ²)	Side area (nm ²)	multiplier
1	466	200	6529	93200	4348317	46.65
2	516	180	4388	92880	3054048	32.88
3	526	185	5958	97310	4236138	43.53
4	1154	190	5090	219260	6840960	31.20
5	639	190	4625	121410	3834125	31.58

 Table S2. Geometric measurement data for CPL PEDOT.

Figure S11. Detection of the change trend of the peak potential with the natural logarithm of the scanning rate at H_2O_2 .

Electrodes	$R_{s} (\Omega)$	$R_{ct} (\Omega)$	W_{o} -R (Ω)
CC	5.31	2.06	2.16
Ni-Co(OH) ₂ /CC	5.57	1.77	1.49
Ni-Co(OH) ₂ /CC@PEDOT	5.07	1.59	0.35

Table S3. EIS-related data of CC, Ni-Co(OH)₂/CC, and Ni-Co(OH)₂/CC@PEDOT electrodes.

Figure S12. The wetting process of 5 μ L water droplets on the surface of Ni-Co(OH)₂/CC@PEDOT with different electrochemical deposition parameters. (a) 1.0 V - 5 min, (b) 1.1 V - 5 min, (c) 1.3 V - 5 min, (d) 1.2 V - 3 min, (e) 1.2 V - 4 min, (f) 1.2 V - 5 min, (g) 1.2 V - 6 min, (h) 1.2 V - 7 min.

Figure S13. FT-IR spectra of Ni-Co(OH)₂/CC@PEDOT (The red curve is obtained after the complexe stay in PBS solution with 3 mM of H_2O_2 for 10 s).

Figure S14. I-t curve of flexible sensors in practical measurement.