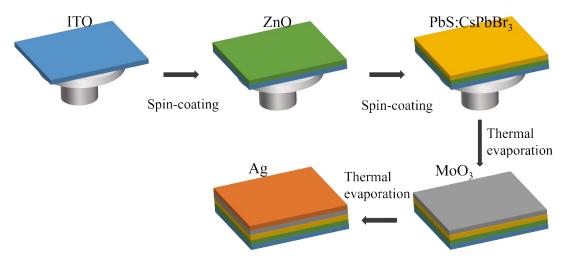
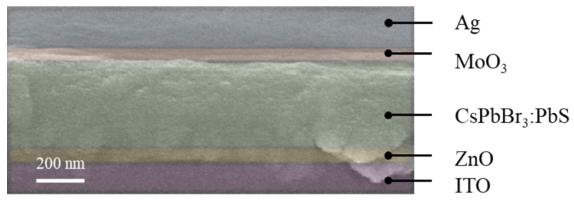
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2024

Supporting Information

To enhance performance of PbS:CsPbBr₃ bulk-heterojunction photodetectors by treating with Imidazolium-based ionic liquids


Ying Wang¹, Shengyi Yang^{1*}, Muhammad Sulaman¹, Guanzhen Zou¹, Haiyuan Xin¹, Zhenhua Ge¹, Zhenheng Zhang¹, Mengchun Zhu¹, Bingsuo Zou², Yurong Jiang³

¹Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China


²School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China

³School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, P. R. China

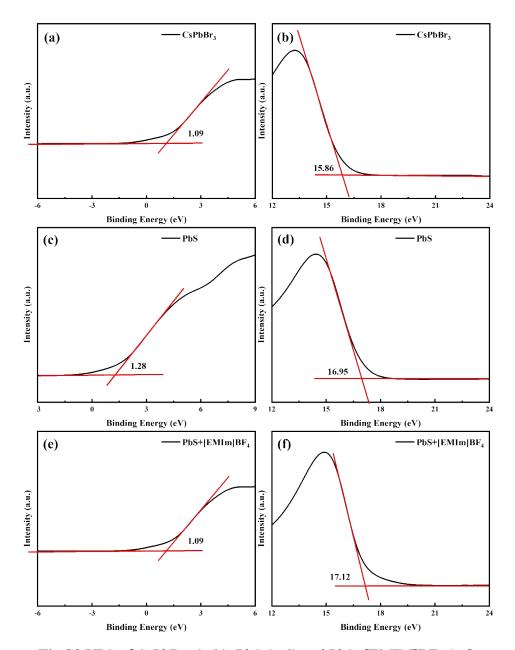

KEYWORDS: Perovskites, colloidal quantum dots, surface-passivation, ligand exchange, hybrid bulk-heterojunction, energy band, broadband photodetectors.

Fig.S1 Schematic diagram of the fabrication process for bulk-heterojunction photodetectors ITO/ZnO/PbS:CsPbBr₃/MoO₃/Ag.

 $\label{eq:Fig.S2} Fig.S2 \quad \mbox{Cross-sectional} \quad SEM \quad \mbox{image} \quad \mbox{of} \quad the \quad photodetectors \\ ITO/ZnO/PbS:CsPbBr_3/MoO_3/Ag.$

 $\textbf{Fig.S3} \ \text{UPS of CsPbBr}_{3} \ (\textbf{a-b}), \ \text{PbS} \ (\textbf{c-d}) \ \text{and} \ \text{PbS+}[\text{EMIM}] BF_{4} \ (\textbf{e-f}).$

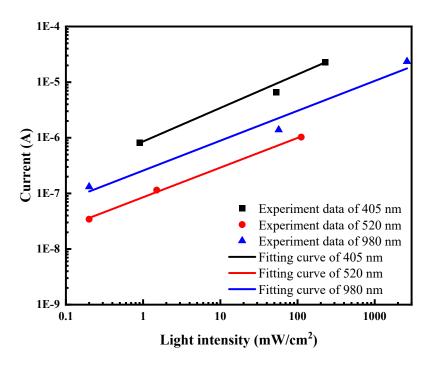


Figure S4 LDR of photodetectors under different wavelength illuminations.