High-performance broadband phototransistor array of PdSe₂/SOI

Schottky junction

Yexin Chen¹,4, Qinghai Zhu¹,4, Jiabao Sun², Yijun Sun², Nobutaka Hanagata³, and Mingsheng Xu¹ (✉)

¹ College of Integrated Circuits, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
² College of Information Science & Electronic Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
³ Research Center for Functional Materials and Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
⁴ Yexin Chen and Qinghai Zhu contributed equally to this work.

Address correspondence to Mingsheng Xu, msxu@zju.edu.cn

Fig. S1 Optical image of the fabricated PdSe₂/Si phototransistor.

Fig. S2 UPS spectra of PdSe₂ film. The calculation formula of Fermi energy level of PdSe₂ is as
follows: \(E_c = 21.22 \, eV - 15.98 \, eV = 5.24 \, eV \).
Fig. S5 Photoresponse characteristics of PdSe$_2$/Si phototransistor to pulsed light irradiation at frequencies of (a) 1 kHz, (b) 5 kHz, (c) 10 kHz and (d) 15 kHz under 808 nm illumination. (e) Rising and falling edges for estimating the rise time (τ_r) and the fall time (τ_f) of PdSe$_2$/Si phototransistor at pulsed light frequency of 5 kHz under 808 nm illumination ($V_G = 0$ V and $V_{DS} = 0$ V). (f) Frequency response characteristic of PdSe$_2$/Si phototransistor.