Synthesis of thiocyanato-containing phenanthrenes and
dihydronaphthalenes via Lewis acid-activated tandem electrophilic thiocyanation/carbocyclization of alkynes
Yong Gao, Ruirui Hua, Hongquan Yin, and Fu-Xue Chen*
School of Chemistry \& Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
E-mail: fuxue.chen@bit.edu.cn
Contents

1. General Information S2
2. Preparation of the Starting Materials S2
3. General procedure for the synthesis of the desired products S13
4. Gram scale reaction and derivatization of products S25
5. X-Ray Structure of 3d (CCDC 2210343) S28
6. HPLC Chromatograms S29
7. References S30
8. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra S31

1. General Information

All chemicals were bought from commercial companies and used directly unless noted. The solvents were dried by standard methods when necessary. All reactions monitored by TLC. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Bruker 400 or 700 instrument in CDCl_{3}. All the NMR spectra were referenced to residual CHCl_{3} (7.26 ppm, $\left.{ }^{1} \mathrm{H} ; 77.16 \mathrm{ppm},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right)$. Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{q}=$ quartet, septet; coupling constant(s) are in Hz, integration). Data for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR are reported in terms of chemical shift (δ, ppm). The high resolution mass spectrum (HRMS) were recorded on an Agilent (Q-TOF6520) unit with an ESI source. IR spectra were measured on a Shimadzu IRAffinnity-1s spectrometer. Melting points were measured on a binocular microscope XT4A melting point apparatus (uncorrected).

2. Preparation of the Starting Materials

Reagents 2a-d were synthesized according to our previous works. ${ }^{1-4}$ arene-alkynes $\mathbf{1 a},{ }^{5-6} \mathbf{1 b}-\mathbf{d},{ }^{7} \mathbf{1 e}-\mathbf{k},{ }^{5,8} \mathbf{1 1},{ }^{9} \mathbf{1 m},{ }^{10-11} \mathbf{1 n}-\mathbf{r},{ }^{5-6} \mathbf{1 s} \mathbf{s}-\mathbf{v},{ }^{5,8} \mathbf{1} \mathbf{w}^{7}$ were synthesized according to the previously reported procedures. The unconjugated arene-alkynes $\mathbf{4 a - g},{ }^{12} \mathbf{4 h},{ }^{13} \mathbf{4 i},{ }^{14}$ $4 \mathbf{j}^{15}$ were synthesized following the known literature procedures. Other substrates $\mathbf{6},{ }^{16}$ $\mathbf{8},{ }^{9}$ and $\mathbf{1 0}{ }^{8}$ were prepared according to literature procedures. The slightly modified procedures of $\mathbf{1 a - d}, \mathbf{1 n}-\mathbf{r}, \mathbf{1 e}-\mathbf{k}, \mathbf{1} \mathbf{s}-\mathbf{v}$ and $\mathbf{4 a - g}$ as follows.

Procedure for the Synthesis of 1a and 1n-r. An oven-dried flask was charged with o-bromoiodobenzene ($987 \mathrm{mg}, 3.5 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(123 \mathrm{mg}, 0.175 \mathrm{mmol})$ and $\mathrm{CuI}(67 \mathrm{mg}, 0.35 \mathrm{mmol})$. The flask was degassed and filled with argon, then $\mathrm{Et}_{3} \mathrm{~N}(30.0$ $\mathrm{ml})$ was added. The mixture was stirred for 15 min before being treated with phenylacetylene ($393 \mathrm{mg}, 3.85 \mathrm{mmol}$) dropwise. The resulting solution was stirred at room temperature for 12 h . After the completion of the reaction, the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude mixture was purified by flash chromatography using petroleum ether as an eluent. Under an argon atmosphere, to a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(424 \mathrm{mg}, 4.0 \mathrm{mmol})$ in toluene $(10.0 \mathrm{~mL})$,
ethanol (5.0 mL), and water (5.0 mL) was added the above products ($512 \mathrm{mg}, 2.0 \mathrm{mmol}$) at room temperature. Then, to this mixture was added aryl boronic acid ($2.6 \mathrm{mmol}, 1.3$ equiv) and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(70 \mathrm{mg}, 0.1 \mathrm{mmol})$, and the resulting solution was heated to $70^{\circ} \mathrm{C}$ for 3 h . After the completion of the reaction, the solution was cooled to room temperature and extracted with ethyl acetate, the combined organic phased were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc $=100: 1, \mathrm{v} / \mathrm{v}$).

Procedure for the Synthesis of 1b-d. Under an argon atmosphere, 2-bromo-1,1'biphenyl ($466 \mathrm{mg}, 2.0 \mathrm{mmol}$), 4-substituted phenylacetylene ($2.2 \mathrm{mmol}, 1.1$ equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(231 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{CuI}(46 \mathrm{mg}, 0.24 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(8.0 \mathrm{~mL})$ were added continuously into an oven-dried flask and the resulting mixture was refluxed for 10 h . After the completion of the reaction, it was cooled to room temperature and extracted with ethyl acetate, the combined organic phased were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc $=100: 1, \mathrm{v} / \mathrm{v}$).

Procedure for the Synthesis of $\mathbf{1 e}-\mathbf{k}$ and $\mathbf{1 s} \mathbf{s} \mathbf{v}$. Under an argon atmosphere, 2 -iodo-1,1'-biphenyl ($1.12 \mathrm{~g}, 4.0 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(84 \mathrm{mg}, 0.12 \mathrm{mmol})$, and $\mathrm{CuI}(38 \mathrm{mg}$, $0.2 \mathrm{mmol})$ were charged into an oven-dried flask. Then, $\mathrm{Et}_{3} \mathrm{~N}(15.0 \mathrm{~mL})$ was added and the mixture was stirred for 15 min . Subsequently, trimethylsilylacetylene ($392 \mathrm{mg}, 4.0$ mmol) was added dropwise to the mixture and stirred at room temperature for 12 h . The resulting solution was passed through a layer of Celite, then extracted with ethyl acetate, the combined organic phased were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was dissolved in $\mathrm{MeOH}(40.0 \mathrm{~mL}) . \mathrm{K}_{2} \mathrm{CO}_{3}(607$ $\mathrm{mg}, 4.4 \mathrm{mmol}$) was added to the mixture and stirred at room temperature for 12 h . After
the completion of the reaction, the solid material was removed by filtration. The filtrate was concentrated in vacuo. The crude mixture was purified by flash chromatography using petroleum ether as an eluent. To a solution of aryl iodide ($1.0 \mathrm{mmol}, 1.0$ equiv) and the above products ($187 \mathrm{mg}, 1.05 \mathrm{mmol}$) in $\mathrm{Et}_{3} \mathrm{~N}(10.0 \mathrm{~mL})$ were added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(21 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{CuI}(9.5 \mathrm{mg}, 0.05 \mathrm{mmol})$. The mixture was then stirred under an argon atmosphere at room temperature for 12 h . After the completion of the reaction, the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The combined organic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash chromatography $($ petroleum ether/EtOAc $=100: 1$ to $50: 1, \mathrm{v} / \mathrm{v})$.

Procedure for the Synthesis of $\mathbf{4 a - g}$. An oven-dried flask was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(23 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{CuI}(7.6 \mathrm{mg}, 0.04 \mathrm{mmol})$ and THF (3.0 mL) under an argon atmosphere, and the mixture was stirred for 5 min . Then aryl iodide $(1.0 \mathrm{mmol}$, 1.0 equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($707 \mathrm{mg}, 7.0 \mathrm{mmol}$) were added and stirred for 5 min . Subsequently, 4-phenyl-1-butyne ($143 \mathrm{mg}, 1.1 \mathrm{mmol}$) was added dropwise and the solution was heated to $60^{\circ} \mathrm{C}$ for 12 h . After the completion of the reaction, the solution was cooled to room temperature and extracted with ethyl acetate, the combined organic phased were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash chromatography using petroleum ether as an eluent.

2-(Phenylethynyl)-1,1'-biphenyl (1a). ${ }^{5}$ Yellow oil; $396 \mathrm{mg}, 78 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 6 \mathrm{H})$.

2-((4-Ethylphenyl)ethynyl)-1,1'-biphenyl (1b). ${ }^{7}$ Yellow oil; $180 \mathrm{mg}, 32 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{td}, J=7.2,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.

2-((4-Methoxyphenyl)ethynyl)-1,1'-biphenyl (1c). ${ }^{7}$ Yellow oil; $310 \mathrm{mg}, 55 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.42-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{td}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$.

2-((4-Fluorophenyl)ethynyl)-1,1'-biphenyl (1d). ${ }^{8}$ Yellow oil; $228 \mathrm{mg}, 42 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.29(\mathrm{~m}$, $3 \mathrm{H}), 6.99(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$.

2-((4-Chlorophenyl)ethynyl)-1,1'-biphenyl (1e). ${ }^{7}$ Yellow oil; $247 \mathrm{mg}, 86 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{td}, J=7.2,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=11.6,8.8 \mathrm{~Hz}, 4 \mathrm{H})$.

2-((4-Bromophenyl)ethynyl)-1,1'-biphenyl (1f). ${ }^{7}$ Colorless oil; $265 \mathrm{mg}, 80 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 7 \mathrm{H}), 7.34(\mathrm{td}, J$ $=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.

2-([1,1'-Biphenyl]-4-ylethynyl)-1,1'-biphenyl (1g). ${ }^{7}$ White solid; $214 \mathrm{mg}, 65 \%$ yield; mp: 64-66 ${ }^{\circ} \mathrm{C}$ (lit. 94.1-95.3 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 7.60-7.34(\mathrm{~m}, 15 \mathrm{H})$.

2-((2-Isopropylphenyl)ethynyl)-1,1'-biphenyl (1h). Colorless oil; $257 \mathrm{mg}, 87 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.27-7.22(\mathrm{~m}$, 2 H), $7.11(\mathrm{td}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (septet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.15 (d, $J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.5,143.8,140.8,133.0,132.3,129.6,129.4$, 128.5, 128.3, 128.0, 127.4, 127.1, 125.4, 124.8, 122.2, 122.2, 92.7, 91.1, 31.4, 23.1; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3059,2961,2866,2212,1952,1595,1474,1362,1078$; HRMS (ESI) $m / z:$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{21}$ 297.1638, found 297.1641.

2-((2-Bromophenyl)ethynyl)-1,1'-biphenyl (1i). ${ }^{17}$ Colorless oil; $268 \mathrm{mg}, 81 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=8.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H})$.

1-([1,1'-Biphenyl]-2-ylethynyl)naphthalene (1j). ${ }^{8}$ Colorless oil; $257 \mathrm{mg}, 85 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.72$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.38(\mathrm{~m}, 9 \mathrm{H})$.

2-([1,1'-Biphenyl]-2-ylethynyl)thiophene (1k). ${ }^{8}$ Colorless oil; $187 \mathrm{mg}, 72 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{td}, J=7.2,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=5.2,3.6$ $\mathrm{Hz}, 1 \mathrm{H})$.

([1,1'-Biphenyl]-2-ylethynyl)(phenyl)sulfane (11). ${ }^{9}$ Yellow oil; $285 \mathrm{mg}, 80 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.32$ (m, 1H), 7.25-7.17 (m, 5H).

\boldsymbol{N}-([1, $\mathbf{1}^{\prime}$-Biphenyl]-2-ylethynyl)-N,4-dimethylbenzenesulfonamide (1m). ${ }^{11}$ Yellow oil; $368 \mathrm{mg}, 68 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.26$ (m, $4 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$.

2-(Phenylethynyl)-1,1':2',1'-terphenyl (1n). ${ }^{7}$ Yellow solid; $459 \mathrm{mg}, 70 \%$ yield; $\mathrm{mp}:$ $75-76{ }^{\circ} \mathrm{C}$ (lit. $77.7-78.0^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.25-$ $7.14(\mathrm{~m}, 12 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

2-Chloro-2'-(phenylethynyl)-1,1'-biphenyl (10). Yellow oil; $430 \mathrm{mg}, 75 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{dd}, J=6.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.49$ (ddd, $J=8.1,6.7$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.16(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1,139.7,133.5,131.8,131.7,131.4,129.8$, $129.4,128.9,128.2,128.1,128.0,127.8,126.3,123.3,123.1,92.7,88.5$; IR (KBr, cm^{-} ${ }^{1}$) $3059,2924,2853,2218,1923,1809,1697,1597,1497,1437,1070,1036$; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}$ 289.0779, found 289.0779.

1-(2-(Phenylethynyl)phenyl)naphthalene (1p). ${ }^{20}$ Brown oil; $490 \mathrm{mg}, 81 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$.

2-(2-(Phenylethynyl)phenyl)thiophene (1q). ${ }^{20}$ Yellow oil; 379 mg , 73% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 5 \mathrm{H})$, 7.29 (td, $J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=4.8,3.6 \mathrm{~Hz}, 1 \mathrm{H})$.

4-Chloro-2-(phenylethynyl)-1,1'-biphenyl (1r). ${ }^{7}$ Yellow oil; $402 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~s}, 2 \mathrm{H})$, 7.36-7.32 (m, 5H).

2-((4-(Trifluoromethyl)phenyl)ethynyl)-1,1'-biphenyl (1s). ${ }^{8}$ Colorless oil; 270 mg , 84% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 7 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H})$.

4-([1,1'-Biphenyl]-2-ylethynyl)benzonitrile (1t). ${ }^{8}$ White solid; $220 \mathrm{mg}, 79 \%$ yield; mp: $79-80{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.36(\mathrm{~m}, 8 \mathrm{H})$.

2-((4-Nitrophenyl)ethynyl)-1, $\mathbf{1}^{\prime}$-biphenyl (1u). ${ }^{7}$ Yellow solid; $248 \mathrm{mg}, 83 \%$ yield; mp: $99-100{ }^{\circ} \mathrm{C}$ (lit. $100-101{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.67 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.36$ (m, 8H).

2-([1,1'-Biphenyl]-2-ylethynyl)pyridine (1v). ${ }^{18}$ Yellow oil; $158 \mathrm{mg}, 62 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$.

2-(3,3-Dimethylbut-1-yn-1-yl)-1,1'-biphenyl (1w). ${ }^{7}$ Colorless oil; $252 \mathrm{mg}, 60 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59$ (d, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.48 (d, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.40-$ 7.23 (m, 6H), 1.17 (s, 9H).

But-1-yne-1,4-diyldibenzene (4a). ${ }^{12}$ Colorless oil; 195 mg , 95% yield; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 8 \mathrm{H}), 2.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.69$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$).

1-Methyl-4-(4-phenylbut-1-yn-1-yl)benzene (4b). ${ }^{19}$ Colorless oil; $202 \mathrm{mg}, 92 \%$ yield; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.

1-Methoxy-4-(4-phenylbut-1-yn-1-yl)benzene (4c). ${ }^{12}$ Yellow oil; $219 \mathrm{mg}, 93 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.23(\mathrm{~m}, 7 \mathrm{H}), 6.82(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 2.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.

1-Bromo-4-(4-phenylbut-1-yn-1-yl)benzene (4d). ${ }^{19}$ Colorless oil; $235 \mathrm{mg}, 83 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.20(\mathrm{~m}, 7 \mathrm{H}), 2.91(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.

1-Fluoro-3-(4-phenylbut-1-yn-1-yl)benzene (4e). ${ }^{19}$ Colorless oil; $179 \mathrm{mg}, 80 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.92(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.

1-(4-Phenylbut-1-yn-1-yl)naphthalene (4f). ${ }^{12}$ White solid; $220 \mathrm{mg}, 86 \%$ yield; mp : $45-46{ }^{\circ} \mathrm{C}$ (lit. $49-51{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.81$ $(\mathrm{m}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.

2-(4-Phenylbut-1-yn-1-yl)thiophene (4g). ${ }^{12}$ Yellow oil; $169 \mathrm{mg}, 80 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{dd}, J=5.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=5.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H})$.

(4-Bromobut-3-yn-1-yl)benzene (4h). ${ }^{13}$ Colorless oil; 197 mg , 95% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 2.82(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.

1-Methyl-4-((3-phenylprop-2-yn-1-yl)oxy)benzene (4i). ${ }^{14}$ White solid; 362 mg , 82\% yield; mp: 59-60 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.31(\mathrm{~m}$, $3 \mathrm{H}), 7.13$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$.

4-Methyl- N-phenyl- N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (4j). ${ }^{13}$ White solid; $524 \mathrm{mg}, 73 \%$ yield; mp : $90-91{ }^{\circ} \mathrm{C}$ (lit. $90-92{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 5 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 4 \mathrm{H}), 4.66(\mathrm{~s}$, $2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.

Prop-1-yne-1,3-diyldibenzene (6). ${ }^{16}$ Colorless oil; $326 \mathrm{mg}, 85 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H})$.

4-(2-((4-Methoxyphenyl)ethynyl)benzyl)-1,1'-biphenyl (8). ${ }^{9}$ White solid; $386 \mathrm{mg}, 74 \%$ yield; mp: 94-95 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.43-7.39(\mathrm{~m}$, 4H), 7.35-7.29 (m, 3H), 7.25-7.18 (m, 3H). 6.86 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.27$ (s, 2H), 3.81 (s, 3H).

1,4-Bis([1,1'-biphenyl]-2-ylethynyl)benzene (10). ${ }^{8}$ Yellow solid; $165 \mathrm{mg}, 77 \%$ yield; mp: $159-160{ }^{\circ} \mathrm{C}$ (lit. $163-164{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.62(\mathrm{~m}, 6 \mathrm{H})$, 7.47-7.39 (m, 10H), 7.35-7.31 (m, 2H), 7.22 (s, 4H).

3. General procedure for the synthesis of the desired products

3

General Procedure for the Synthesis of 3. To a 25 mL Schlenk tube containing 1 ($0.1 \mathrm{mmol}, 1.0$ equiv) was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ under an argon atmosphere. Then, $\mathbf{2 c}(0.2 \mathrm{mmol}, 2.0$ equiv) or $\mathbf{2 d}(0.3 \mathrm{mmol}, 3.0$ equiv) was added. Subsequently, the mixture was added acid and stirred at room temperature for an appropriate time. When the reaction was completed, the product was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to afford the product 3.

General Procedure for the Synthesis of 5 and 9. To a 25 mL Schlenk tube containing 4 and $\mathbf{8}$ ($0.1 \mathrm{mmol}, 1.0$ equiv) was added dichloromethane (1.0 mL) under an argon atmosphere. Then 2d ($0.3 \mathrm{mmol}, 3.0$ equiv) was added. Subsequently, the mixture was added acid ($0.12 \mathrm{mmol}, 1.2$ equiv) and stirred at room temperature for an appropriate time. When the reaction was completed, the product was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to afford the
products 5 and 9 .

9-Phenyl-10-thiocyanatophenanthrene (3a). White solid; $28.3 \mathrm{mg}, 91 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.40$; mp: 211-212 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.73$ $(\mathrm{m}, 3 \mathrm{H}), 7.61-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $147.6,139.0,131.8,131.5,131.2,130.4,129.7,129.1,128.8,128.6,128.4,128.3,127.9$, 127.3, 126.8, 123.2, 122.8, 119.4, 111.3 (SCN); IR (KBr, cm^{-1}) 2995, 2151 (SCN), 1647, 1508, 1456; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{NS} 312.0841$, found 312.0847.

9-(4-Ethylphenyl)-10-thiocyanatophenanthrene (3b). White solid; $32.2 \mathrm{mg}, 95 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.40 ; \mathrm{mp}$: $126-127{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75-7.63$ (m, 3H), 7.45-7.40 (m, 2H), 7.33 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.74(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.8,144.4,136.2,132.0,131.5,131.2,130.5,129.7,129.2,128.8,128.2,128.1$, 127.8, 127.2, 126.8, 123.2, 122.7, 119.5, 111.4 (SCN), 28.8, 15.4; IR (KBr, cm^{-1}) 2961, 2924, 2149 (SCN), 1645, 1531, 1456; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NS}$ 340.1154, found 340.1151.

9-(4-Methoxyphenyl)-10-thiocyanatophenanthrene (3c). White solid; $33.0 \mathrm{mg}, 97 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.20 ; \mathrm{mp}$: 182-183 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.83-7.71$ (m, 3H), 7.56-7.49 (m, 2H), 7.29 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (d, $J=8.8$
$\mathrm{Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,147.4,132.2,131.5,131.2$, $131.2,131.0,130.5,129.2,128.8,128.3,127.8,127.3,126.9,123.2,122.8,119.9,114.0$, 111.4 (SCN), 55.4; IR (KBr, cm ${ }^{-1}$) 3061, 2928, 2837, 2154 (SCN), 1605, 1508, 1460, 1252, 1175, 1030; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NOS} 342.0947$, found 342.0943 .

9-(4-Fluorophenyl)-10-thiocyanatophenanthrene (3d). Yellow solid; $26.9 \mathrm{mg}, 82 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.38$; mp: 212-213 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.82-8.77(\mathrm{~m}, 2 \mathrm{H}), 8.65-8.63(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.7(\mathrm{~d}, J=248.1 \mathrm{~Hz}), 146.6,134.8(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 131.8$, 131.6, 131.5 (d, $J=8.1 \mathrm{~Hz}$), 131.2, 130.3, 129.0, 128.9, 128.4, 128.1, 127.4, 126.9, $123.2,122.9,119.9,115.8(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 111.1(\mathrm{SCN}) ;$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3065,2154$ (SCN), 1697, 1506, 1456, 1339; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{FNS}$ 330.0747 , found 330.0748 .

9-(4-Chlorophenyl)-10-thiocyanatophenanthrene (3e). Yellow solid; 19.0 mg , 55% yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.38$; mp: $185-186{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.82-8.77(\mathrm{~m}, 2 \mathrm{H}), 8.66-8.63(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.52$ (m, 3H), 7.46 (dd, $J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 146.4,137.3,134.6,131.6,131.5,131.3,131.1,130.3,129.0,129.0,128.8$, $128.4,128.1,127.5,126.9,123.3,122.9,119.7,111.0(\mathrm{SCN}) ;$ IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2922, 2153 (SCN), 1682, 1487, 1393; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{CINS}$ 346.0452 , found 346.0456 .

9-(4-Bromophenyl)-10-thiocyanatophenanthrene (3f). Yellow solid; $29.2 \mathrm{mg}, 75 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.38$; mp: $177-178{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.81-8.76(\mathrm{~m}, 2 \mathrm{H}), 8.65-8.63(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.72(\mathrm{~m}, 5 \mathrm{H}), 7.53(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 138.5,136.7,132.4,132.1,132.0,130.7,130.1,129.4,129.3,129.3,128.9$, 128.3,128.2, 127.9, 127.2, 126.2, 123.4, 123.1, 110.7 (SCN); $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2922,2153$ (SCN), 1645, 1487, 1261; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{BrNS} 389.9947$, found 389.9942 .

9-([1,1'-Biphenyl]-4-yl)-10-thiocyanatophenanthrene (3g). Yellow solid; 34.8 mg , 90% yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.30$; mp: 216-218 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.83-8.78(\mathrm{~m}, 2 \mathrm{H}), 8.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.74(\mathrm{~m}, 7 \mathrm{H})$, 7.59-7.39 (m, 7H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.4,141.2,140.4,137.9,131.8$, $131.6,131.2,130.4,130.2,129.1,128.9,128.9,128.3,127.9,127.7,127.3,127.3,127.2$, 126.9, 123.2, 122.8, 119.5, 111.3 (SCN); IR (KBr, cm ${ }^{-1}$) 2916, 2149 (SCN), 1697, 1485, 1445; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{NS} 388.1154$, found 388.1161.

9-(2-Isopropylphenyl)-10-thiocyanatophenanthrene (3h). White solid; $27.8 \mathrm{mg}, 79 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.40 ; \mathrm{mp}$: 105-107 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.86-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.17$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (septet, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$),
$1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.1$, $146.9,137.1,131.9,131.5,131.3,130.2,129.8,129.2,129.0,128.9,128.3,127.9,127.3$, 126.8, 126.1, 126.1, 123.3, 122.8, 119.7, 110.9 (SCN), 30.7, 24.1; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3067, 2963, 2153 (SCN), 1487, 1447, 1364, 1265, 1157; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NS} 354.1311$, found 354.1312.

9-(2-Bromophenyl)-10-thiocyanatophenanthrene (3i). Yellow oil; $20.6 \mathrm{mg}, 53 \%$ yield; Eluent PE/EtOAc ($50: 1, \mathrm{v} / \mathrm{v}$), TLC $\mathrm{R}_{f}=0.30 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.87-8.82(\mathrm{~m}, 2 \mathrm{H}), 8.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58(\mathrm{dd}, J=12.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.2,139.7,133.0,131.7,131.4,130.8,130.3,130.2,129.0,128.3,128.2,127.8$, 127.6, 126.9, 124.2, 123.3, 123.0, 119.8, 110.6(SCN); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3063, 2922, 2156 (SCN), 1472, 1447, 1263, 1188; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{BrNS}$ 389.9947, found 389.9951 .

9-(Naphthalen-1-yl)-10-thiocyanatophenanthrene (3j). White solid; $28.1 \mathrm{mg}, 78 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.30 ; \mathrm{mp}: 206-207{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.92-8.89(\mathrm{~m}, 1 \mathrm{H}), 8.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.71-8.69(\mathrm{~m}, 1 \mathrm{H}), 8.10$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.70(\mathrm{~m}, 2 \mathrm{H})$, $7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.8,136.4,133.6,132.2,132.0,131.6,131.5$, $130.4,129.1,129.0,128.5,128.4,128.1,128.0,127.5,127.0,126.8,126.4,125.5,125.5$, 123.3, 122.8, 120.7, 111.1 (SCN); $\operatorname{IR}\left(\mathrm{KBr}^{2} \mathrm{~cm}^{-1}\right) 3055,2924,2153$ (SCN), 1717, 1506, 1456, 1339, 1263; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{NS} 362.0998$, found 362.0991 .

2-(10-Thiocyanatophenanthren-9-yl)thiophene (3k). White solid; $25.6 \mathrm{mg}, 81 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC R ${ }_{f}=0.35$; mp: 190-192 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.80-8.77(\mathrm{~m}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.65-8.62(\mathrm{~m}, 1 \mathrm{H}), 7.84-$ $7.79(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=5.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=3.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.1,139.1,134.6,132.8,131.5,131.2,130.4,129.7$, $129.1,128.8,128.7,128.6,128.5,127.9,126.9,126.6,126.5,121.2,110.8(\mathrm{SCN}) ; \mathrm{IR}$ (KBr, cm^{-1}) 2920, 2149 (SCN), 1647, 1541, 1506, 1456, 1339; HRMS (ESI) m/z: [M + $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{NS}_{2}$ 318.0406, found 318.0398.

Phenyl(10-thiocyanatophenanthren-9-yl)sulfane (31). White solid; $33.8 \mathrm{mg}, 99 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC R $f_{f}=0.20$; mp: $169-170{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.76-8.74(\mathrm{~m}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.63-8.61(\mathrm{~m}, 1 \mathrm{H}), 7.81-$ $7.79(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.13-7.05 (m, 3H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.3,137.8,131.9,131.6,131.5$, $131.4,131.3,130.3,129.0,128.8,128.4,128.1,127.4,126.8,123.2,122.9,122.7,119.6$, 110.9 (SCN); IR (KBr, cm^{-1}) 2922, 2153 (SCN), 1647, 1558, 1456, 1339; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{NS}_{2} 344.0562$, found 344.0562.

$\boldsymbol{N}, 4$-Dimethyl- \boldsymbol{N}-(10-thiocyanatophenanthren-9-yl)benzenesulfonamide (3m). White solid; $16.6 \mathrm{mg}, 40 \%$ yield; Eluent $\operatorname{PE} / E t O A c(10: 1, ~ v / v), \mathrm{TLC}_{f}=0.30 ; \mathrm{mp}$: $204-205{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.67(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.51-8.49(\mathrm{~m}, 1 \mathrm{H})$, $7.77-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.1,141.4,136.6,132.9,131.3,130.1,129.9,129.6$,
$129.2,128.8,128.5,127.7,127.6,127.5,125.9,124.7,123.3,123.3,111.0$ (SCN), 38.3, 21.6; IR (KBr, cm ${ }^{-1}$) 2924, 2154 (SCN), 1697, 1541, 1456, 1339, 1159; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} 419.0882$, found 419.0891.

4,10-Diphenyl-9-thiocyanatophenanthrene (3n). Yellow solid; $21.5 \mathrm{mg}, 56 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.38$; mp: 59-60 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.44$ $7.32(\mathrm{~m}, 9 \mathrm{H}), 7.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.4,144.7$, $140.5,139.4,133.3,133.0,131.3,130.1,129.8,129.3,129.2,129.0,128.7,128.6,128.4$, 127.7, 127.4, 126.2, 125.8, 120.0, 111.3 (SCN); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3055, 2922, 2153 (SCN), 1653, 1491, 1441, 1265; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{NS} 388.1154$, found 388.1156 .

4-Chloro-10-phenyl-9-thiocyanatophenanthrene (3o). White solid; $25.2 \mathrm{mg}, 73 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.40$; mp: 225-226 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.69(\mathrm{~m}$, $3 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.36$ (dd, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-$ $7.25(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.1,138.7,132.5,131.6,131.3,130.2$, $129.5,129.0,128.8,128.4,128.4,127.5,127.3,127.2,127.1,123.3,122.7,122.6,111.1$ (SCN); IR (KBr, cm^{-1}) 2918, 2153 (SCN), 1647, 1522, 1508, 1458, 1339, 1260; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{13}$ CINS 346.0452, found 346.0451.

6-Phenyl-5-thiocyanatobenzo[c]phenanthrene (3p). White solid; $26.3 \mathrm{mg}, 73 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC R $_{f}=0.40 ; \mathrm{mp}$: 201-203 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.58(\mathrm{~m}$, $3 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.6,139.1,134.0,131.6$, $130.9,130.3,130.2,130.0,129.3,129.0,129.0,128.7,128.5,128.3,127.9,127.8,127.4$, 127.0, 126.7, 126.2, 126.2, 119.1, 111.2 (SCN); IR (KBr, cm^{-1}) 2920, 2151 (SCN), 1651, 1506, 1420, 1375, 1263; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{NS} 362.0998$, found 362.0997 .

4-Phenyl-5-thiocyanatonaphtho[1,2-b]thiophene (3q). Brown oil; $28.5 \mathrm{mg}, 90 \%$ yield; Eluent PE/EtOAc ($50: 1, \mathrm{v} / \mathrm{v}$), TLC $\mathrm{R}_{f}=0.35 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.58-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.5,137.5,134.3,133.8,131.5,128.8,128.8,128.7,128.6$, $128.4,127.6,122.9,121.0,117.9,110.4$ (SCN), $94.9,88.6$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3059, 2963, 2156 (SCN), 1597, 1491, 1422, 1261; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{NS}_{2}$ 318.0406, found 318.0410.

2-Chloro-9-phenyl-10-thiocyanatophenanthrene (3r). White solid; $17.2 \mathrm{mg}, 50 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.38$; mp: 201-202 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66-8.62(\mathrm{~m}, 2 \mathrm{H}), 8.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.52-$ $7.40(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.1$, 138.6, 134.6, $131.8,131.8,131.1,129.6,129.5,129.3,128.7,128.6,128.4,127.6,126.1$, $124.9,122.7,118.4,110.8(\mathrm{SCN}) ; \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2922,2151$ (SCN), 1715, 1557, 1504, 1479, 1339, 1217; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{ClNS} 346.0452$, found 346.0452.

S20

4-Phenyl-3-thiocyanato-1,2-dihydronaphthalene (5a). White solid; $21.3 \mathrm{mg}, 81 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.50$; mp: 67-68 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.49-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.09(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.4,136.7,134.8,134.5,129.5,129.0,128.7,128.3,127.6,126.7,126.2,122.1$, $110.5(\mathrm{SCN}), 29.3,28.6$; IR (KBr, cm^{-1}) 3061, 2926, 2153 (SCN), 1684, 1541, 1489, 1456, 1339, 1279; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NS} 264.0841$, found 264.0843 .

3-Thiocyanato-4-(p-tolyl)-1,2-dihydronaphthalene (5b). Colorless oil; $21.6 \mathrm{mg}, 78 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.50 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.57(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.00(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.3,138.6,135.0,134.5,133.6,129.7,129.4,128.2,127.5,126.7$, $126.2,121.9,110.5(\mathrm{SCN}), 29.3,28.6,21.4$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3022,2922,2153(\mathrm{SCN})$, 1684, 1616, 1508, 1483, 1456, 1279; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NS}$ 278.0998, found 278.0995 .

4-(4-Methoxyphenyl)-3-thiocyanato-1,2-dihydronaphthalene (5c). White solid; $19.6 \mathrm{mg}, 67 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC R $f_{f}=0.35 ; \mathrm{mp}: 93-94{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.22(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t} . J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.8,140.8,135.1,134.5,130.8,128.7$, $128.2,127.5,126.7,126.2,122.2,114.4,110.6(\mathrm{SCN}), 55.3,29.3,28.6 ; \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 3028, 2932, 2153 (SCN), 1605, 1508, 1454, 1288, 1248, 1175; HRMS (ESI) m/z: [M + $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NOS} 294.0947$, found 294.0954.

4-(4-Bromophenyl)-3-thiocyanato-1,2-dihydronaphthalene (5d). Colorless oil; 27.8 $\mathrm{mg}, 82 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.40 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.52(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 140.4,135.5,134.4,134.4,132.3,131.2,128.6,127.7,126.8,126.0,123.0$, $122.5,110.0(\mathrm{SCN}), 29.4,28.5$; IR (KBr, $\left.\mathrm{cm}^{-1}\right) 3063,2926,2154(\mathrm{SCN}), 1609,1587$, 1483, 1450, 1393, 1279, 1069, 1013; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrNS}$ 341.9947 , found 341.9950 .

4-(3-Fluorophenyl)-3-thiocyanato-1,2-dihydronaphthalene (5e). Colorless oil; 22.4 $\mathrm{mg}, 80 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.40 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.06$ $(\mathrm{m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.09(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.0$ $(\mathrm{d}, J=248.4 \mathrm{~Hz}), 140.3(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 138.7,138.6,134.4(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 130.7(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}), 128.5,127.6,126.8,126.0,125.3(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 122.6,116.6(\mathrm{~d}, J=21.7$ $\mathrm{Hz}), 115.8(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 110.0(\mathrm{SCN}), 29.4,28.5$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2926,2154(\mathrm{SCN})$, 1653, 1581, 1487, 1456, 1339, 1265, 1213, 1148; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{FNS} 282.0747$, found 282.0743.

2-Thiocyanato-3,4-dihydro-1,1'-binaphthalene (5f). White solid; $26.6 \mathrm{mg}, 85 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.38 ; \mathrm{mp}: 102-104{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.00(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.3$, $133.6,133.0,132.9,132.8,130.2,128.3,127.6,127.3,126.8,126.5,125.9,125.8,125.5$, $125.0,124.5,123.9,123.0,109.3(\mathrm{SCN}), 28.2,27.7$; IR (KBr, cm^{-1}) 3055, 2955, 2153 (SCN), 1715, 1651, 1539, 1506, 1456, 1339, 1260; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NS} 314.0998$, found 314.1001.

2-(2-Thiocyanato-3,4-dihydronaphthalen-1-yl)thiophene (5g). Yellow oil; 19.4 mg , 72% yield; Eluent PE/EtOAc (50:1, v/v), TLC $\mathrm{R}_{f}=0.40 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.3,134.8,134.1,133.5,129.4,128.5,127.7,127.4,127.3$, 126.9, 126.7, 125.8, 110.2 (SCN); 29.4, 28.3; IR (KBr, cm ${ }^{-1}$) 3065, 2932, 2153 (SCN), 1717, 1684, 1603, 1541, 1481, 1456, 1435, 1275, 1215; HRMS (ESI) $m / z:[M+H]^{+}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NS}_{2} 270.0406$, found 270.0403.

6-Methyl-4-phenyl-3-thiocyanato-2H-chromene (5i). Yellow oil; $21.7 \mathrm{mg}, 78 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC R ${ }_{f}=0.40 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.40$ (m, 3H), 7.15-7.12 (m, 2H), 6.94 (dd, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.39(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.4, 141.4, 134.4, 131.4, 131.3, 129.2, 129.1, 129.0, 126.9, 123.5, 116.1, 111.9, 108.6 (SCN), 67.6, 20.6; IR (KBr, cm^{-1}) 3057, 2924, 2154 (SCN), 1670, 1489, 1456, 1277, 1233, 1026; HRMS (ESI) $m / z:[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NOS}$ 278.0634, found 278.0633 .

4-Phenyl-3-thiocyanato-1-tosyl-1,2-dihydroquinoline (5j). White solid; $27.0 \mathrm{mg}, 65 \%$ yield; Eluent PE/EtOAc (10:1, v/v), TLC $\mathrm{R}_{f}=0.32 ; \mathrm{mp}: 177-179{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.2,140.8,135.5,134.4,134.2,130.6$, $129.5,129.1,129.0,128.8,127.6,127.4,127.2,126.6,115.2,108.4$ (SCN), 48.8, 21.5; IR (KBr, cm^{-1}) 2920, 2851, 2154 (SCN), 1647, 1541, 1508, 1456, 1362, 1167, 1084; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} 419.0882$, found 419.0890.

11-(4-Methoxyphenyl)-2-phenyl-10-thiocyanato-5H-dibenzo[a,d][7]annulene (9). White solid; $38.0 \mathrm{mg}, 88 \%$ yield; Eluent PE/EtOAc (20:1, v/v), TLC $\mathrm{R}_{f}=0.35$; mp: $185-186{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.9,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39-7.25(\mathrm{~m}, 9 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 3 \mathrm{H}), 3.90(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,147.0,141.5,140.5$, $140.5,139.1,136.6,133.4,133.4,131.3,130.1,129.5,129.3,128.7,128.5,127.3,127.0$, $126.7,126.6,125.9,114.2,111.3$ (SCN), 55.4, 40.6; IR (KBr, cm^{-1}) 3028, 2930, 2839, 2153 (SCN), 1605, 1508, 1479, 1294, 1252, 1177, 1028; HRMS (ESI) m/z: [M - H] calcd for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{NOS} 430.1260$, found 430.1264 .

9-(4-([1,1'-biphenyl]-2-ylethynyl)phenyl)-10-thiocyanatophenanthrene
Yellow solid; $41.0 \mathrm{mg}, 84 \%$ yield; Eluent PE/EtOAc (10:1, v/v), $\mathrm{TLC} \mathrm{R}_{f}=0.50$; mp: $177-179{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.85-8.80(\mathrm{~m}, 2 \mathrm{H}), 8.68-8.66(\mathrm{~m}, 1 \mathrm{H})$,
7.89-7.84 (m, 2H), 7.81-7.75 (m, 4H), 7.59-7.39 (m, 10H), $7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.0,144.2,140.6,138.7,133.0,131.6,131.6,131.5$, $131.2,130.3,129.8,129.6,129.4,129.0,128.9,128.8,128.4,128.0,128.0,127.6,127.4$, 127.1, 126.8, 123.7, 123.2, 122.8, 121.5, 119.4, 111.1 (SCN), 91.7, 90.6; IR (KBr, cm^{-} ${ }^{1}$) $3063,2924,2853,2214,2153(\mathrm{SCN}), 1717,1653,1508,1449,1396,1265,1157$; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{22} \mathrm{NS} 488.1467$, found 488.1464.

4. Gram scale reaction and derivatization of products

Gram scale reaction. To a 100 mL oven-dried flask containing 1a (1.016 g, 4.0 $\mathrm{mmol})$ was added dichloromethane (40.0 mL) under an argon atmosphere. Then 2c $(1.92 \mathrm{~g}, 8.0 \mathrm{mmol})$ was added. Subsequently, the mixture was added trimethylchlorosilane ($216 \mathrm{mg}, 2.0 \mathrm{mmol}$) and stirred at room temperature for 24 h . When the reaction was completed, the mixture was concentrated in vacuo and the product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=50: 1, \mathrm{v} / \mathrm{v}$) to afford the product $\mathbf{3 a}(1.065 \mathrm{~g}, 86 \%$ yield $)$.

3a
13, 41\%
Procedure for the synthesis of 13. Hydrogen peroxide (30 wt . \% in water, 10.0 equiv) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of trifluoroacetic anhydride (10.0 equiv) in dichloromethane (10.0 mL). After being stirred for $40 \mathrm{~min}, \mathbf{3 a}(155.5 \mathrm{mg}, 0.5 \mathrm{mmol})$ was added slowly and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 14 h . When the reaction was completed, the reaction was quenched with water, extracted with dichloromethane, the combined organic phased were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate.

Procedure for the synthesis of $\mathbf{1 4}$. To a solution of $\mathbf{3 a}(31.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and diethyl phosphite ($20.7 \mathrm{mg}, 0.15 \mathrm{mmol}$) in dry toluene (1.0 mL) was added DBU (23.0 $\mathrm{mg}, 0.15 \mathrm{mmol}$) dropwise and the solution was stirred for 3 h . When the reaction was completed, the mixture was concentrated in vacuo and the product was purified by column chromatography on silica gel with petroleum ether/ethyl acetate.

Procedure for the synthesis of 15. Under an argon atmosphere, a solution of 4methoxyphenylacetylene ($26.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dry THF (2.0 mL) was cooled to -78 ${ }^{\circ} \mathrm{C}$. Then n-BuLi ($0.1 \mathrm{~mL}, 0.25 \mathrm{mmol}, 2.5 \mathrm{M}$ in n-hexane) was added dropwise. Subsequently, 3a ($74.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) was added slowly and the mixture was gradually warmed to room temperature for 1.5 h . When the reaction was completed, the solution was quenched with water (2 drops), concentrated in vacuo and the product was purified by column chromatography on silica gel with petroleum ether/ethyl acetate.

Procedure for the synthesis of 16. To a solution of $\mathbf{5 a}(26.3 \mathrm{mg}, 0.1 \mathrm{mmol})$ in benzene (1.0 mL) was added DDQ ($45.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) and the solution was stirred at $65^{\circ} \mathrm{C}$ for 12 h . When the reaction was completed, the mixture was cooled to room temperature and concentrated in vacuo, the residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate.

S26

10-Phenylphenanthrene-9-sulfinyl cyanide (13). Yellow solid; $67.0 \mathrm{mg}, 41 \%$ yield; Eluent PE/EtOAc (10:1, v/v), TLC R $_{f}=0.50$; mp: $165-167{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.97-8.95(\mathrm{~m}, 1 \mathrm{H}), 8.86-8.83(\mathrm{~m}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.81$ $(\mathrm{m}, 3 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 5 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.3,135.1,132.8,131.2,130.4,130.3,130.0,129.7,129.5$, $129.1,128.8,128.8,128.6,127.8,126.3,125.3,123.5,123.1,116.2$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 2924, 2853, 2153 (CN), 1738, 1661, 1449, 1375, 1167, 1101; HRMS (ESI) $m / z:[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{NOS} 328.0791$, found 328.0792.

O,O-Diethyl S-(10-phenylphenanthren-9-yl) phosphorothioate (14). White solid; $33.0 \mathrm{mg}, 78 \%$ yield; Eluent PE/EtOAc (5:1, v/v), TLC $\mathrm{R}_{f}=0.40$; mp: $112-114{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87-8.84(\mathrm{~m}, 1 \mathrm{H}), 8.76-8.73(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.64(\mathrm{~m}, 3 \mathrm{H})$, 7.53-7.44 (m, 7H), 3.91-3.74 (m, 4H), 1.14 (t, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.4(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 140.3(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 132.4(\mathrm{~d}, J$ $=3.5 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 128.7(\mathrm{~d}$, $J=1.4 \mathrm{~Hz}), 128.4,127.9,127.7(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 127.3,127.1(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 126.7$, $122.7,122.6$ (d, $J=1.4 \mathrm{~Hz}$), 122.4 (d, $J=8.9 \mathrm{~Hz}$), 63.9 (d, $J=7.0 \mathrm{~Hz}$), 16.0 (d, $J=7.2$ $\mathrm{Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.9$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3067, 2982, 2926, 1485, 1447, 1393, 1256, 1157, 1016; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{PS} 423.1178$, found 423.1184.

((4-Methoxyphenyl)ethynyl)(10-phenylphenanthren-9-yl)sulfane (15). Yellow oil; $60.7 \mathrm{mg}, 73 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC R ${ }_{f}=0.40 ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.77-8.72(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.64$ $(\mathrm{m}, 1 \mathrm{H}), 7.58-7.41(\mathrm{~m}, 7 \mathrm{H}), 7.22(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,144.5,139.8,133.3,132.1,131.1,131.0$, $131.0,130.2,128.6,128.2,128.1,127.7,127.7,127.5,127.2,126.8,126.8,122.9,122.6$, 115.5, 113.8, 91.5, 77.8, 55.3; IR (KBr, cm^{-1}) 3069, 2928, 2837, 2164, 1603, 1568,

1504, 1447, 1290, 1250, 1171, 1032; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{OS}$ 417.1308, found 417.1316.

1-Phenyl-2-thiocyanatonaphthalene (16). Colorless oil; $25.0 \mathrm{mg}, 96 \%$ yield; Eluent PE/EtOAc (50:1, v/v), TLC R ${ }_{f}=0.60 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56-7.51 (m, 4H), 7.43$7.42(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.7,136.4,133.0$, $132.9,130.0,129.8,129.0,128.9,128.1,127.4,127.0,126.2,124.8,122.2,110.9(\mathrm{SCN}) ;$ IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3057, 2924, 2851, 2154 (SCN), 1684, 1584, 1504, 1491, 1443, 1385, 1321, 1267; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NS} 262.0685$, found 262.0678.
5. X-Ray Structure of 3d (CCDC 2210343)

Table 1. Crystal data and structure refinement for the product 3d (CCDC 2210343).

Identification code
Empirical formula
Formula weight
Temperature/K
Space group
Hall group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$

3d
$\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{FNS}$
329.38

293
P 1 21/c 1
-P 2ybc
11.3845(1)
16.8992(1)
8.1309(1)

90

$\beta /{ }^{\circ}$	$92.673(1)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1562.59(3)$
Z	4
$\rho c a l \mathrm{cg} / \mathrm{cm}^{3}$	1.400
μ / mm^{-1}	1.929
$\mathrm{~F}(000)$	680.0
Bond precision	$\mathrm{C}-\mathrm{C}=0.0021 \mathrm{~A}$
Wavelength	1.54184
Data completeness	0.995
Theta (max)	68.207
h, k, lmax	$13,20,9$
R, wR 2	$0.0346(2651), 0.0945(2849)$
S	1.052
Npar	218

6. HPLC Chromatograms

Compound 13 chiral separation
HPLC: on AD-H column (n-hexane/iso-propanol, $90: 10$, $\mathrm{v} / \mathrm{v}, 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$).

7. References

[1] Qiu, J.; Wu, D.; Karmaker, P. G.; Yin, H.; Chen, F.-X. Org. Lett. 2018, 20, 1600-1603.
[2] Fu, Z.; Gao, Y.; Yin, H.; Chen, F.-X. J. Org. Chem. 2021, 86, 17418-17427.
[3] Wu, D.; Qiu, J.; Karmaker, P. G.; Yin, H.; Chen, F.-X. J. Org. Chem. 2018, 83, 1576-1583.
[4] Li, C.; Long, P.; Wu, H.; Yin, H.; Chen, F.-X. Org. Biomol. Chem. 2019, 17, 7131-7134.
[5] Akhmetov, V.; Feofanov, M.; Sharapa, D. I.; Amsharov, K. J. Am. Chem. Soc. 2021, 143, 1542015426.
[6] Takahashi, I.; Fujita, T.; Shoji, N.; Ichikawa, J. Chem. Commun. 2019, 55, 9267-9270.
[7] Liu, W.; Chen, J.; Jin, R.; Xu, D.; Li, Y.; Ba, F.; Gu, G.; Kuang, Y.; Guo, H. Org. Chem. Front. 2016, 3, 852-855.
[8] Pati, K.; Michas, C.; Allenger, D.; Piskun, I.; Coutros, P. S.; Gomes, G. P.; Alabugin, I. V. J. Org. Chem. 2015, 80, 11706-11717.
[9] Zhao, M.; Barrado, A. G.; Sprenger, K.; Golz, C.; Mata, R. A.; Alcarazo, M. Org. Lett. 2020, 22, 4932-4937.
[10] Tian, X.; Song, L.; Rudolph, M.; Wang, Q.; Song, X.; Rominger, F.; Hashmi, A. S. K. Org. Lett. 2019, 21, 1598-1601.
[11] Zhang, J.; Li, S.; Qiao, Y.; Peng, C.; Wang, X.-N.; Chang, J. Chem. Commun., 2018, 54, 1245512458.
[12] Unoh, Y.; Hirano, K.; Miura, M. J. Am. Chem. Soc. 2017, 139, 6106-6109.
[13] Warner, A. J.; Lawson, J. R.; Fasano, V.; Ingleson, M. J. Angew. Chem., Int. Ed. 2015, 54, 11245-11249.
[14] He, W.; Yu, J.; Wang, D.; Ran, G.; Xia, X.-F. Org. Chem. Front. 2019, 6, 3575-3579.
[15] Medina-Mercado, I.; Colin-Molina, A.; Barquera-Lozada, J. E.; Rodríguez-Molina, B.; Porcel, S. ACS Catal. 2021, 11, 8968-8977.
[16] Zhang, W.-W.; Zhang, X.-G.; Li, J.-H. J. Org. Chem. 2010, 75, 5259-5264.
[17] Naveen, K.; Nikson, S. A.; Perumal, P. T. Adv. Synth. Catal. 2017, 359, 2407-2413.
[18] Xie, C.; Zhang, Y.; Yang, Y. Chem. Commun. 2008, 4810-4812.
[19] Chen, L.; Kametani, Y.; Imamura, K.; Abe, T.; Shiota, Y.; Yoshizawa, K.; Hisaeda, Y.; Shimakoshi, H. Chem. Commum. 2019, 55, 13070-13073.
[20] Mukherjee, N.; Chatterjee, T. J. Org. Chem. 2021, 86, 7881-7890.

8. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra

-

G-147. 1. fid

1b

1d

G-173. 1. fid

1h

1j

10

.

1v

$\begin{array}{lr}\text { に } \\ \text { ® } & \text { G-160.2.fid } \\ \text { GY }\end{array}$

1w

4a

స్ N W్ON

4d

G-205. 2. fid

$4 e$

4h

$\stackrel{+}{\stackrel{N}{N}}$

$4 i$

3b

-28.7644
-15.3812

3b

-159.5837
-147.4122
$\left[\begin{array}{l}132.1680 \\ 131.5363 \\ 131.1875 \\ -131.1687 \\ 130.9668 \\ 130.4585 \\ 129.1616 \\ 128.8042 \\ 128.2738 \\ 127.8210 \\ 127.2785 \\ 126.8709 \\ 123.2095 \\ -122.7650 \\ 119.8781 \\ 114.0449 \\ 111.4492 \\ 77.2330 \\ 77.0515 \\ 76.8701\end{array}\right.$

-55.4103

3 C

[^0]

	०- 	
1\%	-	

$3 e$

3g
$\underset{\text { GY }}{\text { G-177.1. fid }}$

3h

3h

$3 i$

3j

3k

31

3p

3q

G-119. 1. fid

N্
N్ N్ No

5a

${ }_{\text {GY }}^{\text {G-211. 2. fid }}$

5c

 N N 10 1 1

$\mathrm{G}-212-1 / 1$
GY

$5 e$

$5 f$

\section*{| ∓ 6 |
| :--- |
| 广 |
| 0 | 1}

.
190
180
140
130
120
$10 \begin{gathered}100 \\ \mathrm{fl}(\mathrm{ppm})\end{gathered}$

QiN
N/
Ni
NiN

$5 g$

-20.6036
G-219/2

$5 i$

9

[^1]

9

$\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

13

13

14

15.9942
15.9228

G-235. 4. fid

14

15

5
1

15

16

No
G-234.2.fid

16

[^0]: $\begin{array}{lllllllllll}100 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^1]:

 ## LLSZ゙レレ

