

Electronic Supporting Information

for

Transition-Metal-Mediated Benzylation of C₆₀ with Benzyl

Chlorides

Li-Jun Xu,^{a,b} Wei-Wei Yang,^a Fu-She Han^{a,b,*} and Xiang Gao,^{a,b,*}

^a Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China

^b University of Science and Technology of China, Hefei, Anhui, 230026, China Email: <u>fshan@ciac.ac.cn</u>; <u>gx8802@yahoo.com</u>

Table of Contents

In Situ Vis-NIR Measurement	S2
HPLC Charts of the Crude Reaction Mixture and Isolated products	S3
UV-Vis, HRMS, and NMR Spectra of the Products	S12

In Situ Vis–NIR Measurement

The reaction mixture was transferred into a 0.1×1 cm cuvette under argon atmosphere every 30 minutes, and the cuvette was sealed with a rubber septum and parafilm for the Vis–NIR measurement.

Figure S1. In situ Vis–NIR spectra of the reaction under different conditions: (a) without adding benzyl chloride (BnCl); (b) without adding benzyl chloride and Mn powder; (c) without adding benzyl chloride and Cu(OAc)₂. All measurements were carried out under Ar atmosphere with a 0.1×1 cm cuvette.

HPLC Charts of the Crude Reaction Mixture and Isolated Products

Figure S2. HPLC chart of the crude reaction mixture of C_{60} with **1a**. (LC98-I, toluene as eluent at a flow rate of 3.6 mL/min)

Figure S3. HPLC chart of 2a. (LC98-II, toluene as eluent at a flow rate of 3.6 mL/min)

S**3**/S**26**

Figure S4. HPLC chart of 3a. (LC98-II, toluene as eluent at a flow rate of 3.6 mL/min)

Figure S5. HPLC chart of 4a. (LC98-II, toluene as eluent at a flow rate of 3.6 mL/min)

Figure S6. HPLC chart of the crude reaction mixture of C_{60} with 1b. (LC98-II, toluene

as eluent at a flow rate of 4.0 mL/min)

Figure S7. HPLC chart of 2b. (LC98-II, toluene as eluent at a flow rate of 4.0 mL/min)

S**5**/S**26**

Figure S8. HPLC chart of the crude reaction mixture of C_{60} with 1c. (LC98-II, toluene as eluent at a flow rate of 4.0 mL/min)

Figure S9. HPLC chart of 2c. (LC98-II, toluene as eluent at a flow rate of 4.0 mL/min)

S**6**/S**26**

Figure S10. HPLC chart of the crude reaction mixture of C_{60} with 1d. (LC98-II, toluene as eluent at a flow rate of 4.0 mL/min)

Figure S11. HPLC chart of 2d. (LC98-II, toluene as eluent at a flow rate of 4.0 mL/min)

Figure S12. HPLC chart of the crude reaction mixture of C_{60} with 1e. (LC98-II, toluene as eluent at a flow rate of 4.0 mL/min)

Figure S13. HPLC chart of 2e. (LC98-II, toluene as eluent at a flow rate of 3.6 mL/min)

Figure S14. HPLC chart of the crude reaction mixture of C_{60} with 1f. (LC98-II, toluene as eluent at a flow rate of 4.0 mL/min)

Figure S15. HPLC chart of 2f. (LC98-II, toluene as eluent at a flow rate of 4.0 mL/min)

Figure S16. HPLC chart of the crude reaction mixture of C_{60} with 1g. (LC98-II, toluene as eluent at a flow rate of 4.0 mL/min)

Figure S17. HPLC chart of 2g. (LC98-II, toluene as eluent at a flow rate of 3.6 mL/min)

Figure S18. HPLC chart of the crude reaction mixture of C_{60} with 1h. (LC98-II, toluene as eluent at a flow rate of 4.0 mL/min)

Figure S19. HPLC chart of 2h. (LC98-II, toluene as eluent at a flow rate of 4.0 mL/min)

UV-Vis, HRMS, and NMR Spectra of the Products

Figure S20. UV-Vis absorption spectrum of 2a in toluene.

Figure S21. ¹H NMR spectrum of 2a in CS₂/CDCl₃=1:1.

S12/S26

Figure S22. UV-vis absorption spectrum of 3a in toluene.

Figure S23. ¹H NMR spectrum of 3a in CS₂/CDCl₃ = 1:1.

S13/S26

Figure S24. UV-Vis absorption spectrum of 4a in toluene.

Figure S25. ¹H NMR spectrum of **4a** in *o*-DCB- d_4 and CDCl₃ (2 drops).

S14/S26

Figure S26. UV-Vis absorption spectrum of 2b in toluene.

Figure S27. ¹H NMR spectrum of **2b** in $CS_2/CDCl_3 = 1:1$.

S15/S26

Figure S28. UV-Vis absorption spectrum of 2c in toluene.

Figure S29. HRMS of 2c

Figure S31. ¹³C NMR spectrum of 2c in $CS_2/CDCI_3 = 1:1$.

S17/S26

Figure S32. UV-Vis absorption spectrum of 2d in toluene.

Figure S33. HRMS of 2d.

S18/S26

Figure S35. ¹³C NMR spectrum of 2d in $CS_2/CDCI_3 = 1:1$.

S19/S26

Figure S36. UV-Vis absorption spectrum of 2e in toluene.

Figure S37. HRMS of 2e.

S20/S26

Figure S39. ¹³C NMR spectrum of 2e in $CS_2/CDCl_3 = 1:1$.

S21/S26

Figure S40. UV-Vis absorption spectrum of 2f in toluene.

Figure S41. ¹H NMR spectrum of 2f in CDCl₃.

S22/S26

Figure S42. UV-Vis absorption spectrum of 2g in toluene.

Figure S43. HRMS of 2g.

Figure S45. ¹³C NMR spectrum of 2g in CS₂/CDCl₃ = 1:1.

S24/S26

Figure S46. UV-Vis absorption spectrum of 2h in toluene.

Figure S49. ¹³C NMR spectrum of **2h** in $CS_2/CDCl_3 = 1:1$.

S26/S26