Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting information

Complementary Strategies for Synthesis of Sulfinamides from Sulfur-Based Feedstock

Miloš Jabczun, Vladimír Nosek, and Jiří Míšek*

Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2 (Czech Republic), E-mail: misek@natur.cuni.cz

Table of Contents:

1. General	2
2. Synthesis of Sulfinamides	2
3. Synthesis of Sulfinamides with Different Amines	9
4. Synthesis of Sulfonimidamides	11
5. References	13
6. ¹ H and ¹³ C NMR Spectra	14

1. General

All starting reagents were commercially available and of analytical purity, which were used without further treatment unless otherwise stated. Sulfuryl chloride was freshly distilled at 68 °C - 69 °C under argon atmosphere. Thionyl chloride was freshly distilled at 76 °C - 78 °C under argon atmosphere. Zinc powder was activated using a standard method.¹ Solvents were dried according to standard methods. Triethylamine and benzylamine were stored over 4 Å molecular sieves. ¹H NMR spectra were recorded at 400 MHz. ¹³C NMR spectra were recorded at 101 MHz and were ¹H decoupled. Chemical shifts (δ) are reported in ppm relative to solvent (CDCl₃: $\delta C = 77.0$ ppm, (CD₃)₂SO: $\delta C = 39.5$ ppm) or residual solvent peak (CHCl₃: $\delta H = 7.26$ ppm, (CH₃)₂SO: $\delta H = 2.50$ ppm). Accurate mass measurements (HRMS) were obtained by ESI on Agilent 6530 Q-TOF MS spectrometer. Analytical HPLC was performed under the following conditions: Agilent Eclipse plus C18 column (3.5 μ L, 4.6×100 mm); UV/Vis detection at $\lambda_{obs} = 254$ or 220 nm; flow rate 0.4 mL/min; gradient elution method (5 to 100 % of CH₃CN in 0.1% aqueous formic acid over 13 min). Analytical TLC was performed using a pre-coated silica gel 60 Å F254 plates (0.2 mm thickness) and visualized by irradiation with UV light at 254 nm and by dipping in a stain solution (KMnO₄, cerium molybdate) followed by heating. Preparative column chromatography was carried out using silica gel 60 Å (particle size 0.063–0.200 mm). Infrared spectra were recorded on Nicolet Avatar 370 FTIR ATR (thin film). IR absorptions are given in wavenumbers as cm⁻¹.

2. Synthesis of Sulfinamides

General procedure A (reductive pathway):

Sulfonyl chloride (0.81 mmol) was dissolved in CH₂Cl₂ (3 mL) in 25 mL round-bottom flask and DMF (94 μ L, 1.22 mmol) was added. The resulting mixture was stirred for 10 minutes. Powdered zinc (58.5 mg, 0.89 mmol) was added (caution: vigorous initial reaction) and the mixture was refluxed until all the starting sulfonyl chloride was consumed (typically 1 h). Then the mixture was filtered (except for 1e, 1h, 1i) and residues washed with MeOH (10 mL). The filtrate was concentrated under reduced pressure, redissolved in THF (3 mL) and SOCl₂ (118 μ L, 1.63 mmol) was added dropwise at -40 °C. The resulting mixture was stirred for 45 min at -40 °C, then volatiles were evaporated under reduced pressure, the residue dissolved in THF (3 mL) and Et₃N (170 μ L, 1.22 mmol) and benzylamine (133 μ L, 1.22 mmol) were added at -40 °C. The reaction mixture was stirred at rt overnight, then diluted with CH₂Cl₂ (10 mL) and washed with saturated aq. NaHCO₃ solution (20 mL). The combined organic phase was dried over anhydrous MgSO₄, concentrated under reduced pressure. Purification with column chromatography on silica gel afforded the product.

General procedure B (oxidative pathway):

$$R^{1} \stackrel{\text{SH}}{\longrightarrow} \frac{\begin{array}{c} 1. \text{ SO}_{2}\text{CI}_{2}, \text{ AcOH}, \\ \text{THF or neat, - 40^{\circ}\text{C}} \end{array}}{2. \text{ R}^{2}\text{NH}_{2}, \text{ Et}_{3}\text{N}, } R^{1} \stackrel{\text{S}}{\longrightarrow} R^{1} \stackrel{\text{S}}{\longrightarrow} R^{2} \\ \text{THF, - 78^{\circ}\text{C to rt}} \end{array}$$

To an oven dried Schlenk flask, thiol (1 mmol), AcOH (120 μ L, 2.1 mmol) and THF (1 mL) were added. SO₂Cl₂ (275 μ L, 3.5 mmol) was added dropwise within 10 min at -40 °C under argon atmosphere. The reaction mixture was allowed to warm to rt and stirred for additional 120 min. Volatiles were evaporated under reduced pressure at rt and the residue was dissolved in THF (5 mL). The resulting solution was added dropwise to the solution of benzylamine (170 μ L, 1.55 mmol) and Et₃N (280 μ L, 2 mmol) in THF (2.5 mL) at -78 °C and the reaction mixture was stirred at rt overnight. Then the reaction mixture was diluted with CH₂Cl₂ (20 mL) and washed with saturated aq. NaHCO₃ solution (10 mL). The aqueous phase was extracted with CH₂Cl₂ (2 × 20 mL). The combined organic phase was washed with brine (15 mL), dried over anhydrous MgSO₄ and concentrated under reduced pressure. Purification with column chromatography on silica gel afforded the product. This reaction sequence was also performed with a modification that did not use any solvent in the initial thiol oxidation step.

N-benzyl-4-methylbenzenesulfinamide (**1a**). Prepared according to the general procedure A using TsCl (155 mg, 0.81 mmol). Purification by column chromatography (30% of EtOAc in cyclohexane) afforded the product as a yellowish oil, which solidified on standing to a yellowish

solid (160 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.59 (m, 2H), 7.36 – 7.21 (m, 7H), 4.46 – 4.31 (m, 1H), 4.23 (dd, J = 13.5, 5.2 Hz, 1H), 3.89 (dd, J = 13.5, 7.2 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 141.0, 137.9, 129.7, 128.7, 128.4, 127.7, 126.1, 44.6, 21.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₆NOS⁺ 246.0947; found 246.0938; IR (ν_{max}/cm^{-1}) 3215, 1415, 1051, 804, 739, 692. The spectra are in agreement with reported data.²

N-benzyl-4-cyanobenzenesulfinamide (**1b**). Prepared according to the general procedure A using 4-cyanobenzenesulfonyl chloride (164 mg, 0.81 mmol). Purification by column chromatography (15% of EtOAc in cyclohexane) afforded the product as a yellowish oil, which solidified on

standing to a yellowish solid (132 mg, 63%). Also prepared according to the general procedure B (neat) using 4-mercaptobenzonitrile (135 mg, 1 mmol, 1.0 eq). Purification by column chromatography (15% of EtOAc in cyclohexane) afforded the product as a yellowish oil, which solidified on standing to a yellowish solid (208 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.87 (m, 2H), 7.87 – 7.78 (m, 2H), 7.41 – 7.23 (m, 5H), 5.13 (dd, *J* = 7.0, 5.0 Hz, 1H), 4.25 (dd, *J* = 13.6, 5.0 Hz, 1H), 3.87 (dd, *J* = 13.7, 7.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 149.1, 137.2, 132.5, 128.6, 128.2, 127.7, 127.1, 117.8, 114.6, 44.4. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₄H₁₂N₂OS 257.0743 ; found 257.0737; IR (v_{max}/cm⁻¹) 3213, 2871, 2233, 1082, 1055, 1020, 831, 704.

N-benzyl-4-chlorobenzenesulfinamide (1c). Prepared according to the general procedure A using 4-chlorobenzenesulfonyl chloride (172 mg, 0.81 mmol). Purification by column chromatography (30% of EtOAc in cyclohexane) afforded the product as a yellowish oil, which solidified on

standing to a yellowish solid (143 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.41 (m, 2H), 7.31 – 7.21 (m, 2H), 7.15 – 6.97 (m, 5H), 4.58 (dd, J = 7.1, 5.0 Hz, 1H), 3.99 (dd, J = 13.6, 5.1 Hz, 1H), 3.64 (dd, J = 13.6, 7.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 137.6, 137.5, 129.2, 128.8, 128.4, 127.9, 127.7, 44.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₂ClNOS 266.0400; found 266.0407; IR (v_{max}/cm⁻¹) 3201, 2925, 2870, 2856, 1473, 1454, 1082, 1049, 1012, 818, 694. The spectra are in agreement with reported data.²

N-(4-((benzylamino) sulfinyl)phenyl)acetamide (1d). Prepared according to the general procedure A using 4-acetamidobenzenesulfonyl chloride (190 mg, 0.81 mmol, 1.0 eq). Purification by column chromatography (EtOAc) afforded the product

as a yellowish oil, which solidified on standing to a yellowish solid (132 mg, 53%). Also prepared according to the general procedure B (neat) using *N*-(4-sulfanylphenyl)acetamide (167 mg, 1 mmol, 1.0 eq). Purification by column chromatography (EtOAc) afforded the product as a yellowish oil, which solidified on standing to a yellowish solid (202 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.67 (m, *J* = 2.0 Hz, 4H), 7.57 (s, 1H), 7.39 – 7.21 (m, 5H), 4.34 (dd, *J* = 7.0, 5.2 Hz, 1H), 4.26 (dd, *J* = 13.3, 5.2 Hz, 1H), 3.92 (dd, *J* = 13.3, 7.0 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 140.6, 138.8, 137.6, 128.7, 128.3, 127.8, 127.1, 119.7, 44.6, 24.7. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₅H₁₆N₂O₂S 289.1005 ; found 289.1001; IR (v_{max}/cm⁻¹) 3244, 3182, 3109, 1674, 1589, 1531, 1311, 1086, 1038, 1026, 831, 696.

N-benzyl-4-methoxybenzenesulfinamide (1e). Prepared according to the general procedure A using 4-methoxybenzenesulfonyl chloride (168 mg, 0.81 mmol). Purification by column chromatography (40 % of EtOAc in cyclohexane) afforded the product as a yellowish oil, which solidified on standing to a yellowish solid (149 mg, 70%). Also

prepared according to the general procedure B (THF) using 4-mercaptoanisole (140 mg, 1 mmol). Purification by column chromatography (50 to 100% of EtOAc in cyclohexane) afforded the product as a white solid (227 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.64 (m, 2H), 7.40 – 7.21 (m, 5H), 7.09 – 6.97 (m, 2H), 4.72 (dd, J = 7.2, 5.2 Hz, 1H), 4.23 (dd, J = 13.6, 5.2 Hz, 1H), 3.92 (dd, J = 13.6, 7.2 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.0, 138.0, 135.3, 128.8, 128.4, 127.8, 127.8, 114.5, 55.6, 44.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₅NO₂S 262.0896; found 262.0901; IR (v_{max}/cm⁻¹) 3207, 2992, 1595, 1495, 1051, 1024, 692. The spectra are in agreement with reported data.²

N-benzylthiophene-2-sulfinamide (**1f**). Prepared according to the general procedure A using 2-thiophenesulfonyl chloride (149 mg, 0.81 mmol). Purification by column chromatography (40% of EtOAc in cyclohexane) afforded the product as an off-white solid (18 mg, 94%). ¹H NMR (400 MHz,

CDCl₃) δ 7.53 (dd, J = 5.0, 1.4 Hz, 1H), 7.39 (dd, J = 3.7, 1.4 Hz, 1H), 7.30 – 7.14 (m, 5H), 7.06 (dd, J = 5.0, 3.7 Hz, 1H), 4.54 – 4.50 (m, 1H), 4.26 (dd, J = 13.6, 5.1 Hz, 1H), 4.04 (dd, J = 13.6, 7.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 146.7, 137.6, 131.5, 130.2, 128.7, 128.3, 128.0, 127.7, 44.6. HRMS

(ESI): m/z [M+H]⁺ calcd for C₁₁H₁₂NOS₂⁺ 238.0355; found 238.0353; IR (v_{max}/cm^{-1}) 3143, 1495, 1404, 1051, 1039, 1028. The spectra are in agreement with reported data.²

Methyl 3-((benzylamino)sulfinyl)thiophene-2-carboxylate (**1g**). Prepared according to the general procedure A using methyl 3-(chlorosulfonyl)thiophene-2-carboxylate (196 mg, 0.81 mmol) without NaHCO₃ wash step in the workup. Purification by column chromatography (30% of EtOAc in cyclohexane) afforded the product as a yellowish oil, which

solidified on standing to a yellowish solid (150 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 5.2 Hz, 1H), 7.61 (d, J = 5.2 Hz, 1H), 7.35 – 7.23 (m, 5H), 4.76 (dd, J = 6.7, 5.9 Hz, 1H), 4.36 (dd, J = 13.7, 6.7 Hz, 1H), 3.99 (dd, J = 13.7, 5.9 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.1, 151.9, 137.9, 130.9, 129.7, 128.6, 128.1, 127.7, 127.6, 52.7, 45.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₄NO₃S₂⁺ 296.0410; found 296.0411; IR (v_{max}/cm^{-1}) 3207, 1707, 1435, 1406, 1255, 1061, 769, 731, 698, 644.

N-benzylnaphthalene-2-sulfinamide (**1h**). Prepared according to the general procedure A using 2-naphtalenesulfonyl chloride (184 mg, 0.81 mmol). Purification by column chromatography (30% of EtOAc in cyclohexane) afforded the product as a white solid (160 mg, 70%). ¹H

NMR (400 MHz, CDCl₃) δ 8.43 – 8.29 (m, 1H), 8.01 – 7.86 (m, 3H), 7.71 (dd, J = 8.6, 1.8 Hz, 1H), 7.65 – 7.52 (m, 2H), 7.36 – 7.20 (m, 5H), 4.43 – 4.33 (m, 1H), 4.29 (dd, J = 13.3, 5.0 Hz, 1H), 3.89 (dd, J = 13.3, 7.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 137.8, 134.5, 132.9, 129.1, 128.9, 128.8, 128.5, 128.0, 128.0, 127.8, 127.2, 127.0, 122.2, 44.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₆NOS⁺ 282.0947; found 282.0946; IR (v_{max}/cm^{-1}) 3192, 2922, 1427, 1066, 1045, 1027, 812, 746. The spectra are in agreement with reported data.²

N-benzyl-2,4,6-trimethylbenzenesulfinamide (**1i**). Prepared according to the general procedure A using 2-mesitylenesulfonyl chloride (178 mg, 0.81 mmol). Purification by column chromatography (30% of EtOAc in cyclohexane) afforded the product as a white solid (157 mg, 71%). ¹H

NMR (400 MHz, CDCl₃) δ 7.39 – 7.17 (m, 5H), 6.85 (s, 2H), 4.57 (dd, J = 6.5, 5.8 Hz, 1H), 4.35 (dd, J = 13.6, 6.5 Hz, 1H), 4.27 (dd, J = 13.6, 5.8 Hz, 1H), 2.58 (s, 6H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.5, 138.1, 137.2, 136.8, 130.8, 128.5, 128.1, 127.6, 48.1, 20.9, 19.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₂₀NOS⁺ 274.1256; found 274.1260; IR (v_{max}/cm⁻¹) 3176, 2914, 1452, 1063, 1036, 729, 692. The spectra are in agreement with reported data.³

N-benzylcyclohexanesulfinamide (**1j**). Prepared according to the general procedure A using cyclohexanesulfonyl chloride (149 mg, 0.81 mmol). Purification by column chromatography (70 to 100% of EtOAc in cyclohexane) afforded the product as a yellowish oil, which solidified on

standing to a yellowish solid (164 mg, 85%). Also prepared according to the general procedure A (THF) using cyclohexanethiol (126 μ L, 1 mmol). Purification by column chromatography (70 to 100% of EtOAc in cyclohexane) afforded the product as an off-white solid (152 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.12 (m, 5H), 4.23 – 4.11 (m, 3H), 2.58–2.48 (m, 1H), 2.07 – 1.86 (m, 2H), 1.86 – 1.66 (m, 2H), 1.66 – 1.50 (m, 1H), 1.46 – 0.96 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 128.5, 128.0, 127.4, 61.6, 46.9, 26.3, 26.1, 25.4, 25.2, 25.1. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₃H₂₀NOS⁺

238.1260 ; found 238.1267; IR (v_{max} /cm⁻¹) 3176, 2927, 2854, 1448, 1032, 1014. The spectra are in agreement with reported data.²

N-benzyl-1- ((1R,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1yl)methanesulfinamide (**1k**). Prepared according to the general procedure A using (*1S*)-(+)-10-camphorsulfonyl chloride (204 mg, 0.81 mmol) Purification by column chromatography (50% of EtOAc in cyclohexane) afforded the product as a yellowish oil (196 mg, 79%). ¹H NMR (400 MHz,

CDCl₃) δ 7.40 – 7.14 (m, 10H), 4.72 – 4.65 (m, 2H), 4.32– 4.15 (m, 4H), 3.10 (d, *J* = 13.5 Hz, 1H), 2.93 (s, 2H), 2.61 (d, *J* = 13.5 Hz, 1H), 2.40–2.28 (m, 2H), 2.16 – 1.91 (m, 6H), 1.88 (s, 1H), 1.83 (s, 1H), 1.69–1.50 (m, 2H), 1.43 – 1.30 (m, 2H), 0.99 (d, *J* = 15.9 Hz, 6H), 0.85 (d, *J* = 22.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 216.5, 216.1, 138.2, 138.2, 128.5, 128.5, 128.1, 128.0, 127.5, 127.5, 58.8, 58.3, 53.9, 53.6, 48.4, 48.1, 46.7, 46.7, 43.0, 42.8, 42.7, 42.4, 27.1, 26.9, 26.7, 25.7, 20.1, 19.7, 19.7, 19.4. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₇H₂₄NO₂S⁺ 306.1522; found 306.1526; IR (v_{max}/cm⁻¹) 3465, 3176, 2956, 2885, 1739, 1454, 1041, 1024, 733, 698.

N-benzyl-3-chloropropane-1-sulfinamide (11). Prepared according to the general procedure A using 3-chloropropanesulfonyl chloride (144 mg, 0.81 mmol) without NaHCO₃ wash step in the workup. Purification by column chromatography (EtOAc) afforded the product as a yellowish oil,

which solidified on standing to a yellowish solid (123 mg, 65%). Also prepared according to the general procedure B (THF) using 3-chloro-1-propanethiol (111 mg, 1 mmol). Purification by column chromatography (EtOAc) afforded the product as a yellowish oil, which solidified on standing to a yellowish solid (184 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.10 (m, 5H), 4.58 – 4.50 (m, 1H), 4.26 – 4.10 (m, 2H), 3.57 – 3.47 (m, 2H), 2.95 – 2.85 (m, 1H), 2.85 – 2.75 (m, 1H), 2.13 – 1.99 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 138.1, 128.7, 128.1, 127.7, 51.9, 46.2, 43.3, 26.6. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₀H₁₅CINOS 232.0557; found 232.0557; IR (v_{max}/cm⁻¹) 3168, 2958, 2925, 1454, 1057, 1045, 1032, 746, 696.

N-benzylpropane-1-sulfinamide (1m). Prepared according to the general procedure A using 1-propylsulfonyl chloride (113 μ L, 1.0 mmol). Purification by column chromatography (50% of EtOAc in cyclohexane) afforded the product as a brownish oil, which solidified on standing to a brownish solid (145 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.17 (m, 5H), 4.35

-4.19 (m, 2H), 4.07 -4.03 (m, 1H), 2.84 -2.64 (m, 2H), 1.76 -1.69 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 138.3, 128.8, 128.3, 127.9, 57.4, 46.5, 17.0, 13.4; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₆NOS⁺ 198.0947; found 198.0946; IR (v_{max}/cm^{-1}) 3224, 2958, 1456, 1043, 1016, 742, 700. The spectra are in agreement with reported data.²

N-benzylbenzenesulfinamide (**1n**). Prepared according to the general procedure B using thiophenol (110 mg, 1 mmol). Purification by column chromatography (50% of EtOAc in cyclohexane) afforded the product as a white solid (179 mg, 77%).¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.77 (m, 2H),

7.59 – 7.49 (m, 3H), 7.38 – 7.25 (m, 5H), 4.39 – 4.32 (m, 1H), 4.28 (dd, J = 13.3, 5.2 Hz, 1H), 3.93 (dd, J = 13.3, 7.0 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 144.0, 137.7, 131.0, 128.9, 128.7, 128.3, 127.8,

126.1, 44.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₄NOS⁺ 232,0791; found 232.0790; IR (ν_{max}/cm^{-1}) 3213, 1417, 1086, 1070, 1024. The spectra are in agreement with reported data.²

N-benzyl-4-nitrobenzenesulfinamide (**10**). Prepared according to the general procedure B (neat) using 4-nitrophenyl disulphide (77 mg, 0.25 mmol). Purification by column chromatography (30 to 50% of EtOAc in cyclohexane) afforded the product as white a solid (107 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 8.43 – 8.34 (m, 2H), 8.04 – 7.95 (m, 2H),

7.40 – 7.23 (m, 5H), 4.51 (t, J = 6.0 Hz, 1H), 4.30 (dd, J = 13.5, 5.1 Hz, 1H), 3.89 (dd, J = 13.4, 7.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 149.6, 137.0, 128.9, 128.3, 128.1, 127.5, 124.0, 44.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₃N₂O₃S⁺ 277.0641; found 277.0598; IR (v_{max}/cm⁻¹) 3180,1604, 1518, 1338, 1082,1055, 1034, 1026. The spectra are in agreement with reported data.⁴

N-benzyl-4-bromobenzenesulfinamide (**1p**). Prepared according to the general procedure B (THF) using 4-bromobenzenethiol (189 mg, 1 mmol). Purification by column chromatography (50% of EtOAc in cyclohexane) afforded the product as a white solid (279 mg, 90%). ¹H

NMR (400 MHz, CDCl₃) δ 7.77 – 7.57 (m, 4H), 7.40 – 7.19 (m, 5H), 4.44 – 4.31 (m, 1H), 4.27 (dd, J = 13.4, 5.1 Hz, 1H), 3.90 (dd, J = 13.4, 7.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 137.4, 132.2, 128.8, 128.3, 127.9, 127.8, 125.8, 44.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₃BrNOS⁺ 309,9896; found 309.9878; IR (v_{max}/cm^{-1}) 3176, 1469, 1383, 1084, 1057. The spectra are in agreement with reported data.²

N-benzylpyrimidine-2-sulfinamide (**1q**). Prepared according to a modified general procedure B (THF or neat) using pyrimidine-2-thiol (112 mg, 1 mmol). After the overnight reaction, the reaction mixture was precipitated by the addition of Et_2O (20 mL). The precipitate was filtered off and the filtrate

was concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂ (10 mL) and *m*CPBA (222 mg, 1 mmol, \leq 77%) was added portionwise at – 40 °C and the reaction mixture was stirred at – 40 °C for 30 min. The resulting mixture was diluted with CH₂Cl₂ (20 mL), washed with 10 % aq. Na₂S₂O₃ solution (30 mL), saturated aq. NaHCO₃ solution (30 mL) and brine (30 mL). The organic phase was dried over anhydrous MgSO₄ and concentrated under reduced pressure. Purification by column chromatography (5% of MeOH and 1% Et₃N in CH₂Cl₂) afforded the product as a colorless oil, which solidified on standing to a white solid (154 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, *J* = 4.9 Hz, 2H), 7.43 (t, *J* = 4.8 Hz, 1H), 7.35 – 7.24 (m, 5H), 5.04 (t, *J* = 6.1 Hz, 1H), 4.43 (dd, *J* = 13.8, 6.5 Hz, 1H), 4.26 (dd, *J* = 13.8, 5.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 158.6, 137.5, 128.7, 128.3, 127.8, 122.4, 46.3. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₁H₁₂N₃OS⁺ 234.0696; found 234.0704; IR (v_{max}/cm⁻¹) 3176, 1560, 1552, 1387, 1072, 1024.

N-benzylpyridine-4-sulfinamide (**1r**). Prepared according to a modified general procedure B (THF) using pyridine-4-thiol (111 mg, 1 mmol). AcOH was omitted and THF was substituted to CH₂Cl₂. After the overnight reaction, *m*CPBA (333 mg, 1.5 mmol, \leq 77%) in CH₂Cl₂ (2.5 mL) was added dropwise

at -78 °C. The reaction mixture was allowed to warm up to rt and the progress of the reaction was monitored by TLC. After the intermediate sulfenamide consumption, the reaction mixture was processed as in the case on the product **1q**. Purification by column chromatography (50 to 100% of EtOAc and 1% Et₃N in cyclohexane) afforded the product as a yellowish oil, which solidified on standing to a

yellowish solid (135 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 8.85 – 8.77 (m, 2H), 7.74 – 7.67 (m, 2H), 7.39 – 7.24 (m, 5H), 4.57 (t, *J* = 6.0 Hz, 1H), 4.28 (dd, *J* = 13.4, 5.0 Hz, 1H), 3.88 (dd, *J* = 13.4, 7.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 153.6, 150.5, 137.1, 128.8, 128.4, 128.0, 120.5, 45.0. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₂H₁₃N₂OS⁺ 233,0743; found 233.0737; IR (v_{max}/cm⁻¹) 3199, 1568, 1452, 1400, 1218, 1051, 1018, 976.

2-((3r,5r,7r)-adamantan-1-yl)-*N*-benzylethane-1-sulfinamide (1s). Prepared according to the general procedure B (neat) using adamantanylethanthiol (98 mg, 0.5 mmol). Purification by column chromatography (20% of EtOAc in cyclohexane) afforded the product

as a white solid (103 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.26 (m, 5H), 4.32 – 4.22 (m, 2H), 4.18 – 4.08 (m, 1H), 2.85 – 2.67 (m, 2H), 2.00 – 1.94 (m, 3H), 1.77 – 1.67 (m, 3H), 1.67 – 1.58 (m, 3H), 1.52 – 1.47 (m, 6H), 1.47 – 1.35 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 138.2, 128.7, 128.2, 127.7, 49.7, 46.2, 42.2, 36.9, 36.8, 32.1, 28.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₂₈NOS⁺ 318.1886; found 318.1845; IR (v_{max}/cm⁻¹) 3155, 2898, 2844,1450, 1039, 1026.

N-benzyl-1-phenylmethanesulfinamide (**1t**). Prepared according to the general procedure B (neat) using benzyl mercaptan (117 μ L, 1 mmol). Purification by column chromatography (66 to 100% of EtOAc in cyclohexane) afforded the product as a white solid (184 mg, 75%). ¹H NMR 7.24 (m, 10H), 4.36 – 4.22 (m, 2H), 4.09 (d, *J* = 12.9 Hz, 1H), 4.00 (d, *J* =

(400 MHz, CDCl₃) δ 7.47 – 7.24 (m, 10H), 4.36 – 4.22 (m, 2H), 4.09 (d, J = 12.9 Hz, 1H), 4.00 (d, J = 12.9 Hz, 1H), 3.86 – 3.76 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 138.0, 130.6, 129.2, 128.9, 128.7, 128.3, 128.0, 127.7, 60.9, 47.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₆NOS⁺ 246.0947; found 246.0947; IR (v_{max}/cm⁻¹) 3194, 1495, 1452, 1041, 1024.

N-benzyl-4-methoxybenzenesulfinamide (**1u**). Prepared according to the general procedure B (neat) using methyl 3-mercaptopropionate (113 μ L, 1 mmol). Purification by column chromatography (50 to 100% of EtOAc in cyclohexane) afforded the product as a white solid

(162 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 5H), 4.34 – 4.22 (m, 3H), 3.72 (s, 3H), 3.20 – 3.11 (m, 1H), 3.11 – 3.01 (m, 1H), 2.85 – 2.67 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 137.9, 128.8, 128.2, 127.6, 52.2, 49.4, 46.7, 27.5. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₁H₁₆NO₃S⁺ 242.0845; found 242.0854; IR (v_{max}/cm⁻¹) 3180, 1738, 1439, 1425, 1236, 1163, 1097, 1068, 1024.

$$\mathbb{V}_{H}^{N} \mathbb{V}_{8}^{S} \mathbb{N}_{H}^{N}$$

 N^1 , N^8 -dibenzyloctane-1,8-disulfinamide (**1v**). Prepared according to General procedure B using 1,8-octanedithiol (189 µL, 97%, 1 mmol) and using a double amount of other reagents. Purification by column chromatography (50 to 100% of EtOAc in cyclohexane,

then 5 to 10% of MeOH in EtOAc) afforded the product as pale solid (274 mg, 65%).¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.29 (m, 10H), 4.37 – 4.23 (m, 4H), 4.05 –3.93 (m, 2H), 2.88 – 2.71 (m, 4H), 1.80 – 1.64 (m, 4H), 1.52 – 1.29 (m, 8H).¹³C NMR (101 MHz, CDCl₃) δ 138.1, 128.7, 128.2, 127.8, 55.35, 55.32, 46.43, 46.41, 28.94, 28.85, 28.53, 28.49, 23.16, 23.12. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₂H₃₃N₂O₂S₂⁺ 421,1978; found 421.1972; IR (v_{max}/cm⁻¹) 3188, 2925, 2850, 1469, 1086, 1068, 1053, 1020.)

3. Synthesis of Sulfinamides with Different Amines

N-benzyl-4-methylbenzenesulfinamide (1a). Prepared according to the general procedure A using TsCl (155 mg, 0.81 mmol). Purification by column chromatography (30% of EtOAc in cyclohexane) afforded the product as a yellowish oil, which solidified on standing to a yellowish solid (160 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.59 (m, 2H), 7.36 – 7.21 (m, 7H), 4.46 –

4.31 (m, 1H), 4.23 (dd, J = 13.5, 5.2 Hz, 1H), 3.89 (dd, J = 13.5, 7.2 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 141.0, 137.9, 129.7, 128.7, 128.4, 127.7, 126.1, 44.6, 21.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₆NOS⁺ 246.0947; found 246.0938; IR (v_{max}/cm^{-1}) 3215, 1415, 1051, 804, 739, 692. The spectra are in agreement with reported data.²

4-bromo-N-(4-methoxybenzyl)benzenesulfinamide (**2b**). Prepared according to the general procedure B (neat) using 4bromobenzenethiol (189 mg, 1 mmol). Purification by column chromatography (50 to 100% of EtOAc in cyclohexane) afforded

the product as a white solid (282 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.59 (m, 4H), 7.20 – 7.14 (m, 2H), 6.88 - 6.81 (m, 2H), 4.55 - 4.40 (m, 1H), 4.17 (dd, J = 13.2, 4.8 Hz, 1H), 3.84 - 3.74 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 143.2, 132.1, 129.7, 129.5, 127.9, 125.7, 114.1, 55.3, 44.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₅BrNO₂S⁺ 340.0001; found 339.9992; IR (v_{max}/cm^{-1}) 3205, 1610, 1512, 1246, 1051, 1024, 1009.

4-bromo-N-(tert-butyl)benzenesulfinamide (2c). Prepared according to the general procedure B using 4-bromobenzenethiol (189 mg, 1 mmol). Purification by column chromatography (50% of EtOAc in cyclohexane) afforded the product as a white solid (197 mg, 71%).¹H NMR (400 MHz, $CDCl_3$) δ 7.67 – 7.61 (m, 2H), 7.61 – 7.54 (m, 2H), 3.87 (brs, 1H), 1.43 (s,

9H).¹³C NMR (101 MHz, CDCl₃) δ 145.7, 131.9, 127.5, 125.4, 54.5, 31.1. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₀H₁₅BrNOS⁺ 276.0052; found 276.0043; IR (v_{max}/cm⁻¹) 3186, 2970, 1568, 1468, 1385, 1365, 1228, 1043, 1036, 1005. The spectra are in agreement with reported data.⁶

N,N-diethyl-4-methylbenzenesulfinamide (2d). Prepared according to the general procedure A using TsCl (191 mg, 1 mmol). Purification by column chromatography (33% of EtOAc in cyclohexane) afforded the product as a yellow oil (134 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.44 (m, 2H), 7.33 - 7.22 (m, 2H), 3.16 - 3.07 (m, 4H), 2.40 (s, 3H), 1.11 (t, J = 7.2 Hz, 6H);

¹³C NMR (101 MHz, CDCl₃) δ 141.3, 140.9, 129.5, 126.3, 42.0, 21.4, 14.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₁H₁₈NOS⁺ 212.1104; found 212.1104; IR (v_{max}/cm⁻¹) 3224, 2958, 1456, 1043, 1016, 742, 700. The spectra are in agreement with reported data.²

4-(p-tolylsulfinyl)morpholine (**2e**). Prepared according to the general procedure A using TsCl (155 mg, 0.81 mmol). Purification by column chromatography (30 to 100% of EtOAc in cyclohexane) afforded the product as a white solid (132 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.42 (m, 1H), 7.31 – 7.17 (m,

1H), 3.71 - 3.55 (m, 2H), 3.12 - 3.02 (m, 1H), 2.93 - 2.83 (m, 1H), 2.34 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 139.1, 129.6, 126.1, 66.8, 45.6, 21.3. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₁H₁₆NO₂S⁺ 226.0896; found 226.0897; IR (v_{max}/cm^{-1}) 2862, 2850, 1448, 1107, 1086, 1063, 903, 818. The spectra are in agreement with reported data.²

CDCl₃) δ 7.49 – 7.39 (m, 2H), 7.22 (d, J = 8.0 Hz, 2H), 3.48-3.26 (m, 4H), 3.01 (ddd, J = 10.9, 6.4, 3.6 Hz, 2H), 2.84 (ddd, J = 11.6, 6.4, 3.6 Hz, 2H), 2.31 (s, 3H), 1.34 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 154.4, 141.5, 139.3, 129.6, 126.0, 80.0, 45.5, 28.3, 21.3. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₆H₂₅N₂O₃S⁺ 325.1580; found 325.1587; IR (v_{max}/cm⁻¹) 2974, 2922, 2856, 1693, 1417, 1248, 1167, 1090, 1068. The spectra are in agreement with reported data.⁷

4-methyl-*N*-phenylbenzenesulfinamide (**2g**). Prepared according to the general procedure A using TsCl (155 mg, 0.81 mmol). Purification by column chromatography (30% of EtOAc in cyclohexane) afforded the product as a yellowish solid (117 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.61 (m,

2H), 7.37 – 7.21 (m, 4H), 7.14 – 6.99 (m, 3H), 6.23 (s, 1H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 141.6, 140.9, 129.9, 129.6, 125.6, 123.6, 118.9, 21.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₄NOS⁺ 232.0791; found 232.0795; IR (v_{max}/cm⁻¹) 3089, 3070, 3043, 2858, 1088, 1053, 1043, 758. The spectra are in agreement with reported data.²

4-bromo-*N*-(4-iodophenyl)benzenesulfinamide (**2h**). Prepared according to the general procedure B (neat) using 4-bromobenzenethiol (189 mg, 1 mmol). Purification by column chromatography (1% of MeOH in CH₂Cl₂) afforded the product as a white solid (144 mg, 34%). ¹H NMR (400 MHz, DMSO) δ 9.53 (s, 1H), 7.84 – 7.76 (m, 2H), 7.70 – 7.61 (m,

2H), 7.60 – 7.51 (m, 2H), 6.95 – 6.82 (m, 2H); ¹³C NMR (101 MHz, DMSO) δ 144.1, 141.9, 138.2, 132.6, 128.3, 125.3, 120.6, 85.9. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₂H₁₀BrINOS⁺ 421.8706; found 421.8696; IR (v_{max}/cm⁻¹) 3126, 1088, 1053, 1005.

4-bromo-*N*-(6-methylpyridin-2-yl)benzenesulfinamide (**2i**). Prepared according to the general procedure B (neat) using 4-bromobenzenethiol (189 mg, 1 mmol). Purification by column chromatography (50 to 100% of EtOAc and 1% Et₃N in cyclohexane) afforded the product as a white solid (182 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.62 (m, 4H),

7.52 – 7.43 (m, 1H), 7.08 (s, 1H), 6.80 (d, J = 7.5 Hz, 1H), 6.74 (d, J = 8.1 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.0, 153.0, 143.7, 138.8, 132.5, 127.3, 126.4, 118.1, 107.3, 24.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₂H₁₂BrN₂OS⁺ 310.9848; found 310.9848; IR (v_{max}/cm⁻¹) 3109, 1597, 1570, 1450, 1375, 1294, 1225, 1095, 1065.

4. Synthesis of Sulfonimidamides

General procedure C:

Sulfonimidamides were prepared according to a modified protocol.⁵

A sulfinamide (0.1 mmol) was dissolved in MeCN (2 mL) and trichloroisocyanuric acid (8 mg, 0.033mmol) was added. The reaction mixture was stirred at rt for 30 min. Then, a solution of morpholine (18 μ L, 0.2 mmol) and Et₃N (28 μ L, 0.2 mmol) in MeCN (0.2 mL) was added and the resulting mixture was stirred at rt for 60 min. The reaction mixture was diluted with EtOAc (20 mL), washed with saturated aq. NaHCO₃ solution (10 mL) and brine (10 mL). The combined organic phase was dried over anhydrous MgSO₄, concentrated under reduced pressure. Purification with column chromatography on silica gel afforded the product.

4-(4-methyl-*N*-phenylphenylsulfonimidoyl)morpholine (**3a**). Prepared according to the general procedure C using **1a** (25 mg, 0.1 mmol). Purification by column chromatography (40% of EtOAc in cyclohexane) afforded the product as a colorless oil, which solidified on standing to a white solid (25 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.71 (m, 2H), 7.50 – 7.43 (m, 2H),

7.36 – 7.17 (m, 5H), 4.49 (d, J = 14.7 Hz, 1H), 4.35 (d, J = 14.8 Hz, 1H), 3.68 – 3.53 (m, 4H), 2.93 (ddd, J = 11.9, 5.5, 3.5 Hz, 2H), 2.83 (ddd, J = 11.8, 5.8, 3.6 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 141.6, 132.0, 129.6, 128.4, 128.2, 127.7, 126.7, 66.5, 47.1, 45.5, 21.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₂₃N₂O₂S⁺ 331.1475; found 321.1479; IR (v_{max}/cm⁻¹) 2966, 2854, 1452, 1257, 1146, 1113, 1065, 931, 715.

4-(*N*-benzyl-4-bromophenylsulfonimidoyl)morpholine (**3b**). Prepared according to the general procedure C using **1p** (31 mg, 0.1 mmol). Purification by column chromatography (50% of EtOAc in cyclohexane) afforded the product as a white solid (34 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.75 (m, 2H), 7.70 – 7.65 (m, 2H), 7.51 – 7.44 (m, 2H), 7.39 – 7.31 (m, 2H),

7.28 – 7.22 (m, 1H), 4.50 (d, J = 14.6 Hz, 1H), 4.35 (d, J = 14.7 Hz, 1H), 3.70 – 3.58 (m, 4H), 2.96 (ddd, J = 11.9, 5.8, 3.7 Hz, 2H), 2.85 (ddd, J = 11.7, 5.8, 3.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 134.1, 132.1, 129.5, 128.3, 127.52, 127.48, 126.7, 66.3, 46.9, 45.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₂₀BrN₂O₂S⁺ 395.0423; found 395.0412; IR (v_{max}/cm^{-1}) 3259, 2854, 1703, 1574, 1452, 1257, 1147, 1111, 1066, 1009, 931.

4-(*N*-benzyl-4-methoxyphenylsulfonimidoyl)morpholine (**3c**). Prepared according to the general procedure C using **1e** (26 mg, 0.1 mmol). Purification by column chromatography (30% of EtOAc in cyclohexane) afforded the product as an off-white solid (21 mg, 61%). ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.82 (m, 2H), 7.53 – 7.45 (m, 2H), 7.38 – 7.31 (m,

2H), 7.27 – 7.21 (m, 1H), 7.04 – 6.97 (m, 2H), 4.55 (d, J = 14.8), 4.36 (d, J = 14.7 Hz, 1H), 3.73 – 3.58 (m, 4H), 3.01 – 2.90 (m, 2H), 2.90 – 2.80 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 141.4, 130.1, 128.3, 127.5, 126.5, 126.5, 114.0, 66.3, 55.6, 47.0, 45.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₂₃N₂O₃S⁺ 347.1424; found 347.1423; IR (v_{max}/cm⁻¹) 3253, 2843,1593, 1495, 1441, 1255, 1146, 1111, 1065, 1026, 930.

4-(*N*-benzylmorpholine-4-sulfonimidoyl)benzonitrile (**3d**). Prepared according to the general procedure C using **1b** (26 mg, 0.1 mmol). Purification by column chromatography (30% of EtOAc in cyclohexane) afforded the product as an off-white solid (30 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.00 (m, 2H), 7.87 – 7.80 (m, 2H), 7.50 – 7.42 (m, 2H), 7.41 – 7.32 (m,

2H), 7.31 – 7.24 (m, 1H), 4.51 (d, J = 14.6 Hz, 1H), 4.36 (d, J = 14.6 Hz, 1H), 3.73 – 3.55 (m, 4H), 2.98 (ddd, J = 11.9, 5.9, 3.6 Hz, 2H), 2.88 (ddd, J = 11.8, 5.8, 3.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 139.7, 132.6, 128.5, 128.4, 127.5, 126.9, 117.5, 116.1, 66.2, 46.9, 45.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₂₀BrN₃O₂S⁺ 342.1271; found 342.1274; IR (ν_{max} /cm⁻¹) 3093, 2848, 2237, 1485, 1275, 1255, 1140, 1113, 1065, 937.

4-(*N*-benzyl-4-nitrophenylsulfonimidoyl)morpholine (**3e**). Prepared according to the general procedure C using **1o** (27.7 mg, 0.1 mmol). Purification by column chromatography (20% of EtOAc in cyclohexane) afforded the product as a white solid (30 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 8.41 – 8.35 (m, 2H), 8.14 – 8.08 (m, 2H), 7.50 – 7.44 (m, 2H),

7.40 – 7.33 (m, 2H), 7.31 – 7.24 (m, 1H), 4.525 (d, J = 14.6, 1H), 4.38 (d, J = 14.6 Hz, 1H), 3.72 – 3.58 (m, 4H), 3.00 (ddd, J = 12.0, 5.8, 3.6 Hz, 2H), 2.91 (ddd, J = 11.8, 6.0, 3.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 150.0, 141.2, 140.6, 129.1, 128.4, 127.5, 126.9, 124.0, 66.2, 46.9, 45.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₂₀N₃O₄S⁺ 362.1169; found 362.1163; IR (v_{max}/cm⁻¹) 3103, 2846, 1604, 1520, 1346, 1282, 1257, 1165, 1122, 1065, 935.

N-(4-(*N*-benzylmorpholine-4-sulfonimidoyl)phenyl)acetamide (**3f**). Prepared according to the general procedure C using **1d** (29 mg, 0.1 mmol). Purification by column chromatography (50 to 100% of EtOAc in cyclohexane) afforded the product as a white solid (25 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.80 (m, 2H), 7.73 (s, 1H), 7.70 – 7.62 (m, 2H),

7.51 – 7.44 (m, 2H), 7.38 – 7.31 (m, 2H), 7.27 – 7.21 (m, 1H), 4.50 (d, J = 14.6 Hz, 1H), 4.36 (d, J = 14.7 Hz, 1H), 3.73 – 3.56 (m, 4H), 3.02 – 2.90 (m, 2H), 2.85 (ddd, J = 11.8, 5.7, 3.6 Hz, 2H), 2.20 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 141.8, 141.2, 129.6, 129.2, 128.3, 127.6, 126.7, 119.1, 66.3, 47.0, 45.5, 24.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₂₀N₃O₄S⁺ 374.1533; found 374.1529; IR (v_{max}/cm⁻¹) 3317, 2852, 1699, 1674, 1589, 1527, 1255, 1136, 1111, 1065, 928.

Methyl 3-(*N*-phenylmorpholine-4-sulfonimidoyl)thiophene-2-carboxylate (**3g**). Prepared according to the general procedure C using **1g** (29 mg, 0.1 mmol). Purification by column chromatography (2.5% of MeOH in CH₂Cl₂) afforded the product as a colorless oil, which solidified on standing to a white solid (25 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 5.3 Hz, 1H),

7.42 – 7.38 (m, 3H), 7.33 – 7.28 (m, 2H), 7.24 – 7.18 (m, 1H), 4.44 – 4.37 (m, 1H), 4.30 – 4.23 (m, 1H), 3.81 (s, 3H), 3.69 – 3.59 (m, 4H), 3.27 – 3.16 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 141.1, 138.1, 135.4, 130.4, 128.3, 127.7, 127.4, 126.7, 66.7, 53.2, 47.1, 46.0, 29.8. HRMS (ESI): *m/z* [M+H]⁺

calcd for $C_{17}H_{21}N_2O_4S_2^+$ 381.0937; found 381.0937; IR (ν_{max}/cm^{-1}) 2954, 2852, 1734, 1439, 1282, 1257, 1236, 1066, 939, 735.

4-(*N*-benzylcyclohexanesulfonimidoyl)morpholine (**3h**). Prepared according to the general procedure C using **1j** (24 mg, 0.1 mmol). Purification by column chromatography (30% of EtOAc in cyclohexane) afforded the product as a white solid (23 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.37 (m, 2H), 7.36 – 7.28 (m, 2H), 7.25 – 7.17 (m, 1H), 4.36 (d, *J* = 14.7 Hz, 1H), 4.09 (d, *J* = 14.7 Hz, 1H)

1H), 3.69 - 3.53 (m, 4H), 3.41 - 3.24 (m, 4H), 3.13 - 3.00 (m, 1H), 2.36 - 2.26 (m, 1H), 2.13 - 2.03 (m, 1H), 1.97 - 1.85 (m, 2H), 1.77 - 1.67 (m, 1H), 1.67 - 1.50 (m, 2H), 1.38 - 1.15 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 128.2, 127.4, 126.4, 67.2, 62.1, 47.1, 45.2, 27.4, 26.7, 25.4, 25.4, 25.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₂₁N₂O₄S₂⁺ 323.1788; found 323.1793 IR (v_{max}/cm⁻¹) 2933, 2852, 1495, 1284, 1255, 1142, 1111, 1066, 939.

4-(*N*-benzyl-3-chloropropylsulfonimidoyl)morpholine (**3i**). Prepared according to the general procedure C using **1l** (23 mg, 0.1 mmol). Purification by column chromatography (30% of EtOAc in cyclohexane) afforded the product as a white solid (20 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.41 –

7.35 (m, 2H), 7.35 – 7.29 (m, 2H), 7.26 – 7.20 (m, 1H), 4.32 (d, J = 14.4 Hz, 1H), 4.11 (d, J = 14.4 Hz, 1H), 3.81 – 3.58 (m, 6H), 3.34 – 3.08 (m, 5H), 3.01 (ddd, J = 13.5, 8.5, 6.2 Hz, 1H), 2.50 – 2.29 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 128.3, 127.6, 126.6, 66.7, 46.6, 46.1, 45.3, 43.3, 26.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₂₂ClN₂O₂S⁺ 317.1090; found 317.1088; IR (v_{max}/cm⁻¹) 3388, 2856, 1495, 1255, 1111, 1066, 935.

5. References

- (1) Smith, C. R. Synlett 2009, 2009 (9), 1522–1523.
- (2) Wen, D.; Zheng, Q.; Wang, C.; Tu, T. Org. Lett. 2021, 23 (9), 3718–3723.
- (3) Zhang, Y.; Chitale, S.; Goyal, N.; Li, G.; Han, Z. S.; Shen, S.; Ma, S.; Grinberg, N.; Lee, H.; Lu, B. Z.; Senanayake, C. H. J. Org. Chem. 2012, 77 (1), 690–695.
- (4) Revés, M.; Riera, A.; Verdaguer, X. Eur. J. Inorg. Chem. 2009, 2009 (29-30), 4446-4453.
- (5) Lo, P. K. T.; Willis, M. C. J. Am. Chem. Soc. 2021, 143 (38), 15576–15581.
- (6) Taniguchi, N. Eur. J. Org. Chem. 2016, 2016 (12), 2157–2162.
- (7) Yu, H.; Li, Z.; Bolm, C. Angew. Chem. Int. Ed. 2018, 57 (47), 15602-15605.

Figure S1. ¹H NMR of 1a in CDCl₃.

Figure S2. ¹³C NMR of 1a in CDCl₃.

Figure S3. ¹H NMR of 1b in CDCl₃.

Figure S4. ¹³C NMR of **1b** in CDCl₃.

Figure S5. ¹H NMR of 1c in CDCl₃.

Figure S6. ¹³C NMR of 1c in CDCl₃.

Figure S7. ¹H NMR of 1d in CDCl₃.

Figure S8. ¹³C NMR of 1d in CDCl₃.

Figure S9. ¹H NMR of 1e in CDCl₃.

Figure S10. ¹³C NMR of 1e in CDCl₃.

Figure S11. ¹H NMR of **1f** in CDCl₃.

Figure S12. ¹³C NMR of 1f in CDCl₃.

Figure S13. ¹H NMR of 1g in CDCl₃.

Figure S14. ¹³C NMR of 1g in CDCl₃.

Figure S15. ¹H NMR of 1h in CDCl₃.

Figure S16. ¹³C NMR of 1h in CDCl₃.

Figure S17. ¹H NMR of **1i** in CDCl₃.

Figure S18. ¹³C NMR of 1i in CDCl₃.

Figure S19. ¹H NMR of 1j in CDCl₃.

Figure S20. ¹³C NMR of 1j in CDCl₃.

Figure S21. ¹H NMR of 1k in CDCl₃.

Figure S22. ¹³C NMR of 1k in CDCl₃.

Figure S23. ¹H NMR of 11 CDCl₃.

Figure S24. ¹³C NMR of 11 in CDCl₃.

Figure S25. ¹H NMR of 1m in CDCl₃.

Figure S26. ¹³C NMR of 1m in CDCl₃.

Figure S27. ¹H NMR of 1n in CDCl₃.

Figure S28. ¹³C NMR of 1n in CDCl₃.

Figure S29. ¹H NMR of 10 in CDCl₃.

Figure S30. ¹³C NMR of 10 in CDCl₃.

Figure S31. ¹H NMR of 1p in CDCl₃.

Figure S32. ¹³C NMR of 1p in CDCl₃.

Figure S33. ¹H NMR of 1q in CDCl₃.

Figure S34. ¹³C NMR of 1q in CDCl₃.

Figure S35. ¹H NMR of 1r in CDCl₃.

Figure S36. ¹³C NMR of 1r in CDCl₃.

Figure S37. ¹H NMR of 1s in CDCl₃.

Figure S38. ¹³C NMR of 1s in CDCl₃.

Figure S39. ¹H NMR of 1t in CDCl₃.

Figure S40. ¹³C NMR of 1t in CDCl₃.

Figure S41. ¹H NMR of 1u in CDCl₃.

Figure S42. ¹³C NMR of 1u in CDCl₃.

Figure S43. ¹H NMR of 1v in CDCl₃.

Figure S44. ¹³C NMR of 1v in CDCl₃.

Figure S45. ¹H NMR of 2b in CDCl₃.

Figure S46. ¹³C NMR of 2b in CDCl₃.

Figure S47. ¹H NMR of **2c** in CDCl₃.

Figure S48. ¹³C NMR of 2c in CDCl₃.

Figure S49. ¹H NMR of 2d in CDCl₃.

Figure S50. ¹³C NMR of 2d in CDCl₃.

Figure S51. ¹H NMR of 2e in CDCl₃.

Figure S52. ¹³C NMR of 2e in CDCl₃.

Figure S53. ¹H NMR of 2f in CDCl₃.

Figure S54. ¹³C NMR of 2f in CDCl₃.

Figure S55. ¹H NMR of 2g in CDCl₃.

Figure S56. ¹³C NMR of 2g in CDCl₃.

Figure S57. ¹H NMR of 2h in DMSO.

Figure S58. ¹³C NMR of 2h in DMSO.

Figure S59. ¹H NMR of 2i in CDCl₃.

Figure S60. ¹³C NMR of 2i in CDCl₃.

Figure S61. ¹H NMR of 3a in CDCl₃.

Figure S62. ¹³C NMR of 3a in CDCl₃.

Figure S63. ¹H NMR of 3b in CDCl₃.

Figure S64. ¹³C NMR of **3b** in CDCl₃.

Figure S65. ¹H NMR of 3c in CDCl₃.

Figure S66. ¹³C NMR of 3c in CDCl₃.

Figure S67. ¹H NMR of 3d in CDCl₃.

Figure S68. ¹³C NMR of 3d in CDCl₃.

Figure S69. ¹H NMR of 3e in CDCl₃.

Figure S70. ¹³C NMR of 3e in CDCl₃.

Figure S71. ¹H NMR of 3f in CDCl₃.

Figure S72. ¹³C NMR of 3f in CDCl₃.

Figure S73. ¹H NMR of 3g in CDCl₃.

Figure S74. ¹³C NMR of 3g in CDCl₃.

Figure S75. ¹H NMR of **3h** in CDCl₃.

Figure S76. ¹³C NMR of **3h** in CDCl₃.

Figure S77. ¹H NMR of 3i in CDCl₃.

Figure S78. ¹³C NMR of 3i in CDCl₃.