Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Unnatural tetradeoxy echinocandins produced by gene cluster design and

heterologous expression

Xionghui Yu,^{a,b} Qian Jiang,^{a,b} Xiaona Chen,^{a,b} Hongjun Shu,^{a,b} Yushan Xu,^{a,b} Huan Sheng,^{a,b} Yuchao Yu,^{a,b} Wenjie Wang,^{a,b} Nancy P. Keller,^{c,d} Jinzhong Xu, ^{a,b,*} Pinmei Wang,^{a,b,*}

^a Ocean College, Zhejiang University, Zhoushan 316021, China

^b Hainan Institute of Zhejiang University, Sanya 572025, China

^c Department of Medical Microbiology and Immunology, University of Wisconsin-Madison,

Madison, Wisconsin, USA

^d Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA

*Corresponding authors, E-mail: wangpinmei@zju.edu.cn, xujinzhong@zju.edu.cn

Content

Strains and culture conditions
Genetic manipulations
RNA extraction and semi-quantitative RT-PCR
Fermentation and HPLC/MS analysis
Purification of novel echinocandins and NMR characterization
Antifungal susceptibility test7
Stability experiment
Supplementary Tables
Table S1. Strains used in this study
Table S2. Plasmids constructed in this study. 10
Table S3. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data of ECE (1) and ECF (2) in CD ₃ OD10
Table S4. PCR primers used in this study. 12
Table S5. Antifungal susceptibility test 15
Supplementary Figures
Fig. S1 The strategy for integrating large NRPS gene ecdA and ecdI into yA locus of A. nidulans
LO803017
Fig. S2 Transcriptional analysis of echinocandin biosynthetic genes in LO8030-5.1
Fig. S3 ¹ H spectrum of ECE (compound 1) in CD ₃ OD (600 MHz)19
Fig. S4 ¹³ C spectrum of ECE (compound 1) in CD ₃ OD (150 MHz)19
Fig. S5 ¹ H- ¹³ C HSQC spectrum of ECE (compound 1) in CD ₃ OD20
Fig. S6 ¹ H- ¹ H COSY spectrum of ECE (compound 1) in CD ₃ OD20
Fig. S7 ¹ H- ¹³ C HMBC spectrum of ECE (compound 1) in CD ₃ OD21
Fig. S8 Comparison of ¹ H spectra of ECE (1) and ECF (2) in CD ₃ OD (600MHz)22
Fig. S9 ¹³ C spectrum of ECF (compound 2) in CD ₃ OD (150MHz)22
Fig. S10 ¹ H- ¹³ C HSQC spectrum of ECF (compound 2) in CD ₃ OD23
Fig. S11 ¹ H- ¹ H COSY spectrum of ECF (compound 2) in CD ₃ OD23
Fig. S12 ¹ H- ¹³ C HMBC spectrum of ECF (compound 2) in CD ₃ OD24
Fig. S13 The stability of ECE in methanol-water solution (pH 10)24
Supplementary References

Strains and culture conditions

The strains used in this study are listed in Table S1. The ECB producing strain *Emericella rugulosa* NRRL 11440, formally known as *Aspergillus pachycristatus*, was obtained from American Type Culture Collection (ATCC, USA). *E. rugulosa* and *A. nidulans* were maintained as glycerol stocks at -80 °C and activated at 37 °C on solid glucose minimum medium (GMM) ¹ supplemented as needed for auxotrophs. GMM was supplemented with 0.56 g/L uracil and 1.26 g/L uridine for *pyrG* auxotroph, 1mg/L pyridoxine HCl for *pyroA* auxotroph, and 2.5 mg/L riboflavin for *riboB* auxotroph. *Saccharomyces cerevisiae* BJ5464² was used for plasmid constructions via *in vivo* yeast recombination, and *Escherichia coli* DH5α was used for plasmid amplification.

Genetic manipulations

For genomic DNA (gDNA) extraction, *E. rugulosa* NRRL 11440 and *A. nidulans* were cultivated for 24 h at 37 °C in steady state liquid GMM, supplemented as necessary for auxotrophs. DNA extraction was carried out according to the standard protocol³. Echinocandin biosynthetic gene cluster (BGC) genes were cloned from *E. rugulosa* NRRL 11440 gDNA by PCR with high-fidelity DNA polymerase Primestar HS/MAX (Takara, Japan). All the primers used in this study are listed in Table S4. The lengthy NRPS gene *ecdA* was divided into four fragments *ecdA*1-4 (each 6-7kb) for PCR cloning.

As described previously, ⁴ plasmids (Table S2) were created to generate the expression cassettes for transformation via *in vivo* yeast recombination in *Saccharomyces cerevisiae* BJ5464. Some fragments of the plasmids were initially joined through double-joint PCR (DJ-PCR) ⁵ and then assembled via *in vivo* yeast recombination. The heterologous expression cassettes of *ecdA* and *ecdI* were integrated into the *yA* locus of *A. nidulans* LO8030 through three rounds of transformation. The 1st round transformation cassette from the plasmid pYX1 contained the xylose-inducible promoter *xylp* ⁶, the cloning fragments *ecdA*1 and *ecdA*2, the auxotrophic marker *A. fumigatus riboB* (*AfriboB*), and was flanked by 1 kb DNA fragments upstream and downstream of the gene *yA*. The cassette for the 2nd round transformation from the plasmid pYX5 consisted of the followings: the cloning fragment *ecdA*3 with a 1 kb overlap of *ecdA*2, the auxotrophic marker *A. parasiticus pyrG* (*AppyrG*), a constitutive promoter *gpdAp* ⁷, *ecdI*, and a 1kb DNA fragment downstream of the gene *yA*. The cassette used for the 3rd round transformation in the plasmid pYX9 had the cloning fragment *ecdA*4 with 1 kb overlap of *ecdA*3, *AfriboB* and *gpdAp*. The control plasmid pYX14 was constructed to obtain the cassette containing *xylp*, *AfriboB* and *gpdAp*. The plasmids above were digested with *Eco* RI or *Not* I to get the related cassettes for transforming *A. nidulans* LO8030. *A. nidulans* protoplast generation and transformation were carried out as previously described^{8,9}. The resulted transformant with *xylp-ecdA-AfriboB-gpdAp-ecdI* in the *yA* locus was designated LO8030-4.1, whereas the control transformant with *xylp-AfriboB-gpdAp* (control cassette from pYX14) in the *yA* locus was designated LO8030-4C.1.

Via *in vivo* yeast recombination, the "*E. coli*-yeast-*Aspergillus*" shuttle plasmid pYX10 was constructed to heterologous express the oxygenase genes *ecdK* and *htyE* in the transformant LO8030-4.1. The backbone of pYX10 comprises *ori*, 2μ and *AMA1* for self-replication in *E. coli*, yeast and *Aspergillus*, respectively. The genes *ecdK* and *htyE* of pYX10 were under the promoters *gpdAp* and *amyBp*¹⁰, respectively. The control plasmid pYX12 was identical to pYX10 but lacked the *ecdK* and *htyE* genes. The *A. nidulans* transformant with pYX10 was designated LO8030-5.1, while the control transformant with pYX12 was designated LO8030-5C.1. Later, another *AMA1*-based fungal-replicating plasmid pJQ10 (*amyBp-htyE-AppyrG*) was constructed and transformed into LO8030-4.1, the right transformant LO8030-4.2.1 was used for producing tetradeoxy echinocandin without gene *ecdK*.

RNA extraction and semi-quantitative RT-PCR

For transcriptional-level analysis of echinocandin BGC genes in the transformant LO8030-5.1 at different time points, the mycelia were collected in duplicate from *A. nidulans* LO8030-5.1 and its control LO8030-5C.1 for the indicated time during fermentation in XSMM with appropriate supplements. Total RNA was extracted using Trizol[®] reagent (Ambion), and DNase I (Promaga). cDNA was synthesized using a PrimeScript RT reagent Kit (TaKaRa) with 100ng DNase I-treated RNA. Semi-quantitative RT-PCR (semi-qPCR) was performed in a 25-µL reaction mixture with a template of 1 µL diluted cDNA (diluted 10 times) and 12.5 µL 2×Es Taq MasterMix (Cwbio, China). The internal control was Histone 2B gene (*H2B*), and the primers used for each of the indicated genes are listed in Table S4.

The expression level of different biosynthetic genes was tested on 3rd (left) and 7th (right) day *via* semi-qPCR. All the four genes transformed (*ecdA*, *ecdI*, *htyE*, and *ecdK*) were transcribed with varying degrees of expression. PCR template of RTC (reverse transcription control) was total RNA without reverse transcriptase to exclude the genomic DNA contamination. Echinocandin biosynthetic

genes ecdG, ecdH and htyF were not transformed into LO8030 as the negative control. The expression of H2B was used as the internal control.

Fermentation and HPLC/MS analysis

A. nidulans transformants LO8030-4.1 and LO8030-5.1 (Fig. S1), as well as their controls, were cultivated in the fermentation medium XSMM, which was derived from the liquid GMM and replaced the carbon source - glucose (10 g/L) with xylose (20 g/L) and starch (20 g/L). Linoleic acid (300 mg/L) was added to the fermentation medium for echinocandin production. Sufficient linoleic acid could enhance echinocandin production, since the activation of linoleic acid is the first step of the ECB biosynthesis process¹¹. Specifically, 1 mg/L pyridoxine HCl and 100 mg/L L-homoTyr were supplemented in the media of LO8030-4.2.1, LO8030-5.1 and its control LO8030-5C.1. Besides pyridoxine HCl and L-homoTyr, 0.56 g/L uracil, and 1.26 g/L uridine were supplemented in the media of LO8030-4C.1.

Fermentation was carried out in triplicate in a 500 mL flask with 100 mL XSMM medium for 12 days at 25 °C and 180 rpm. After the fermentation, mycelia were isolated from culture broth by filtration. Ultrasound-assisted extraction¹² was conducted in an ultrasonic bath (Shumei ultrasonic instrument, Kunshan, China) to extract metabolites from the mycelia. The mycelia were placed into a 500 mL volumetric flask with 100 mL methanol and sonicated in an ultrasonic bath at 25 °C for three 30 min cycles. The broth was extracted three times with an equal volume of ethyl acetate. The organic phases were combined and evaporated using a vacuum evaporator to remove the solvents. The extracts were dissolved in 1 mL methanol and filtered through 0.22 µm filters for HPLC and LC-MS analysis. 20 µL volumes of the filtrates were subjected to reverse-phase high-performance liquid chromatographic (RP-HPLC) on an Agilent 1260. A COSMOCIL C₁₈-MS-II column (4.6 × 250 mm, 5 µm) was used at 35 °C and a flow rate of 1 mL/min with a linear gradient of 10-100% MeOH-H₂O (ν/ν) for 60 min. Peaks of echinocandins were determined at 222 nm wavelength.

LC-MS analyses were performed on the Agilent UPLC-Triple-TOF 5600^+ LC/MS system using positive mode electrospray ionization. A Waters ACQUITY UPLC HSS SB-C₁₈ column (100 ×2.1 mm, 1.7 µm) was used with 0.1% formic acid in a linear gradient of 5-100% methanol and 0.1% formic acid in water as solvents at a flow rate of 0.4 mL/min.

Purification of novel echinocandins and NMR characterization

For purification of the novel echinocandins, the transformant LO8030-5.1 was grown in 10 L

XSMM medium for 12 days at 25 °C and 180 rpm. When the fermentation was finished, the broth was extracted three times with equal volumes of ethyl acetate and mycelium were extracted three times with 2 L methanol by ultrasonic wave. And then the organic phase was combined and distilled under reduced pressure to obtain the crude extracts (2.20 g). The extracts were separated by a silica gel column using CH₂Cl₂ /MeOH (50:1, 20:1, 10:1, 5:1, 2:1, 1:1) in turn as the mobile phase. Preliminary identification of the echinocandins in different sub-factions was performed by TLC and HPLC. Then, further purification was carried out by the semi-preparative HPLC using MeOH/H₂O (85:15, 3.0 mL/min), with a COSMOCIL C₁₈-MS-II column (10 × 250 mm, 5 μ m). Isolated compounds were dissolved in CD₃OD for NMR analysis. ¹H, ¹³C and 2D (¹H-¹³C HSQC, ¹H-¹³C HMBC and ¹H-¹H COSY) NMR spectra were recorded on a JEOL 600 MHz spectrometer.

Antifungal susceptibility test

A described broth microdilution method^{13,14} was used to evaluate the antifungal activity of the echinocandins against the growth of *Candida albicans* ATCC 10231. Amphotericin B was used as a positive control, while the solvent dimethyl sulfoxide (DMSO) was used as a negative control. *C. albicans* was cultured in Mueller-Hinton Broth (MHB) medium¹³ in 96-well plates at a concentration of 1×10^6 CFU/mL. Final concentrations of the four tested compounds (Amphotericin B, ECB, ECE and ECF) were 0.05 to 2.0 µg/mL (µg/mL: 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0). The MIC was determined after 12 h incubation at 37 °C.

Stability experiment

ECE (5.0 mg) was solved in 50% (ν/ν) methanol-water solution (2.5 mL) with the pH value of 10 and 1 mL to prepare the stock solution, which was incubated at 37 °C to test stability and measure the remaining concentration by HPLC analysis. At each stability time point (2, 4, 12, 14, 16, 24, 32, 43, 60, 84, and 166 h), 20 µL of the stock solution were injected into HPLC and separated on A COSMOCIL C₁₈-MS-II column (4.6 × 250 mm, 5 µm) at 35 °C. 85% MeOH-H₂O (ν/ν) was used to elute the samples with a flow rate of 1.0 mL/min and detective wavelength was 222 nm. The chromatographic peak area was used to present the remaining concentrations.

Supplementary Tables

Table S1. Strains used in this study.

Table S2. Plasmids constructed in this study.

Table S3. 1 H (600 MHz) and 13 C (150 MHz) NMR data of ECE (1) and ECF (2) in CD₃OD

Table S4. PCR primers used in this study

Table S5. Antifungal susceptibility test

Table S1. Strains used in this study.

Strain	Description	Purpose	Resource	
Emericalla mendosa NPPI 11440	Wild type	To obtain <i>ecd/hty</i>	ATCC	
Emericella rugulosa NRRL 11440	wha type	BGC genes	AICC	
Escherichia coli DH5α	/	Plasmid cloning and storage	In the lab	
Sachananiaia DI5464	MATalpha, <i>ura</i> 3-52, <i>trp</i> 1, <i>leu</i> 2-Δ1, <i>his</i> 3-Δ200, <i>pep</i> 4:: <i>HIS</i> 3, <i>prb</i> 1-Δ1.6R,	Plasmid construction	2	
Saccharomyces cerevisiae BJ5464	can1, GAL	Plasmid construction	2	
	pyrG89, pyroA4, riboB2,KO-DELETE :ST:::pyrG (Afu) integration(native);			
	KO-DELETE :emericellamide:::pyrG (Afu) integration(native); KO-DELETE			
	:asperfuranone:::pyrG (Afu) integration(native); KO-DELETE			
Aspergillus nidulans LO8030 ª	:monodictyphenone::pyrG (Afu) integration(native); KO-DELETE	Chassis strain	15	
	:terrequinone::pyrG (Afu) integration(native); KO-DELETE :austinol::pyrG			
	(Afu) integration(native); KO-DELETE :F9775A/B::pyrG (Afu)			
	integration(native); KO-DELETE :asperthecin::pyrG (Afu) integration(native)			
LO8030-1.1/1.3/1.6 ^b	pyrG89, pyroA4, ДуА::(xylp-ecdA1-2-AfriboB)	1st transformants	This study	
LO8030-2.2/2.4/2.5 ^b	pyroA4, riboB2, ДуА::(xylp-ecdA1-2-ecdA3-gpdAp-ecdI-AppyrG)	2nd transformants	This study	
LO8030-4.1/4.2/4.3 b	pyrG89, pyroA4, ДуА::(xylp-ecdA-gpdAp-ecdI-AfriboB)	3rd transformants	This study	
LO8030-5.1/5.2/5.3/5.4/5.5/5.6 b	pyroA4, ДуА::(xylp-ecdA-gpdAp-ecdI-AfriboB), pYX10	4th transformants	This study	
LO8030-4.2.1	<i>pyro</i> A4, <i>ΔyA::(xylp-ecdA-gpdAp-ecdI-AfriboB</i>), pJQ10	LO8030-5.1 without <i>ecdK</i>	This study	
LO8030-4C.1	mur (20 murs AA Au Au (mala and An Afrika D)	Control for 3rd transformants	T1 · / 1	
	pyrG89, pyroA4, ∆yA::(xylp-gpdAp-AfriboB)	without biosynthetic genes	This study	
L 09020 5C 1	$m_{\rm W} \Delta A$ (where $m_{\rm H} = m_{\rm H} A$ (with $p_{\rm H}$) $m_{\rm W} = 100$	Control for 4th transformants	This strate	
LO8030-5C.1	pyroA4, ДуА::(xylp-gpdAp-AfriboB), pYX12	without biosynthetic genes	This study	

^a The description of *Aspergillus nidulans* LO8030 transformants omit the same part as LO8030.

^b 1.1/1.3/1.6, 2.2/2.4/2.5, 4.1/4.2/4.3 and 5.1/5.2/5.3/5.4/5.5/5.6 mean different transformants in each round of transformation.

Table S2. Plasmids constructed in this stud	ly.
---	-----

Name	Description	Purpose
pYX1	xylp-ecdA1-2-AfriboB	Contain cassette for 1st tranformation
pYX5	ecdA3-AppyrG-gpdAp-ecdI	Contain cassette for 2 nd tranformation
pYX9	ecdA4-AfriboB-gpdAp	Contain cassette for 3 rd tranformation
pJQ10	amyBp-htyE-AppyrG, AMA1	Heterologous expression of htyE
pYX10	amyBp-htyE-gpdAp-ecdK-AppyrG, AMA1	Heterologous expression of oxygenase genes
pYX14	xylp-AfriboB-gpdAp, AMA1	Contain cassette for control transformant
pYX12	amyBp- gpdAp-AppyrG, AMA1	Control for pYX10

Table S3. ¹H (600 MHz) and ¹³C (150 MHz) NMR data of ECE (1) and ECF (2) in CD₃OD

position	1	2	position	1	2
1 st L-Orn					
C-1	175.0	175.1			
C-2	53.4	53.5	2-H	4.38	4.39
C-3	28.4	28.4	3-H ₂	1.54, 2.06	1.54 , 2.10
C-4	25.1	25.1	4-H ₂	1.69, 1.69	1.69 , 1.69
C-5	38.5	38.5	5-H ₂	3.02, 3.41	2.98, 3.47
2 nd L-Thr					
C-1	172.8	172.9			
C-2	58.9	58.9	2-Н	4.81	4.83
C-3	68.5	68.7	3-Н	4.41	4.42
C-4	19.9	19.9	4-H	1.26 (d <i>, J</i> = 6.3 Hz)	1.26 (d, J = 6.3 Hz)
3 rd 4 <i>R</i> -OH-L-Pro)				
C-1	173.8	173.8			
C-2	62.3	62.3	2-Н	4.55	4.54
C-3	38.7	38.7	3-H ₂	1.82, 2.32	1.81 , 2.32
C-4	71.4	71.4	4-H	4.49	4.48
C-5	57.2	57.2	5-H ₂	3.76, 3.76	3.75, 3.75
4 th L-homoTyr					
C-1	174.0	174.0			

C-2	55.4	55.4	2-Н	4.23	4.26
C-3	34.5	34.5	3-H ₂	2.14, 2.24	2.11, 2.24
C-4	33.0	33.0	4-H ₂	2.58, 2.58	2.58, 2.58
C-1'	133.2	133.2		2.000,2.000	2.00, 2.00
C-2'/ C-6'	130.6	130.6	2'/ 6'- H	7.01	7.01
C-3'/ C-5'	116.4	116.4	3'/ 5'- H	6.70	6.70
C-4'	156.9	156.9			
5 th L-Thr			· · ·		L
C-1	170.8	170.6			
C-2	56.7	56.6	2-Н	4.90	4.89
C-3	69.4	69.5	3-Н	4.27	4.23
C-4	20.6	20.6	4-H	1.18 (d, J = 6.5 Hz)	1.18 (d, J = 6.5 Hz)
6th 3S-OH-L-Pro	o/ 3S-OH-4S-Me-L	-Pro		3 · · · · · · · · · · · · · · · · · · ·	
C-1	172.5	172.6			
C-2	70.1	69.9	2-Н	4.34	4.22
C-3	76.0	74.3	3-Н	4.18	4.35
C-4	39.1	34.5	4-H ₂ / H	2.45	1.97 , 2.24
C-5	52.9	46.8	5-H ₂	3.39, 3.88	3.81, 3.81
4-CH ₃	11.5		4-CH ₃	1.06 (d, J = 6.5 Hz)	
Fatty acid side cl	nain				
C-1	176.7	176.7			
C-2	36.9	37.0	2-Н	2.23 (m, 2H)	2.24 (m, 2H)
C-3	27.2	27.2	3-Н	1.60 (m, 2H)	1.61 (m, 2H)
C-8 / C-14	28.3, 28.3	28.3, 28.3	8-H / 14-H	2.06 (m, 4H)	2.06 (m, 4H)
C-9 / C-10 /	131.1, 131.1	131.1, 131.1	9-Н / 10-Н /12-	5.29-5.39 (m, 4H)	5.29-5.39 (m, 4H)
C-12 / C-13	129.2, 129.2	129.2, 129.2	Н / 13-Н	· · · · · · · · · · · · · · · · · · ·	
C-11	26.7	26.7	11-H	2.77 (t, $J = 6.8$ Hz,	2.78 (t, $J = 6.8$ Hz,
				2H)	2H)
C-4 / C-5 /	32.8, 30.9	32.8, 30.9	4-H / 5-H /6-H	1.28-1.39 (m, 14H)	1.28-1.39 (m, 14H)
C-6 / C-7 /	30.6, 30.5	30.6, 30.5	/ 7-H /15-H /		
C-15 / C-16 /	30.4, 30.4	30.4, 30.4	16-Н /17-Н		
C-17	23.8	23.8			
C-18	14.6	14.6	18-H	0.91 (t, $J = 7.2$ Hz,	0.91 (t, $J = 7.2$ Hz,
				3H)	3H)

Name	Sequence (5'-3')	Purpose	
ecdA1-F	ATGCACAGAACCAACGAGATGG		
ecdA1-R	TCGCTGCAGGTGGAGTGAATG	Amplification of <i>ecdA</i>	
ecdA2-F	CGTTTGCGACCCTTACCTCTAC	Amplification of and 42	
ecdA2-R	TGGCCTGCTCCTCAACCATTTC	Amplification of <i>ecdA</i> 2	
oYX1 <i>-riboB-yA</i> dn-F	AACAATGTGTGCATGAAATGGTTGAGGAGCAGGCCAGCGGACTGAGTTATGGATGAC	Amplification of AfriboB	
oYX1 <i>-riboB-yA</i> dn-R	AGGAACCGAAATACATACATTGTCTTCCGTAAAGCCCCAGTCACGACGTTGTAAAAC	<i>yA</i> -dn for pYX1	
pYX1-AscI-F	GCTTTACGGAAGACAATG	Amplification of backbor	
pYX1-AscI-R	CAATTCCACACAACATACGAGCCGGAAGCATAAAGAATTCGGGTGCCTAATGAGTGAG	for pYX1	
pYX1 <i>-yA</i> up-F	TTTATGCTTCCGGCTCG	Amplification of <i>yA</i> -up f	
pYX1-yAup-R	ATAAGTATACTCTATTGACCTATAGGACCTGAGTGATGCTCGGCTTGATGTTGTTCG	pYX1	
pYX1 <i>-xylp-</i> F	GCATCACTCAGGTCCTATAGG	Amplification of <i>xylp</i> fo	
pYX1 <i>-xylp-</i> R	CAGTTGGTTCTTCGAGTCGATG	pYX1	
ecdA3-F	ACTCATTAGGCACCCAAATATGCGGCCGCTATAAAGAACAGTTCTTCGTATGGACG	A multipaction of and 12	
ecdA3-R	CTTTCGTTGGATCTGGTATTC	Amplification of <i>ecdA</i> 3	
pYX5 <i>-pyrG-</i> F	CGAGGTCGGTGAGGTTGAATACCAGATCCAACGAAAGAGCTTATACGAACAGATGG	Amplification of Appyr	
pYX5 <i>-pyrG-</i> R	CAAATAGAATTAAATGGTACTCGAGTCCACTGAAGGTGCCCAACGCATTCTTCATG	for pYX5	
pYX5-gpdA-F	CACCTTCAGTGGACTCGAGTAC	Amplification of gpdAp f	
pYX5-gpdA-R	CCAGTTGGCTGCACCATGCTGGGGGAAGTGAAGACCATTGTGATGTCTGCTCAAGCG	pYX5	
ecdI-F	ATGGTCTTCACTTCCCCAGCATG		
ecdI-R	CCAAGGCGCATGTACTAGTCAAG	Amplification of <i>ecdI</i>	
pYX5-yA-dn-F	GTATCATAACAATCTTGACTAGTACATGCGCCTTGGGGGGGTTGATGTTTGGGATTC	Amplification of yA-dn	
pYX5-yA-dn-R	ACATTGTCTTCCGTAAAGCTTTATAGCGGCCGCATATTTCCTCGGTTCAGTCTTACTAG	for pYX5	

Table S4. PCR primers used in this study.

pYX5-AscI-F	AAATATGCGGCCGCTATAAAGCTTTACGGAAGACAATG	Amplification of backbone
pYX5-AscI-R	TTTATAGCGGCCGCATATTTGGGTGCCTAATGAGTGAG	for pYX5
ecdA4-F	GACCTTGCTGCCTCATTTGC	A multification of and 11
ecdA4-R	GGCTCCCTTTATGCTCTTCG	Amplification of <i>ecdA</i> 4
pYX9 <i>-riboB-</i> F	AGTCAGACAATGTTCCGAAGAGCATAAAGGGAGCCGCGGACTGAGTTATGGATGAC	Amplification of <i>AfriboB</i>
pYX9- <i>riboB</i> -R	CAACAAGTGCCACTCAACGC	for pYX9
pYX9-gpdAp-F	TCACTGAGTCAATGGCGTTGAGTGGCACTTGTTGCACCTTCAGTGGACTCGAGTAC	Amplification of gpdAp
pYX9-gpdAp-R	ATTGTCTTCCGTAAAGCTTTATAGCGGCCGCATATTTTGTGATGTCTGCTCAAGCG	for pYX9
pYX9-AscI-F	AAATATGCGGCCGCTATAAAGCTTTACGGAAGACAATG	Amplification of healthons
pYX9-AscI-R	AGCAAATGAGGCAGCAAGGTCTTTATAGCGGCCGCATATTTGGGTGCCTAATGAGTGA	Amplification of backbone
	G	for pYX9
pYX14-yA-up -F	ACTCATTAGGCACCCAAATATGCGGCCGCTATAAATTTATGCTTCCGGCTCGTAT	Amplification of <i>yA</i> -up for
pYX14-yA-up -R	ATAAGTATACTCTATTGACCTATAGGACCTCGGCTTGATGTTGTTCG	pYX14
pYX14- <i>xylp</i> -F	ACGGAAGCGCGCAGTCGGCG	Amplification of <i>xylp</i> for
pYX14- <i>xylp</i> -R	GAAAGGGAGTCATCCATAACTCAGTCCGCAGTTGGTTCTTCGAGTCGATG	pYX14
pYX14- <i>riboB</i> -F	GCGGACTGAGTTATGGATGAC	Amplification of AfriboB
pYX14-riboB-R	CAACAAGTGCCACTCAACGC	for pYX14
pYX14-gpdAp-F	GAGTCAATGGCGTTGAGTGGCACTTGTTGCACCTTCAGTGGACTCGAGTAC	Amplification of gpdAp
pYX14-gpdAp-R	TGTGATGTCTGCTCAAGCG	for pYX14
pYX14-yA-dn-F	ACAGCTACCCCGCTTGAGCAGACATCACAGGGGTTGATGTTTGGGATTC	Amplification of <i>yA</i> -dn for
pYX14-yA-dn-R	TGTCTTCCGTAAAGCTTTATAGCGGCCGCATATTTCCTCGGTTCAGTCTTACTAG	pYX14
pYX14-AscI-F	AAATATGCGGCCGCTATAAAGCTTTACGGAAGACAATGTA	Amplification of backbone
pYX14-AscI-R	TTTATAGCGGCCGCATATTTGGGTGCCTAATGAGTGAGCT	for pYX14
pYX10-amyBp-F	CCATCATGGTGTTTTGATC	Amplification of <i>amyBp</i> for
pYX10-amyBp-R	AATTCGGAGCTTGCTGTGG	pYX10

pYX10-htyE-F	TTCTCTGAACAATAAACCCCACAGCAAGCTCCGAATTATGGCTATCACTACGCTAG	
pYX10-htyE-R	TGTCAACTACGACTGTCATG	Amplification of <i>htyE</i>
pYX10-gpdAp-F	CTCATATTCATATTCATGACAGTCGTAGTTGACACACCTTCAGTGGACTCGAGTAC	Amplification of gpdAp
pYX10-gpdAp-R	TGTGATGTCTGCTCAAGCG	for pYX10
pYX10- <i>ecdK</i> -F	CTTGACTAACAGCTACCCCGCTTGAGCAGACATCACAATGTCTGTTCTAACTCTCG	
pYX10-ecdK-R	GGAATAGTCCTCTCGGGCCATCTGTTCGTATAAGCTGATAAACAGCAGGTGACATG	Amplification of <i>ecdK</i>
pYX10-pyrG-F	AGCTTATACGAACAGATGG	Amplification of <i>AppyrG</i>
pYX10-pyrG-R	ATACAAAAAATAAGCTGGCTTTCCCCGTCAAGCTCTAACCCAACGCATTCTTCATG	for pYX10
pYX10-AMA1-F	TTAGAGCTTGACGGGGAAAGC	Amplification of AMM1
pYX10-AMA1-R	CCAGGAACCGAAATACATACATTGTCTTCCGTAAAGCACTCTAGAGGATCCTGCAG	for pYX10
pYX10-AscI-F	GCTTTACGGAAGACAATG	Amplification of backbone
pYX10-AscI-R	CCATATAAAAATTTAAAATGATCAAAAACACCATGATGGGGGGGG	for pYX10
pYX12-gpdAp-F	TCTGAACAATAAACCCCACAGCAAGCTCCGAATTCACCTTCAGTGGACTCGAGTAC	Amplification of gpdAp
pYX12-gpdAp-R	CGGAATAGTCCTCTCGGGCCATCTGTTCGTATAAGCTTGTGATGTCTGCTCAAGCG	for pYX12
pJQ10- <i>pyrG/AMA1</i> -F	AGCTTATACGAACAGATGG	Amplification of <i>pyrG</i> -
pJQ10- <i>pyrG/AMA1</i> -R	CCAGGAACCGAAATACATACATTGTCTTCCGTAAAGCACTCTAGAGGATCCTGCAG	AMA1 for pJQ10
pJQ10-AscI-F	GCTTTACGGAAGACAATG	Amplification of backbone
pJQ10-AscI-R	GGGTGCCTAATGAGTGAG	for pJQ10
pJQ10- <i>amyBp/htyE-</i> F	CGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCCATCATGGTGTTTTGATC	Amplification of amyBp-
pJQ10-amyBp/htyE-R	CGGAATAGTCCTCTCGGGCCATCTGTTCGTATAAGCTTGTCAACTACGACTGTCATG	<i>htyE</i> for pJQ10
RT-ecdA-F	TTCTCCGGGTCTTCTTGTC	
RT-ecdA-R	TTCTTCCCATTCTGGTGTC	Semi-quantitative
RT-ecdI-F	TCTTTGGCATTAACGACG	RT-PCR
RT-ecdI-R	CTGTGACCCTTGGGAATAC	

RT-ecdK-F	ATCTGCCTGTGCGGTTTG	
RT-ecdK-R	ATCCTGGAACGATGGACG	
RT-htyE-F	TTTGTTCGGCGAATCATCG	Semi-quantitative
RT- <i>htyE</i> -R	GCAACGCAGTCAAATGGTC	RT-PCR
RT- <i>H2B</i> -F	CTGCCGAGAAGAAGCCTAGCAC	
RT- <i>H2B</i> -R	GAAGAGTAGGTCTCCTTCCTGGTC	

 Table S5. Antifungal susceptibility test

U	1 2
Compounds	MIC (µg/mL)
ECB	0.4
ECE	0.6
ECF	1.0
Amphotericin B	0.2

Supplementary Figures

Fig. S1 The strategy for integrating large NRPS gene *ecdA* and *ecdI* into *yA* locus of *A. nidulans* LO8030

Fig. S2 Transcriptional analysis of echinocandin biosynthetic genes in LO8030-5.1

Fig. S3 ¹H spectrum of ECE (compound 1) in CD₃OD (600 MHz)

Fig. S4 ¹³C spectrum of ECE (compound 1) in CD₃OD (150 MHz)

Fig. S5 ¹H-¹³C HSQC spectrum of ECE (compound 1) in CD₃OD

Fig. S6 ¹H-¹H COSY spectrum of ECE (compound 1) in CD₃OD

Fig. S7 ¹H-¹³C HMBC spectrum of ECE (compound 1) in CD₃OD

Fig. S8 Comparison of ¹H spectra of ECE (1) and ECF (2) in CD₃OD (600MHz)

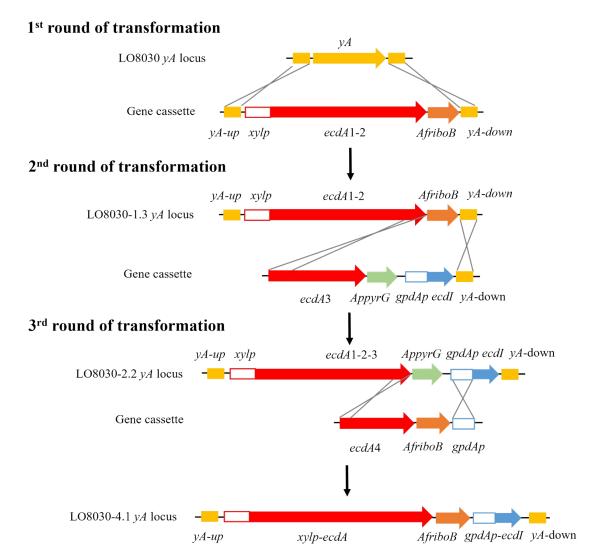
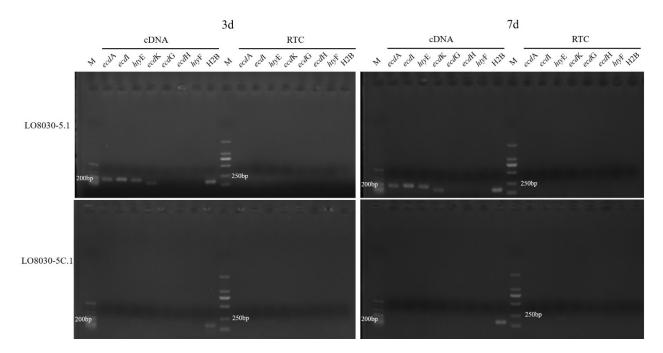

Fig. S9 ¹³C spectrum of ECF (compound 2) in CD₃OD (150 MHz)

Fig. S10 ¹H-¹³C HSQC spectrum of ECF (compound 2) in CD₃OD


Fig. S11 ¹H-¹H COSY spectrum of ECF (compound 2) in CD₃OD

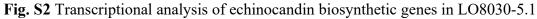

Fig. S12 ¹H-¹³C HMBC spectrum of ECF (compound 2) in CD₃OD

Fig. S13 The stability of ECE in methanol-water solution (pH 10)

Fig. S1 The strategy for integrating large NRPS gene *ecdA* and *ecdI* into *yA* locus of *A. nidulans* LO8030

The expression level of different biosynthetic genes was tested on 3^{rd} (left) and 7^{th} (right) day *via* semi-qPCR. All the four genes transformed (*ecdA*, *ecdI*, *htyE*, and *ecdK*) were transcribed with varying degrees of expression. PCR template of RTC (reverse transcription control) was total RNA without reverse transcriptase to exclude the genomic DNA contamination. Echinocandin biosynthetic genes *ecdG*, *ecdH* and *htyF* were not transformed into LO8030 as the negative control. The expression of *H2B* was used as the internal control.

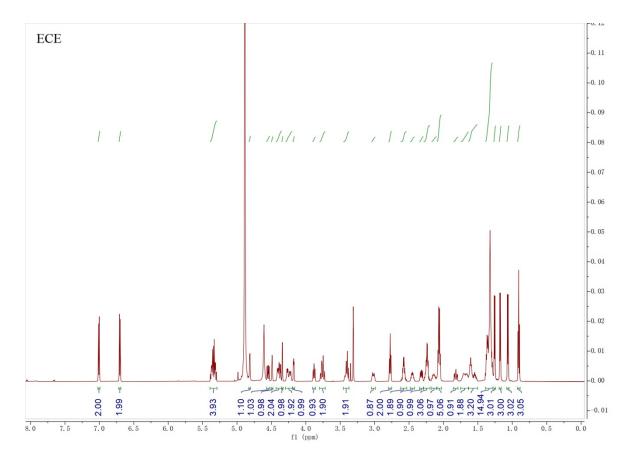


Fig. S3 ¹H spectrum of ECE (compound 1) in CD₃OD (600 MHz)

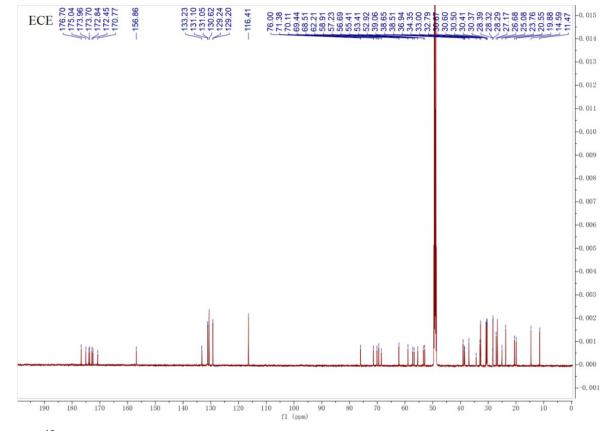


Fig. S4 ¹³C spectrum of ECE (compound 1) in CD₃OD (150 MHz)

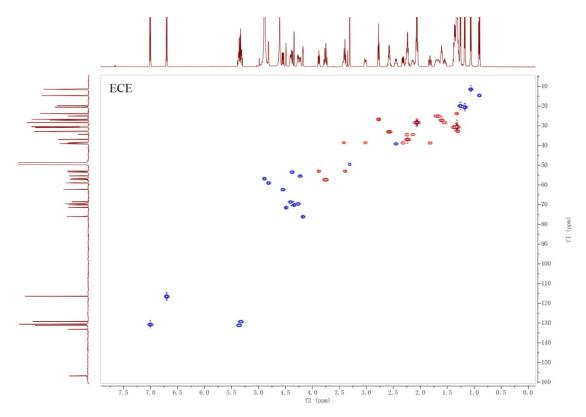


Fig. S5 $^{1}H^{-13}C$ HSQC spectrum of ECE (compound 1) in CD₃OD

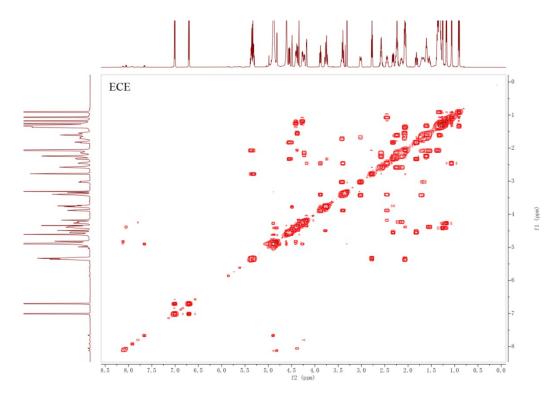


Fig. S6 $^{1}H^{-1}H$ COSY spectrum of ECE (compound 1) in CD₃OD

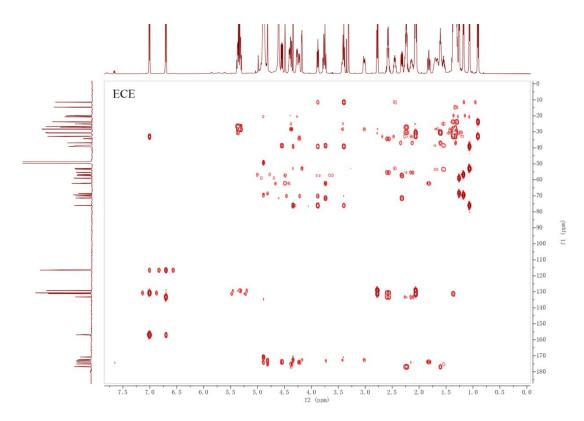


Fig. S7 ¹H-¹³C HMBC spectrum of ECE (compound 1) in CD₃OD

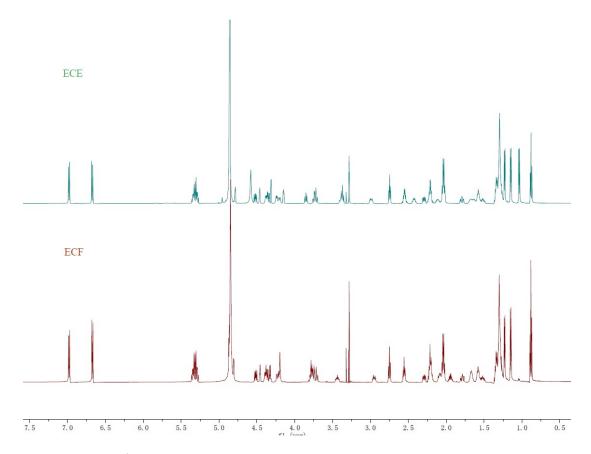


Fig. S8 Comparison of ¹H spectra of ECE (1) and ECF (2) in CD₃OD (600MHz)

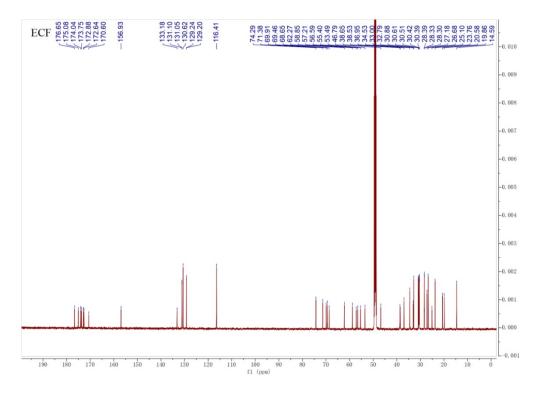


Fig. S9 ¹³C spectrum of ECF (compound 2) in CD₃OD (150MHz)

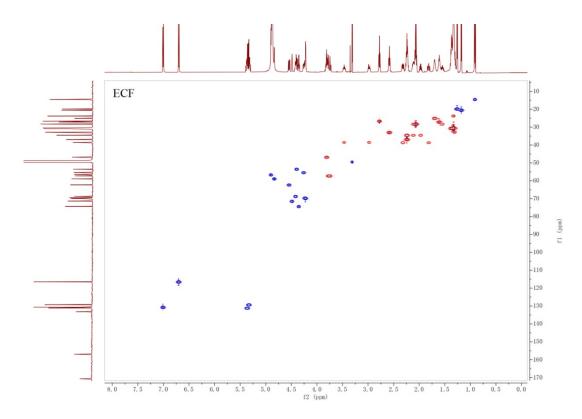


Fig. S10 ¹H-¹³C HSQC spectrum of ECF (compound 2) in CD₃OD

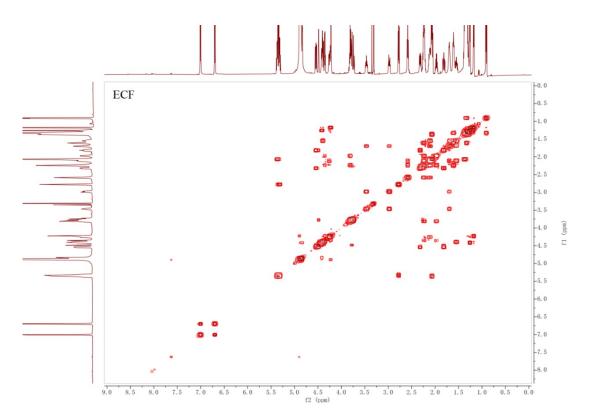


Fig. S11 ¹H-¹H COSY spectrum of ECF (compound 2) in CD₃OD

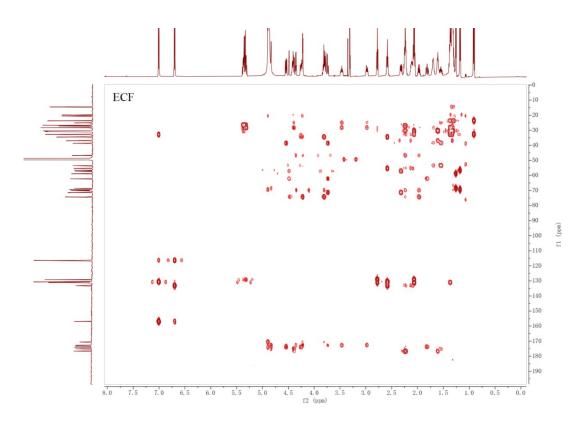


Fig. S12 ¹H-¹³C HMBC spectrum of ECF (compound 2) in CD₃OD

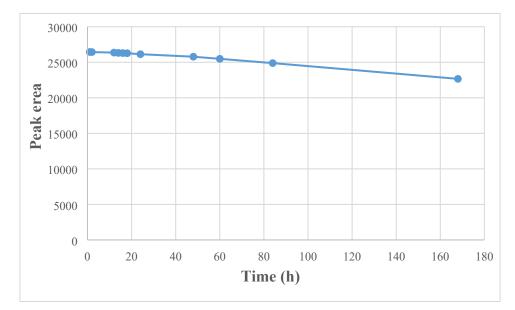


Fig. S13 The stability of ECE (1) in methanol-water solution (pH 10)

Supplementary References

- 1 K. Shimizu and N. P. Keller, *Genetics*, 2001, 157, 591-600.
- 2 W. B. Yin, Y. H. Chooi, A. R. Smith, R. A. Cacho, Y. C. Hu, T. C. White and Y. Tang, *ACS Synth. Biol.*, 2013, **2**, 629-634.
- 3 J. Sambrook, *A laboratory manual*. 2001; Vol. 1.
- 4 P. M. Wang, T. Choera, P. Wiemann, T. Pisithkul, D. Amador-Noguez and N. P. Keller, *Fungal Genet. Biol.*, 2016, **89**, 102-113.
- 5 J. H. Yu, Z. Hamari, K. H. Han, J. A. Seo, Y. Reyes-Dominguez and C. Scazzocchio, *Fungal Genet. Biol.*, 2004, **41**, 973-981.
- 6 I. Zadra, B. Abt, W. Parson and H. Haas, Appl. Environ. Microbiol., 2000, 66, 4810-4816.
- 7 P. M. Wang, T. Choera, P. Wiemann, T. Pisithkul, D. Amador-Noguez and N. P. Keller, *Fungal Genet. Biol.*, 2016, **89**, 102-13.
- 8 Z. Ma, W. Li, P. Zhang, H. Lyu, Y. Hu and W. B. Yin, *Appl. Microbiol. Biotechnol.*, 2018, **102**, 297-304.
- 9 J. W. Bok and N. P. Keller, *Eukaryot. Cell*, 2004, **3**, 527-535.
- 10 T. Awakawa, T. Kaji, T. Wakimoto and I. Abe, Bioorg. Med. Chem. Lett., 2012, 22, 4338-40.
- 11 T. Emri, L. Majoros, V. Toth and I. Pocsi, Appl. Microbiol. Biotechnol., 2013, 97, 3267-3284.
- 12 W. H. Xiao, L. J. Han and B. Shi, Sep. Purif. Technol., 2008, 62, 614-618.
- 13 E. A. Lallemand, M. Z. Lacroix, P. L. Toutain, S. Boullier, A. A. Ferran and A. Bousquet-Melou, *Front. Microbiol.*, 2016, 7, 2051.
- 14 T. Song, M. Tang, H. Ge, M. Chen, X. Lian and Z. Zhang, Mar. Drugs, 2019, 17, 292.
- 15 Y. M. Chiang, M. Ahuja, C. E. Oakley, R. Entwistle, A. Asokan, C. Zutz, C. C. Wang and B. R. Oakley, *Angew. Chem.-Int. Edit.*, 2016, **55**, 1662-1665.