Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information For

A formal [3+2] Annulation Reaction of Crotonate-derived Sulfur Ylides and β-Ketothioamides: Access to Thiazoline and Spiro[indoline-3,3'-thiophen] Scaffolds

Jing Zheng^a*, Hong Gu^a, Qinfang Chen^a, Weiran Yang^a* ^aSchool of Chemistry and Chemical Engineering, Nanchang University, 999 XueFu Road, Nangchang, 330031, China. *Corresponding Authors

E-mail: *zhengjing@ncu.edu.cn; wyang16@ncu.edu.cn

Contents

1.Copies of NMR Spectra	S1-S42
2.X-raycrystal structure of 3aa and 7aa	S43-S46

1. NMR Spectra

$\begin{array}{c} 7.706\\ 7.706\\ 7.888\\ 7.693\\ 7.693\\ 7.693\\ 7.693\\ 7.693\\ 7.693\\ 7.693\\ 7.693\\ 7.693\\ 7.733\\ 7.$

Figure S2. 3aa (¹H NMR, COSY, 400 MHz, CDCl₃)

Figure S14. 3ea (19F NMR, 376 MHz, CDCl₃)

 $\begin{array}{c} 7.816\\ 7.816\\ 7.777\\ 7.779\\ 7.779\\ 7.779\\ 7.779\\ 7.779\\ 7.779\\ 7.779\\ 7.773\\ 8.11\\ 7.773\\ 8.11\\ 7.773\\ 8.12\\ 7.773\\ 8.12\\ 8.1$

Figure S39. 3ra (¹³C NMR, 100 MHz, CDCl₃)

Figure S42. 5aa (¹H NMR, NOSEY, 400 MHz, CDCl₃)

 $\begin{array}{c} 7.70\\ 7.66\\ 7.66\\ 7.66\\ 7.75\\$

 $\begin{array}{c} 7.716\\ 7.716\\ 7.713\\ 7.713\\ 7.713\\ 7.713\\ 7.728\\ 7.728\\ 7.738\\ 7.$

Figure S46. 5ca (¹³C NMR, 100 MHz, CDCl₃)

 $\begin{array}{c} 7.71\\ 7.71\\ 7.71\\ 7.71\\ 7.71\\ 7.75\\ 7.73\\ 7.72\\$

$\begin{array}{c} 7.714\\ 7.710\\ 7.7379\\ 7.7379\\ 7.7379\\ 7.73356\\ 7.73356\\ 7.73356\\ 7.73356\\ 7.7192\\ 7.7192\\ 7.7192\\ 7.7192\\ 7.7192\\ 7.7192\\ 7.7192\\ 7.7192\\ 7.7192\\ 7.7201\\ 7.7192\\ 7.7201\\ 7.7192\\ 7.7201\\ 7.7192\\ 7.7201\\ 7.7012\\ 7.7201\\ 7.7012\\ 7.701$

Figure S50. 5ea (¹³C NMR, 100 MHz, CDCl₃)

 $\begin{array}{c} 7.707\\ 7.705\\ 7.708\\ 7.708\\ 7.709\\ 7.709\\ 7.709\\ 7.709\\ 7.709\\ 7.728\\ 7.729\\ 7.720\\ 7.729\\ 7.729\\ 7.720\\ 7.729\\ 7.720\\ 7.$

Figure S58. 5ia (¹H NMR, 400 MHz, CDCl₃)

 $\begin{array}{c} 7.59\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.55\\ 7.73\\ 7.44\\ 7.44\\ 7.73\\$

2. X-raycrystal structure

X-raycrystal structure of 3aa

Figure S82. X-raycrystal structure of 3aa

Single crystals of **3aa** were grown in ethyl acetate and petroleum ether. petroleum ether (2.0 mL) was added to **3aa** (20 mg in a 3 mL vial) followed by 6 drops of ethyl acetate. The 3 mL vial was capped and placed at room temperature in the experimental cabinet for 5 days, whereupon crystals formed. A yellow block shaped crystal of **3aa** was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 193(2) K, on a Rigaku AFC7R diffractometer. The crystal data of **3aa** have been deposited in CCDC with number 2019802 and have been displayed at 50% ellipsoid contour probability level.

Table S1. Crystal data and structure refinement for 3aa.

Identification code	3aa	
Empirical formula	C20 H19 N O3 S	
Formula weight	353.42	
Temperature	193(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.424(4) Å	a= 69.255(12)°.
	b = 9.886(4) Å	b= 76.260(14)°.
	c = 10.482(4) Å	g = 89.585(14)°.
Volume	884.0(6) Å ³	
Z	2	
Density (calculated)	1.328 Mg/m ³	
Absorption coefficient	0.202 mm ⁻¹	
F(000)	372	
Crystal size	0.120 x 0.110 x 0.080 mm ³	
Theta range for data collection	2.233 to 28.311°.	
Index ranges	-12<=h<=12, -11<=k<=13, -13<=l<=13	
Reflections collected	8429	
Independent reflections	4233 [R(int) = 0.0264]	
Completeness to theta = 25.242°	97.7 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4233 / 0 / 227	
Goodness-of-fit on F ²	1.031	
Final R indices [I>2sigma(I)]	R1 = 0.0540, wR2 = 0.1469	
R indices (all data)	R1 = 0.0626, $wR2 = 0.1548$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.798 and -0.378 e. Å ⁻³	

X-raycrystal structure of 7aa

Figure S83. X-raycrystal structure of 7aa

Single crystals of **7aa** were grown in ethyl acetate and petroleum ether. petroleum ether (2.0 mL) was added to **7aa** (10 mg in a 3 mL vial) followed by 6 drops of ethyl acetate. The 3 mL vial was capped and placed at room temperature in the experimental cabinet for 3 days, whereupon crystals formed. A White block shaped crystal of **7aa** was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 193(2) K, on a Rigaku AFC7R diffractometer. The crystal data of **7aa** have been deposited in CCDC with number 2019886 and have been displayed at 50% ellipsoid contour probability level.

Table S2. Crystal data and structure refinement for 7aa.

Identification code	7aa	
Empirical formula	C21 H20 N2 O3 S	
Formula weight	380.45	
Temperature	193(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 26.464(11) Å	a= 90°.
	b = 9.374(4) Å	b=130.263(13)°.
	c = 19.700(10) Å	g = 90°.
Volume	3729(3) Å ³	
Z	8	
Density (calculated)	1.355 Mg/m ³	
Absorption coefficient	0.198 mm ⁻¹	
F(000)	1600	
Crystal size	0.120 x 0.110 x 0.080 mm ³	
Theta range for data collection	2.395 to 27.826°.	
Index ranges	-33<=h<=34, -12<=k<=12, -25<=l<=25	
Reflections collected	14077	
Independent reflections	4284 [R(int) = 0.0462]	
Completeness to theta = 25.242°	97.7 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4284 / 186 / 318	
Goodness-of-fit on F ²	1.032	
Final R indices [I>2sigma(I)]	R1 = 0.0728, w $R2 = 0.1944$	
R indices (all data)	R1 = 0.0939, wR2 = 0.2074	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.705 and -0.601 e. Å ⁻³	