Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting information

Pd-Catalysed Cross-Coupling of Allenylic Carbonates with *gem*-Diborylalkanes: Efficient Synthesis of Isoprenylboronates

Xin-Ru Ma, Qian-Cheng Zhang, Hua-Xing Hu, Ma-Hong Yu, Qin Zhong* and Jian Zhao*

Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

Email: zq304@njust.edu.cn; jzhao@njust.edu.cn

Table of Contents

Ge	neral information1				
Ma	terials1				
Experimental Procedures and Spectral Data					
1.	Table S1. Detailed optimization of reaction conditions 2				
2.	General procedure for the synthesis of isoprenylboronates with unsubstituted <i>gem</i> -diborylalkanes				
3.	General procedure for the synthesis of isoprenylboronates with substituted <i>gem</i> -diborylalkanes				
4.	Synthesis of reported compound 3ba-OH 10				
5.	Table S2. Detailed optimization for isoprenylboration with <i>p</i> -bromobenzaldehyde 11				
6.	Procedure for homologation 12				
7.	References				
8.	NMR Spectra of 3 , 5 and 6				

General Information. ¹H NMR and ¹³C NMR spectra were recorded on BRUKER AVANCE III (500 MHz) spectrometers. ¹H NMR spectra are reported as follows: chemical shift in ppm (δ) relative to the chemical shift of CDCl₃ at 7.26 ppm, integration, multiplicities (s = singlet, d =doublet, t = triplet, m = multiplet), and coupling constants (Hz). ¹³C NMR spectra were recorded on BRUKER AVANCE III (126 MHz) spectrometers with complete proton decoupling, and chemical shift reported in ppm (δ) relative to the central line of triplet for CDCl₃ at 77.0 ppm. High resolution mass spectra (HRMS) were obtained on a BRUKER autoflex maX MALDI-TOF(TOF) instrument. Column chromatography and filtration via silica plug were carried out employing silica gel (Qingdao Haiyang Chem, neutral, 300-400 Mesh). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm precoated plate Kieselgel 60 F254 (Merck).

Materials. Unless otherwise noted, commercially available chemicals were used as received. The structures of all products were determined by ¹H, ¹³C NMR, and HRMS.

Experimental Procedures and Spectral Data

1. Table S1. Detailed optimization of reaction conditions^a

	ⁿ C ₆ H ₁₃		catalyst gand ⁿ C ₆ H ₁₃	3 ⁿ C ₆ Ę	H ₁₃ /===	
	ⁿ C ₆ H ₁₃	OLG pinB	Bpin [/] ℃ ₆ H ₁₃	Bpin ⁿ C ₆ H	/ \ H ₁₃ H	
	1a LG	=CO ₂ ⁱ Pr	(2a) 3a	aa 🛛 🖌	4a	
	1a' LG	=Ac THF (0	0.1 M), Ar			
Entry	TM catalyst	Ligand				
Enuy	(2.5 mol%)	(10 mol%)	Conversion of 1a /% ^b	Yield of 3aa /% ^b	Yield of 4a /% ^b	
1	Pd(PPh ₃) ₄ ^c	-	100	74	25	
2	Pd₂dba₃	PPh ₃	48	39	3	
3	Pd ₂ dba ₃	P(C ₆ H ₄ - <i>p</i> -OMe) ₃	91	44	9	
4	Pd ₂ dba ₃	TFP	100	54	12	
5	Pd ₂ dba ₃	PCy₃	47	33	1	
6	Pd ₂ dba ₃	P(Cy)Ph ₂	100	81 (80) ^d	4	
7	Pd ₂ dba ₃	xantphos	24	trace	13	
8	Pd ₂ dba ₃	dppe	41	trace	19	
9	Pd ₂ dba ₃	binap	16	trace	9	
10	Pd ₂ dba ₃	dppbz	0	0	0	
11	Pd ₂ dba ₃	P(OEt) ₃	88	20	7	
		Dibenzyl N,N-				
12	Pd ₂ dba ₃	diisopropylphos	73	6	3	
		phoramidite				
13 ^e	Pd ₂ dba ₃	P(Cy)Ph ₂	56	40	0	
14 ^f	Pd ₂ dba ₃	P(Cy)Ph ₂	74	62	1	
15 ^g	Pd₂dba₃	P(Cy)Ph ₂	15	0	0	
16	Nil ₂ c	P(Cy)Ph ₂	<5	0	0	
17	ICyCuCl⁰	-	16	0	0	
18	Cul⁰	P(Cy)Ph ₂	0	0	0	
19	Pd₂dba₃	-	5	0	0	
20	-	P(Cy)Ph ₂	0	0	0	

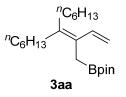
^a General reaction condition: a mixture of **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 equiv), TM catalyst (2.5 mol%) and Ligand (10 mol%) in THF (0.1 M, 2 mL) was reacted at 50 °C for 24 h under Ar. ^b The conversion of **1a** and yields of **3aa/4a** were determined by crude ¹H NMR spectrum with naphthalene as an internal standard. ^c 5 mol% of TM catalyst was used. ^d The yield of isolated **3aa** is given in parentheses. ^e Reacted at 40 °C. ^f Reacted for 12 h. ^g Allenyl acetate (**1a**') was used in the reaction. TFP = tri(2-furyl)phosphine. xantphos= 9,9-Dimethyl-4,5-bis(diphenylphosphino)xanthene. dppe = 1,2-bis(diphenylphosphino)ethane. binap= 2,2'-Bis-(diphenylphosphino)-1,1'-binaphthyl. dppbz = 1,2-bis(diphenylphosphino)benzene. ICyCuCl = chloro[1,3 - bis(2,6 - diisopropylphenyl)imidazol - 2 - ylidene]copper(I).

2. General procedure for the synthesis of isoprenylboronates with unsubstituted gem-diborylalkanes

General method A (Synthesis of 3aa, 3ba, 3ca, 3da, 3ea, 3fa, 3ga)

An oven-dried Schlenk flask was equipped with a Teflon coated stirrer bar and charged with Pd_2dba_3 (4.6 mg, 0.005 mmol, 2.5 mol%), $P(Cy)Ph_2$ (5.4 mg, 0.02 mmol, 10 mol%), bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methane **2a** (107.2 mg, 0.40 mmol, 2 equiv.), and THF (1 mL) under Ar atmosphere. The resulted solution was stirred for 10 min, then a THF solution (1 mL) of corresponding **1** (0.2 mmol, 1 equiv.) was added to the reaction mixture via syringe. The final reaction mixture was stirred at 50 °C for 24 hours. Completion of the reaction was checked by TLC. After a complete conversion of **1**, the reaction mixture was diluted by petroleum ether (about 5 mL). The precipitate was filtered off by a short silica pad (Qingdao Haiyang Chem, neutral, 300-400 Mesh, about 2-3 cm in pipette) using EtOAc/petroleum ether (1:10 v/v) as an eluent. The solvent was removed and the residue was purified by a rapid silica gel chromatography (typically within 10 min) using a mixture of EtOAc/petroleum ether (1:500-1:50 v/v) as eluent affording pure product **3**.

Please note:


For the case of isoprenylboronates **3fa** and **3ga**, 5 mol% of Pd_2dba_3 (9.2 mg, 0.01 mmol) and 20 mol% of $P(Cy)Ph_2$ (10.7 mg, 0.04 mmol) were used. The crude reaction mixtures were directly oxidized to the corresponding alcohols (**3fa-OH** or **3ga-OH**) using the following procedure: The crude reaction mixture was dissolved in a 1:1 mixture of THF and H_2O and charged with NaBO₃·4H₂O (3 equiv.). The resulting heterogeneous mixture was allowed to stir vigorously at ambient temperature for 3 hours and then quenched by the addition of petroleum ether. The aqueous layer was extracted three times with petroleum ether and the combined organic extracts were dried over magnesium sulfate, filtered, and concentrated in vacuo. Purification by silica gel chromatography using a mixture of EtOAc/petroleum ether (1:100-1:10 v/v) yielded the alcohol.

General method B (Synthesis of 3ha)

An oven-dried Schlenk flask was equipped with a Teflon coated stirrer bar and charged with $Pd(PPh_3)_4$ (23.1mg, 0.02 mmol, 10 mol%), bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methane **2a** (107.2 mg, 0.40 mmol, 2 equiv.), and THF (0.5 mL) under Ar atmosphere. The resulted solution was stirred for 10 min, then a THF solution (0.5 mL) of **1h** (0.2 mmol, 1 equiv.) was added to the reaction mixture via syringe. The final reaction mixture was stirred at 50 °C for 24 hours. Completion of the reaction was checked by TLC. After a complete conversion of **1h**, the reaction mixture was diluted by petroleum ether (about 5 mL). The precipitate was filtered off by a short silica pad (Qingdao Haiyang Chem, neutral, 300-400 Mesh, about 2-3 cm in pipette) using EtOAc/petroleum ether (1:10 v/v) as an eluent. The solvent was removed and the residue was purified by a rapid silica gel chromatography (typically within 10 min) using a mixture of EtOAc/petroleum ether (1:500-1:50 v/v) as eluent affording pure product **3ha**.

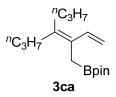
Analytical data:

2-(3-Hexyl-2-vinylnon-2-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3aa)

This product was prepared according to the above general method A.

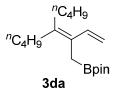
Colorless oil (58.4 mg, 80%). $R_f = 0.65$ (EA/PE = 1:20 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.82 (dd, J = 17.2, 10.9 Hz, 1H), 5.05 (d, J = 17.1 Hz, 1H), 4.93 (d, J = 10.9 Hz, 1H), 2.17 (t, J = 7.2 Hz, 2H), 2.06 (t, J = 7.2 Hz, 2H), 1.85 (s, 2H), 1.41–1.33 (m, 4H), 1.33–1.22 (m,12H), 1.20 (s, 12H), 0.87 (app. t, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 140.0, 135.9, 127.7, 110.9, 82.9, 34.2, 32.3, 31.8(9), 31.8(1), 29.7, 29.5, 29.4, 28.5, 24.6,

22.6(7), 22.6(3), 14.1 (C×2); Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. HRMS (ESI): m/z [M+H]⁺ calcd. for $[C_{23}H_{44}BO_2]^+$ 363.34289, found 363.34158.


2-(3-Methyl-2-vinylbut-2-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3ba)

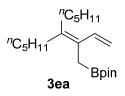
This product was prepared according to the above general method A.

Colorless oil (16.9 mg, 38%). $R_f = 0.76$ (EA/PE = 1:20 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.86 (dd, J = 17.2, 10.9 Hz, 1H), 5.05 (d, J = 17.1 Hz, 1H), 4.93 (d, J = 10.9 Hz, 1H), 1.85 (s, 2H), 1.84 (s, 3H), 1.77 (s, 3H), 1.21 (s, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 135.8, 130.4, 127.7, 110.7, 82.9, 24.6, 22.1, 20.3; Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. HRMS (ESI): m/z [M+H]⁺ calcd. for [C₁₃H₂₄BO₂]⁺ 223.18639, found 223.18506.


2-(3-Propyl-2-vinylhex-2-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3ca)

This product was prepared according to the above general method A.

Colorless oil (35.6 mg, 64%). $R_f = 0.72$ (EA/PE = 1:20 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.82 (dd, J = 17.2, 10.9 Hz, 1H), 5.06 (d, J = 17.2 Hz, 1H), 4.93 (d, J = 10.9 Hz, 1H), 2.16 (t, J = 7.8 Hz, 2H), 2.06 (t, J = 7.8 Hz, 2H), 1.86 (s, 2H), 1.46-1.34 (m, 4H), 1.19 (s, 12H), 0.94-0.84 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 139.5, 135.9, 128.1, 111.0, 82.9, 36.2, 34.3, 24.6, 22.7, 21.6, 14.4, 14.1;Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. HRMS (ESI): m/z calcd. for [C₁₇H₃₁BO₂Na]⁺ 301.23093, found 301.23062.


2-(3-Butyl-2-vinylhept-2-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3da)

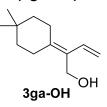
This product was prepared according to the above general method A.

Colorless oil (47.8 mg, 78%). $R_f = 0.70$ (EA/PE = 1:20 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.82 (dd, J = 17.2, 10.9 Hz, 1H), 5.06 (dd, J = 17.1, 0.9 Hz, 1H), 4.93 (dd, J = 10.9, 1.0 Hz, 1H), 2.18 (t, J = 7.1 Hz, 2H), 2.08 (t, J = 7.0 Hz, 2H), 1.85 (s, 2H), 1.40-1.26 (m, 8H), 1.20 (s, 12H), 0.90 (t, J = 7.0 Hz, 3H), 0.89 (t, J = 7.0 Hz, 3H);¹³C NMR (126 MHz, CDCl₃) δ 139.9, 135.9, 127.7, 110.9, 82.9, 33.9, 32.0, 31.8, 30.7, 24.6, 23.1, 22.8, 14.0(7), 14.0(1); Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. HRMS (ESI): m/z calcd. for [C₁₉H₃₅BO₂Na]⁺ 329.26223, found 329.26205.

2-(3-Pentyl-2-vinyloct-2-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3ea)

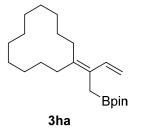
This product was prepared according to the above general method A.

Colorless oil (46.2 mg, 83%). $R_f = 0.65$ (EA/PE = 1:20 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.81 (dd, J = 16.8, 10.9 Hz, 1H), 5.05 (d, J = 17.1 Hz, 1H), 4.92 (d, J = 10.8 Hz, 1H), 2.17 (t, J = 7.1 Hz, 2H), 2.06 (t, J = 7.3 Hz, 2H), 1.85 (s, 2H), 1.44-1.34 (m, 4H), 1.34-1.23 (m, 8H), 1.19 (s, 12H), 0.92-0.82 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 140.0, 135.9, 127.7, 110.9, 82.9, 34.1, 32.3, 32.2, 31.9, 29.2, 28.2, 24.6, 22.6(9), 22.6(2), 14.0(8), 14.0(7);Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. HRMS (ESI): m/z calcd. for [C₂₁H₃₉BO₂Na]⁺ 357.29353, found 357.29294.


2-Cyclohexylidenebut-3-en-1-ol (3fa-OH)

This product was prepared according to the above general method A.

Colorless oil (16.1 mg, 53%). $R_f = 0.25$ (EA/PE = 1:10 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.77 (dd, J = 17.5, 11.1 Hz, 1H), 5.35 (d, J = 17.4 Hz, 1H), 5.10 (d, J = 11.2 Hz, 1H), 4.39 (s, 2H), 2.39-2.33 (m, 4H), 1.64-1.55 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 144.9, 133.2, 128.0, 112.6, 57.9, 31.5, 30.4, 28.6, 28.1, 26.7. HRMS (ESI): m/z [M-(H₂O)+H]⁺ calcd. for [C₁₀H₁₅]⁺ 135.11683, found 135.11659.


2-(4,4-Dimethylcyclohexylidene)but-3-en-1-ol (3ga-OH)

This product was prepared according to the above general method A.

Colorless oil (18 mg, 50%). $R_f = 0.25$ (EA/PE = 1:10 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.77 (dd, J = 17.5, 11.1 Hz, 1H), 5.34 (d, J = 17.5 Hz, 1H), 5.10 (d, J = 11.1 Hz, 1H), 4.38 (s, 2H), 2.41-2.32 (m, 4H), 1.60-1.54 (m, 1H), 1.43-1.34 (m, 4H), 0.96 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 144.8, 133.2, 128.1, 112.6, 58.0, 40.9, 40.4, 30.3, 28.1, 27.1, 26.0. HRMS (ESI): m/z calcd. for $[C_{12}H_{20}ONa]^+$ 203.14064, found 203.14026.

2-(2-Cyclododecylidenebut-3-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3ha)

This product was prepared according to the above general method B.

Colorless oil (39.5 mg, 57%). $R_f = 0.55$ (EA/PE = 1:40 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.86 (dd, J = 17.1, 10.9 Hz, 1H), 5.08 (dd, J = 17.2, 0.9 Hz, 1H), 4.94 (dd, J = 10.9, 0.9 Hz, 1H), 2.21 (t, J = 7.5 Hz,

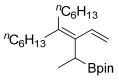
2H), 2.12 (t, J = 7.6 Hz, 2H), 1.88 (s, 2H), 1.53-1.44 (m, 4H), 1.44-1.37 (m, 8H), 1.37-1.29 (m, 6H), 1.20 (s, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 139.6, 136.0, 128.4, 111.2, 82.9, 29.4, 27.6, 25.9, 25.7(7), 25.7(4), 24.6, 23.8, 23.2, 22.2, 22.1, 22.0(5), 22.0(3); Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. HRMS (ESI): m/z calcd. for [C₂₂H₃₉BO₂Na]⁺ 369.29353, found 369.29285.

3. General procedure for the synthesis of isoprenylboronates with substituted gem-diborylalkanes

General method C (Synthesis of isoprenylboronates 3ab-3ag, 3ai-3aj)

An oven-dried Schlenk flask was equipped with a Teflon coated stirrer bar and charged with Pd_2dba_3 (9.2 mg, 0.01 mmol, 5 mol%), $P(Cy)Ph_2$ (10.7 mg, 0.04 mmol, 20 mol%), corresponding substituted *gem*diborylalkane **2** (0.40 mmol, 2 equiv.), KOH (2 M, 0.2 mL, 2 equiv.) and THF (1 mL) under Ar atmosphere. The resulted solution was stirred for 10 min, then a THF solution (1 mL) of **1a** (64.9 mg, 0.2 mmol, 1 equiv.) was added to the reaction mixture via syringe. The final reaction mixture was stirred at room temperature for 24 hours. Completion of the reaction was checked by TLC and/or crude ¹H NMR spectrum. After a complete conversion of **1a**, the reaction mixture was diluted by petroleum ether (about 5 mL). The precipitate was filtered off by a short silica pad (Qingdao Haiyang Chem, neutral, 300-400 Mesh, about 2-3 cm in pipette) using EtOAc/petroleum ether (1:10 v/v) as an eluent. The solvent was removed and the residue was purified by a rapid silica gel chromatography (within 10 min) using a mixture of EtOAc/petroleum ether (1:500-1:50 v/v) as eluent affording pure product **3**.

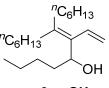
Please note:


For the case of isoprenylboronates **3ac**, **3af** and **3aj**, the crude reaction mixtures were further oxidized to the corresponding alcohols using the following procedure: The crude reaction mixture was dissolved in a 1:1 mixture of THF and H_2O and charged with NaBO₃·4H₂O (3 equiv.). The resulting heterogeneous mixture was allowed to stir vigorously at ambient temperature for 3 hours and then quenched by the addition of petroleum ether. The aqueous layer was extracted three times with petroleum ether and the combined organic extracts were dried over magnesium sulfate, filtered, and concentrated in vacuo. Purification by silica gel chromatography using a mixture of EtOAc/petroleum ether (1:100-1:10 v/v) as eluent afforded pure alcohol.

General method D (Synthesis of isoprenylboronates 3ah)

An oven-dried Schlenk flask was equipped with a Teflon coated stirrer bar and charged with $Pd(PPh_3)_4$ (23.1mg, 0.02 mmol, 10 mol%), *gem*-Diborylalkane **2h** (0.40 mmol, 2 equiv.), KOH (2 M, 0.2 mL, 2 equiv.) and THF (0.5 mL) under Ar atmosphere. The resulted solution was stirred for 10 min, then a THF solution (0.5 mL) of **1a** (64.9 mg, 0.2 mmol, 1 equiv.) was added to the reaction mixture via syringe. The final reaction mixture was stirred at room temperature for 24 hours. Completion of the reaction was checked by TLC and/or crude ¹H NMR spectrum. After a complete conversion of **1a**, the reaction mixture was diluted by petroleum ether (about 5 mL). The precipitate was filtered off by a short silica pad (Qingdao Haiyang Chem, neutral, 300-400 Mesh, about 2-3 cm in pipette) using EtOAc/petroleum ether (1:10 v/v) as an eluent. The solvent was removed and the residue was purified by a rapid silica gel chromatography (within 10 min) using a mixture of EtOAc/petroleum ether (1:500-1:50 v/v) as eluent affording pure product **3ah**.

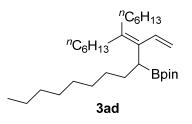
Analytical data:


2-(4-Hexyl-3-vinyldec-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3ab)

This product was prepared according to the above general method C.

Colorless oil (56.5 mg, 75%). $R_f = 0.70$ (EA/PE = 1:20 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.60 (dd, J = 17.5, 11.2 Hz, 1H), 5.04 (d, J = 17.5 Hz, 1H), 4.94 (d, J = 11.2 Hz, 1H), 2.31-2.21 (m, 2H), 2.15-2.06 (m, 1H), 2.06-1.95 (m, 2H), 1.45-1.24 (m, 16H), 1.22 (s, 6H), 1.21 (s, 6H), 1.12 (d, J = 7.4 Hz, 3H), 0.89 (t, J = 6.4 Hz, 3H), 0.88 (t, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 140.1, 134.9, 134.6, 111.6, 82.9, 34.1, 32.6, 31.8(6), 31.8(1), 29.8, 29.5, 29.4, 28.9, 24.7(5), 24.7(2), 22.6(7), 22.6(3), 15.6, 14.0(9), 14.0(8); Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. HRMS (ESI): m/z calcd. For [C₂₄H₄₅BO₂Na]⁺ 399.34048, found 399.33960.

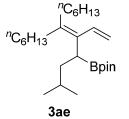
7-Hexyl-6-vinyltridec-6-en-5-ol (3ac-OH)



3ac-OH

This product was prepared according to the above general method C.

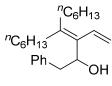
Colorless oil (54.2 mg, 82%). $R_f = 0.25$ (EA/PE = 1:10 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.36 (dd, J = 17.9, 11.7 Hz, 1H), 5.32 (d, J = 17.9 Hz, 1H), 5.19 (d, J = 11.7 Hz, 1H), 4.61 (t, J = 7.0 Hz, 1H), 2.19-2.00 (m, 4H), 1.79-1.67 (m, 1H), 1.43-1.17 (m, 21H), 0.96-0.80 (m, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 141.6, 134.1, 132.9, 116.7, 70.8, 35.6, 33.3, 32.3, 31.7(2), 31.7(1), 29.7, 29.5(5), 29.5(1), 29.0, 28.4, 22.6(9), 22.6(2), 22.6(1), 14.0 (C×3). HRMS (ESI): m/z [M-(H₂O)+H]⁺ calcd. For [C₂₁H₃₉]⁺ 291.30463, found 291.30411.


2-(7-Hexyl-8-vinylheptadec-7-en-9-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3ad)

This product was prepared according to the above general method C.

Colorless oil (71.2 mg, 75%). $R_f = 0.68$ (EA/PE = 1:20 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.56 (dd, J = 17.5, 11.2 Hz, 1H), 5.07 (d, J = 17.5 Hz, 1H), 4.95 (d, J = 11.3 Hz, 1H), 2.33-2.23 (m, 1H), 2.22-2.12 (m, 2H), 2.06-1.90 (m, 2H), 1.48-1.24 (m, 22H), 1.24-1.21 (m, 8H), 1.20 (s, 6H), 1.19 (s, 6H), 0.92-0.83 (m, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 140.3, 135.4, 132.9, 112.4, 82.8, 34.0, 32.8, 31.9(2), 31.9(0), 31.8, 30.0, 29.9, 29.7, 29.6, 29.5, 29.4, 29.3(6), 29.3(4), 28.8, 24.7, 24.6, 22.7, 22.6(9), 22.6(3), 14.0 (C×3); Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. HRMS (ESI): m/z calcd. For [C₃₁H₅₉BO₂Na]⁺ 497.45003, found 497.44955.

2-(6-Hexyl-2-methyl-5-vinyldodec-5-en-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3ae)

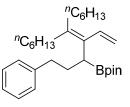


This product was prepared according to the above general method C.

Colorless oil (61.0 mg, 73%). $R_f = 0.65$ (EA/PE = 1:20 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.53 (dd, J = 17.5, 11.3 Hz, 1H), 5.09 (d, J = 17.6 Hz, 1H), 4.97 (d, J = 11.2 Hz, 1H), 2.34-2.22 (m, 2H), 2.22-2.13 (m, 1H), 2.06-1.90 (m, 2H), 1.56-1.45 (m, 3H), 1.45-1.34 (m, 4H), 1.34-1.22 (m, 12H), 1.20 (s, 6H), 1.18 (s, 6H),

0.91-0.86 (m, 6H), 0.84 (app. t, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 139.8, 135.6, 133.2, 112.7, 82.7, 39.2, 33.9, 32.7, 31.8(7), 31.8(2), 29.8, 29.4(9), 29.4(5), 28.7, 27.0, 24.7, 24.6, 23.2, 22.6(9), 22.6(4), 22.6(2), 14.1(1), 14.1(0); Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. HRMS (ESI): m/z calcd. For [C₂₇H₅₁BO₂Na]⁺ 441.38743, found 441.38654.

4-Hexyl-1-phenyl-3-vinyldec-3-en-2-ol (3af-OH)

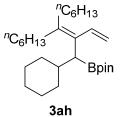


3af-OH

This product was prepared according to the above general method C.

Colorless oil (45.9 mg, 67%). $R_f = 0.28$ (EA/PE = 1:10 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.28 (m, 2H), 7.28-7.21 (m, 3H), 6.50 (dd, *J* = 17.9, 11.7 Hz, 1H), 5.53 (d, *J* = 17.9 Hz, 1H), 5.30 (d, *J* = 11.7 Hz, 1H), 4.88 (t, *J* = 7.2 Hz, 1H), 3.08 (dd, *J* = 13.4, 8.1 Hz, 1H), 2.95 (dd, *J* = 13.3, 5.9 Hz, 1H), 2.22-2.13 (m, 1H), 2.13-2.04 (m, 1H), 2.02-1.93 (m, 2H), 1.36-1.24 (m, 16H), 1.24-1.14 (m, 1H), 0.97-0.86 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 142.8, 138.9, 132.8, 132.6, 129.3, 128.3, 126.2, 116.7, 72.2, 42.4, 33.4, 32.4, 31.7, 31.6, 29.7, 29.5, 29.1, 29.0, 22.6(2), 22.6(0), 14.0 (C × 3) . HRMS (ESI): m/z calcd. For [C₂₄H₃₈Ona]⁺ 365.28149, found 365.28043.

2-(5-Hexyl-1-phenyl-4-vinylundec-4-en-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3ag)

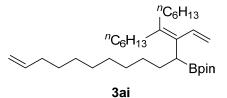


3ag

This product was prepared according to the above general method C.

Colorless oil (75.0 mg, 80%). $R_f = 0.70$ (EA/PE = 1:20 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 7.25-7.20 (m, 2H), 7.17-7.11 (m, 3H), 6.59 (dd, *J* = 17.2, 11.4 Hz, 1H), 5.09 (d, *J* =17.6 Hz, 1H), 4.98 (d, *J* =11.3 Hz, 1H), 2.61-2.48 (m, 2H), 2.35-2.27 (m, 1H), 2.25 (t, *J* = 7.7 Hz, 1H), 2.12-1.96 (m, 3H), 1.95-1.85 (m, 1H), 1.79-1.68 (m, 1H), 1.42–1.22 (m, 16H), 1.21 (s, 12H), 0.88 (app. t, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 143.3, 140.8, 135.2, 132.4, 128.5, 128.0, 125.3, 112.5, 82.9, 35.4, 34.0, 32.8, 32.1, 31.8(6), 31.8(2), 29.7, 29.6, 29.5, 28.8, 24.7(3), 24.7(0), 22.6(9), 22.6(2), 14.1(2), 14.1(0); Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. HRMS (ESI): m/z [M+H]⁺ calcd. For [C₃₁H₅₁BO₂]⁺ 467.40549, found 467.40430.

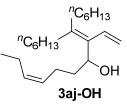
2-(1-Cyclohexyl-3-hexyl-2-vinylnon-2-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3ah)



This product was prepared according to the above general method D.

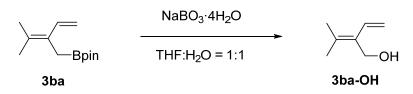
Colorless oil (54.2 mg, 61%). $R_f = 0.70$ (EA/PE = 1:20 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.48 (dd, J = 17.6, 11.5 Hz, 1H), 5.19 (d, J = 17.6 Hz, 1H), 4.98 (d, J = 11.3 Hz, 1H), 2.25-2.11 (m, 2H), 2.11-1.94 (m, 3H), 1.90 (d, J = 12.0 Hz, 1H), 1.74-1.63 (m, 2H), 1.63-1.51 (m, 4H), 1.47-1.22 (m, 20H), 1.19 (s, 6H), 1.17

(s, 6H), 0.93-0.80 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 140.1, 136.2, 131.4, 113.4, 82.6, 36.7, 34.4, 33.4, 33.0, 31.9(5), 31.9(0), 31.8, 29.7, 29.5(6), 29.5(0), 28.6, 26.8, 26.7, 26.6, 24.8, 24.4, 22.6(9), 22.6(3), 14.1(3), 14.1(0); Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. HRMS (ESI): m/z calcd. For [C₂₉H₅₃BO₂Na]⁺ 467.40308, found 467.40268.


2-(7-Hexyl-8-vinylnonadeca-7,18-dien-9-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3ai)

This product was prepared according to the above general method C.

Colorless oil (80.1 mg, 80%). $R_f = 0.72$ (EA/PE = 1:20 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.56 (dd, J = 17.5, 11.2 Hz, 1H), 5.85-5.75 (m, 1H), 5.07 (d, J = 17.5 Hz, 1H), 5.01-4.89(m, 3H), 2.33-2.23 (m, 1H), 2.23-2.11 (m, 2H), 2.06-1.99 (m, 2H), 1.99-1.90 (m, 2H), 1.73-1.61 (m, 1H), 1.50-1.40 (m, 1H), 1.40-1.21 (m, 28H), 1.20 (s, 6H), 1.19 (s, 6H), 0.91-0.84 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 140.4, 139.2, 135.3, 132.8, 114.0, 112.3, 82.8, 34.1, 33.8, 32.8, 31.8(9), 31.8(4), 29.9, 29.8, 29.7, 29.6, 29.5, 29.4(9), 29.4(7), 29.3, 29.1, 28.9, 28.8, 24.7, 24.6, 22.7, 22.6, 14.1(2), 14.1(1). Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. HRMS (ESI): m/z calcd. For [C₃₃H₆₁BO₂Na]⁺ 523.46568, found 523.46509.

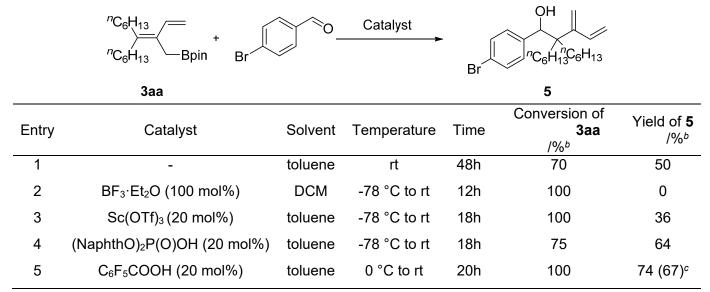

(Z)-9-Hexyl-8-vinylpentadeca-3,8-dien-7-ol (3aj-OH)

This product was prepared according to the above general method C.

Colorless oil (40.1 mg, 60%). $R_f = 0.25$ (EA/PE = 1:10 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.37 (dd, J = 18.0, 11.8 Hz, 1H), 5.43-5.30 (m, 3H), 5.19 (d, J = 11.6 Hz, 1H), 4.63 (t, J = 7.7 Hz, 1H), 2.19-1.97 (m, 8H), 1.87-1.77 (m, 1H), 1.63-1.56 (m, 1H), 1.51-1.47 (m, 1H), 1.39-1.22 (m, 16H), 0.95 (t, J = 7.5 Hz, 3H), 0.92-0.83 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 141.8, 133.9, 132.8, 132.2, 128.5, 116.7, 70.2, 36.0, 33.3, 32.3, 31.7, 29.7, 29.5(5), 29.5(2), 29.1, 23.9, 22.6, 20.4, 14.3, 14.0 (C×2); Two carbons are missing due to overlapping signals. HRMS (ESI): m/z calcd. for [C₂₃H₄₂ONa]⁺ 357.31279, found 357.31146.

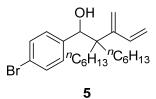
4. Synthesis of reported compound 3ba-OH

Compound **3ba-OH** was obtained by oxidation of isoprenylboronate **3ba**. Isoprenylboronate **3ba** (44.4 mg, 0.2 mmol) dissolved in a 1:1 mixture of THF (1 mL) and H₂O (1 mL) and charged with NaBO₃·4H₂O (92.3 mg, 3 equiv.). The resulting heterogeneous mixture was allowed to stir vigorously at ambient temperature for 3 hours and then quenched by the addition of petroleum ether. The aqueous layer was extracted three times with petroleum ether and the combined organic extracts were dried over magnesium sulfate, filtered, and concentrated in vacuo. Purification by silica gel chromatography (EA/PE = 1:100-1:10 v/v) yielded the alcohol **3ba-OH** (20.2 mg, 90%). The products **3ba-OH** were confirmed by ¹H comparing with the reported literature¹.

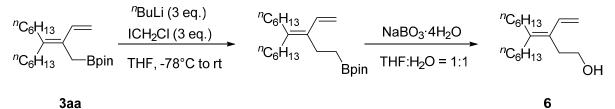

Analytical data: 3-Methyl-2-vinylbut-2-en-1-ol (3ba-OH)

3ba-OH

Colorless oil. $R_f = 0.30$ (EA/PE = 1:10 v/v). NMR data: ¹H NMR (500 MHz, CDCl₃) δ 6.71 (dd, J = 17.5, 11.1 Hz, 1H), 5.31 (d, J = 17.5 Hz, 1H), 5.08 (d, J = 11.1 Hz, 1H), 4.38 (s, 2H), 1.90 (s, 3H), 1.85 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 136.4, 133.6, 130.9, 112.0, 58.4, 21.3, 20.4. HRMS (ESI): m/z [M-(H₂O)+H]⁺ calcd. for [C₇H₁₁]⁺ 95.08553, found 95.08569.


5. Table S2. Detailed optimization for isoprenylboration with *p*-bromobenzaldehyde^a

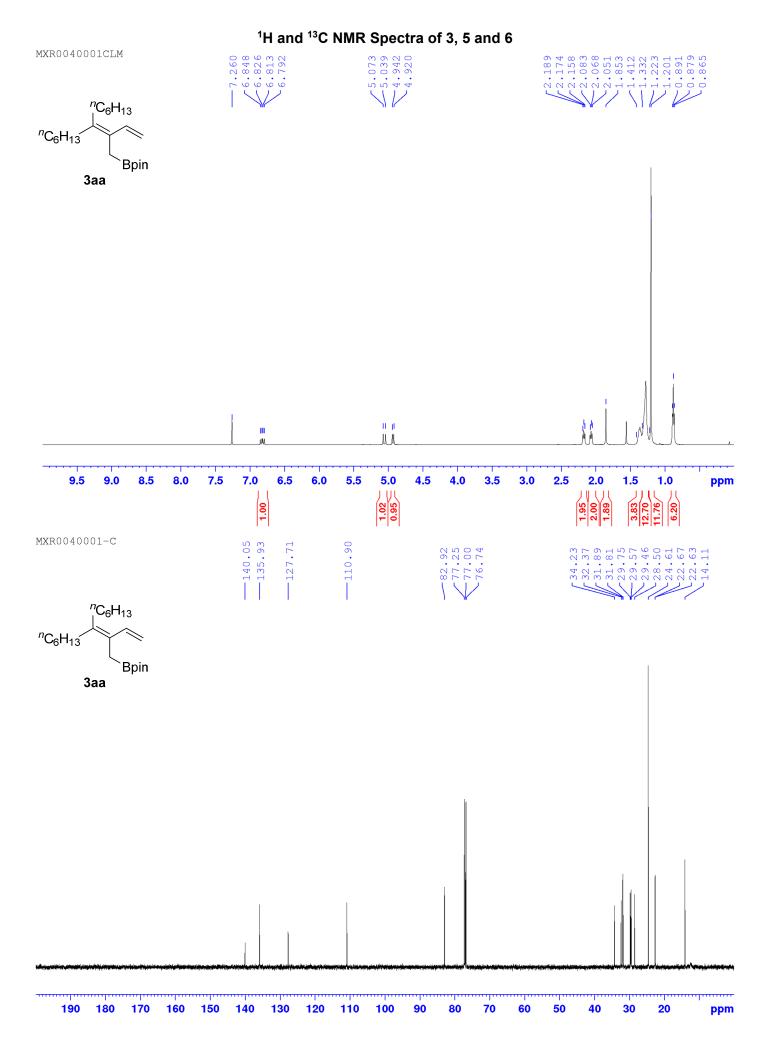
^a General reaction condition: a mixture of **3aa** (0.2 mmol), *p*-bromobenzaldehyde (0.3 mmol, 1.5 equiv.) and catalyst in solvent (0.1 M, 2 mL) was reacted under Ar. ^b The conversions of **3aa** and yield of **5** were determined by crude ¹H NMR spectrum with naphthalene as an internal standard. ^c The yield of isolated **5** is given in parentheses. DCM = dichloromethane.

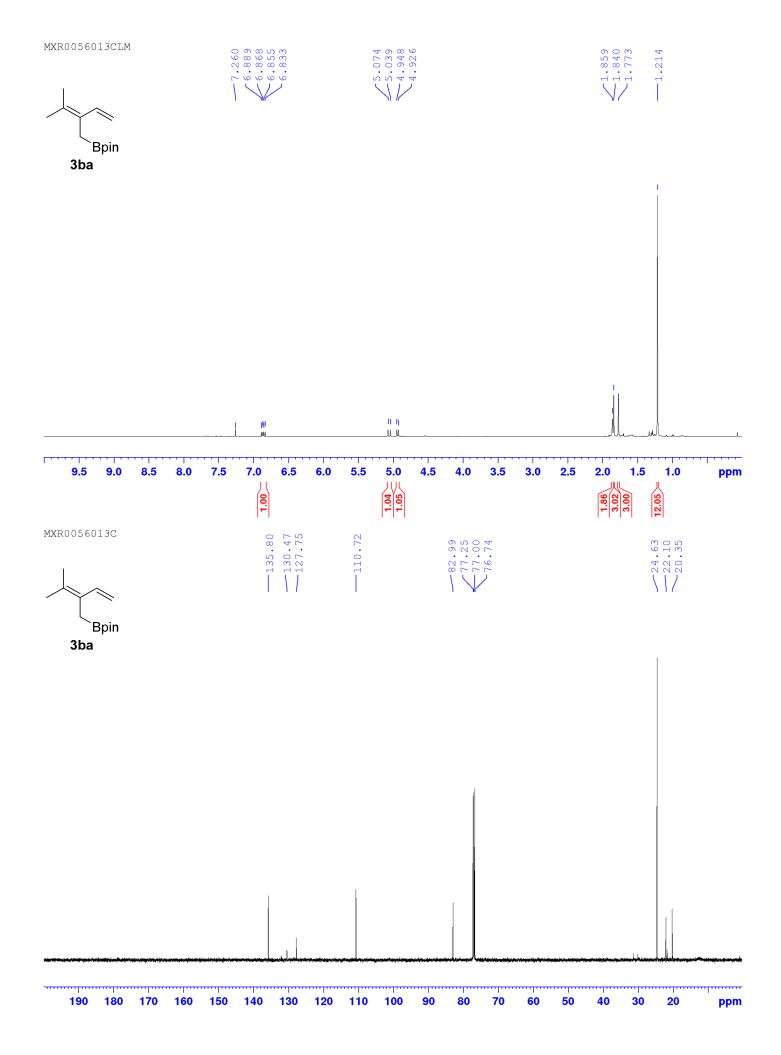

Procedure and Analytical data:

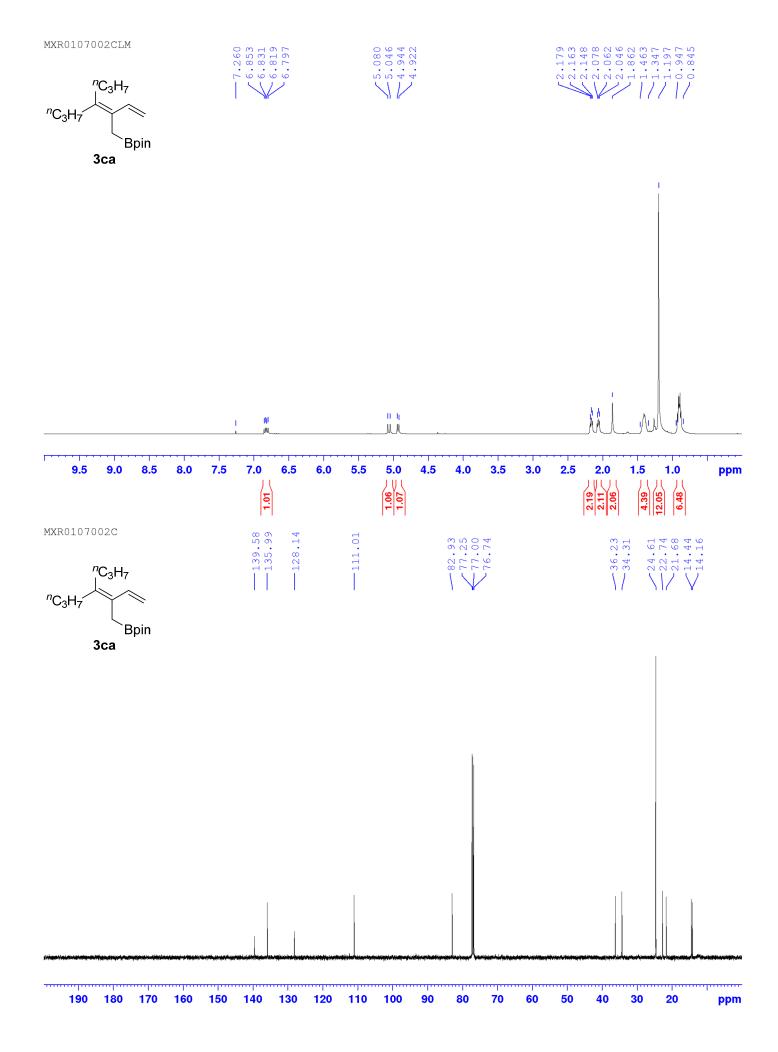
1-(4-Bromophenyl)-2-(buta-1,3-dien-2-yl)-2-hexyloctan-1-ol (5)

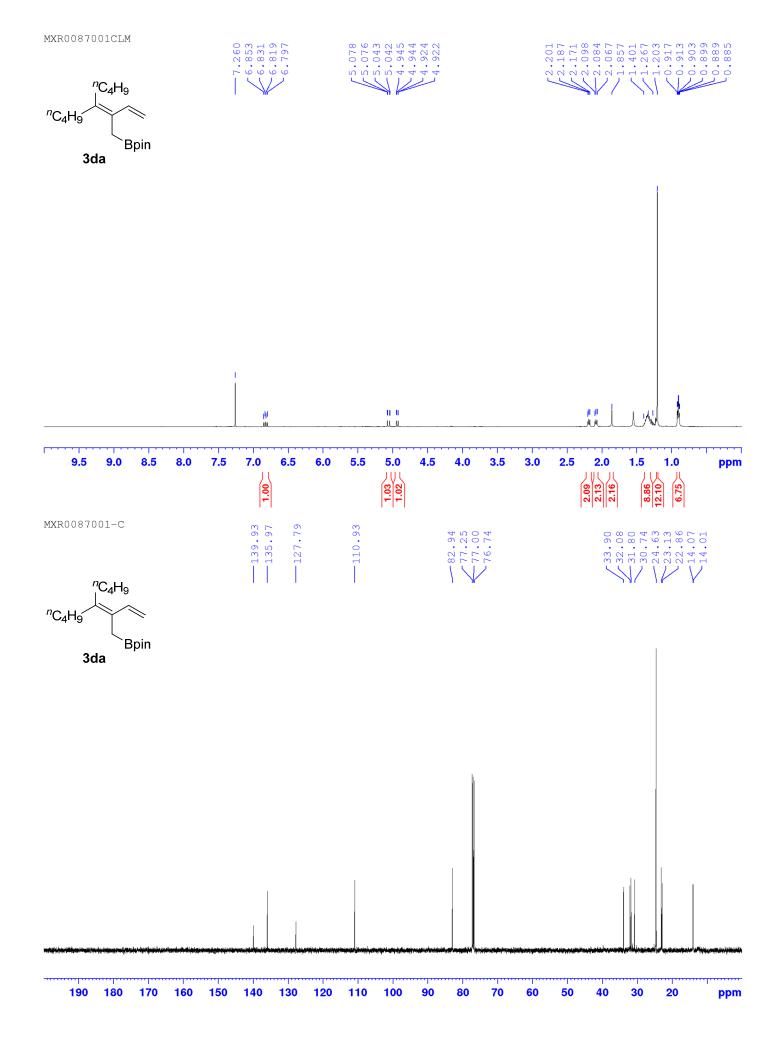
An oven-dried Schlenk flask was equipped with a Teflon coated stirrer bar and charged with pentafluorobenzoic acid (8.4 mg, 0.04 mmol, 0.2 equiv.), *p*-bromobenzaldehyde (55.5 mg, 0.30 mmol, 1.5 equiv.) and toluene (1 mL) under Ar atmosphere. The resulted solution was stirred for 10 min at 0 °C, then a toluene solution (1 mL) of **3aa** (72.4 mg, 0.2 mmol, 1 equiv.) was added to the reaction mixture via syringe. The final reaction mixture was stirred at room temperature for 20 hours. Completion of the reaction was checked by TLC and/or crude ¹H NMR spectrum. After a complete conversion of **3aa**, the reaction mixture was quenched with sat. NaHCO₃ (aq.) and extracted with EtOAc. The organic phase was dried over MgSO₄, filtered and evaporated under reduced pressure. Purification by silica gel chromatography (EA/PE = 1:100-1:10 v/v) yielded the compound **5** as a colorless oil (37.6 mg, 67%). ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 8.3 Hz, 2H), 7.12 (d, *J* = 8.3 Hz, 2H), 6.32 (dd, *J* = 16.9, 10.6 Hz, 1H), 5.40 (s, 1H), 5.38 (dd, *J* = 17.1, 1.8 Hz, 1H), 4.99 (dd, *J* = 10.6, 1.6 Hz, 1H), 4.69 (s, 1H), 4.61 (s, 1H), 2.05 (s, 1H), 1.62-1.52 (m, 2H), 1.32-1.19 (m, 18H), 0.91-0.85 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 150.2, 140.3, 138.5, 130.4, 129.4, 121.1, 115.1, 114.3, 78.0, 49.3, 32.6, 31.8(3), 31.8(0), 31.7, 30.1, 29.6, 23.8, 23.7, 22.6(8), 22.6(4), 14.0 (C×2). HRMS (ESI): m/z calcd. for [C₂₄H₃₇BrONa]* 443.19200, found 443.19037.

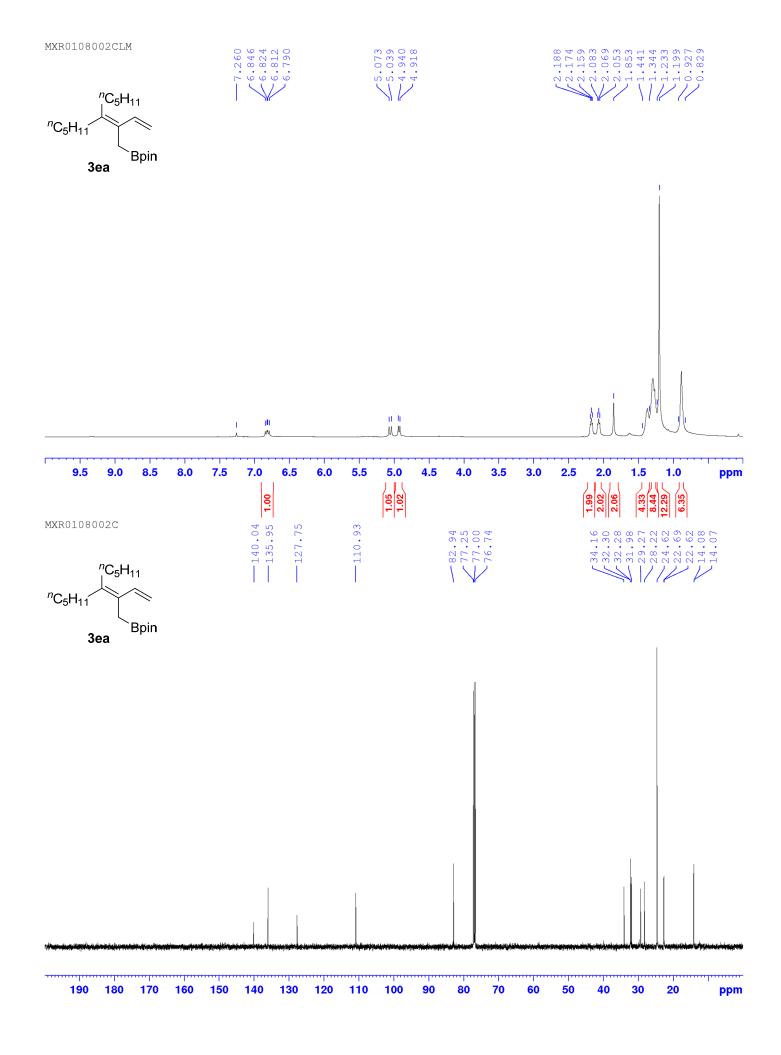
6. Procedure for homologation


To an oven-dried Schlenk flask was equipped with a Teflon coated stirrer bar, isoprenylboronate **3aa** (72.4 mg, 0.20 mmol, 1 equiv.), chloroiodomethane (106 mg, 0.60 mmol, 3 equiv.) and THF (2 mL) were added under Ar atmosphere. The reaction mixture was cooled to -78 °C and a solution of *n*-BuLi (0.37 mL, 0.60 mmol, 1.6 M in hexane) was slowly added at the same temperature. After stirring for 10 min, the reaction mixture was warmed to room temperature and additionally stirred for 12 hours. The reaction mixture was quenched with saturated aqueous NH₄Cl solution (10 mL) and extracted with CH₂Cl₂ (10 mL x 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. Then, the crude reaction mixture was dissolved in a 1:1 mixture of THF (1 mL) and H₂O (1 mL) and charged with NaBO₃·4H₂O (92.3 mg, 3 equiv.). The resulting heterogeneous mixture was allowed to stir vigorously at ambient temperature for 3 hours and then quenched by the addition of petroleum ether. The aqueous layer was extracted three times with petroleum ether and the combined organic extracts were dried over MgSO₄, filtered, and concentrated by silica gel chromatography (EA/PE = 1:50-1:10 v/v) to give the alcohol **6** as a colorless oil (26.2 mg, 50 %).


Analytical data:


4-hexyl-3-vinyldec-3-en-1-ol (6): $R_f = 0.25$ (EA/PE = 1:10 v/v) ¹H NMR (500 MHz, CDCl₃) δ 6.69 (dd, J = 17.4, 11.1 Hz, 1H), 5.17 (d, J = 17.4 Hz, 1H), 4.99 (d, J = 11.2 Hz, 1H), 3.63 (t, J = 7.2 Hz, 2H), 2.56 (t, J = 7.2 Hz, 2H), 2.18-2.09 (m, 4H), 1.40-1.33 (m, 4H), 1.33-1.23 (m, 12H), 0.92-0.84 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 144.1, 134.5, 126.7, 111.5, 61.9, 33.6, 32.0, 31.7(8), 31.7(0), 30.6, 29.7, 29.6(6), 29.6(0), 28.9, 22.6(3), 22.6(2), 14.0(7), 14.0(6). HRMS (ESI): m/z [M+H]⁺ calcd. for [C₁₈H₃₅O]⁺ 267.26824, found 267.26685.


7. References:


1. G. Frater; J. Wenger. Helv. Chim. Acta. 1984, 67, 1702-1706.

