Structure Activity Relationship Study of 3,4'-Dimethoxyflavone for ArlRS Inhibition in *Staphylococcus aureus*

Supporting Information

Alexander W. Weig,¹ Patrick M. O'Conner,¹ Jakub M. Kwiecinski,² Orry M. Marciano,¹ Angelica

Nunag,¹ Andrew T. Gutierrez,¹ Roberta J. Melander,¹ Alexander R. Horswill^{2*} and Christian Melander^{1*}

¹Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

²Department of Immunology and Microbiology, University of Colorado Anschutz Medical

Campus, Aurora, CO 80045

Corresponding author email: cmelande@nd.edu, alexander.horswill@cuanschutz.edu

Table of Contents

General Biological ExperimentalS2	
Biological assay protocols)
Table S1: Percent inhibition of fluorescence normalized to growth in all four reporter strains	
when treated with 50 µM of each compoundS5	
Table S2: Strains of S. aureus used in this study and MIC of oxacillin in all deletion strains an	d
MIC of oxacillin with 60 µM of compound 17 in strains with lower MICs than paren	ıt
strainS7	7
General chemistry experimentalS9	9
Previously reported compoundsS11	l
Novel compound characterizationS1	6
¹ H and ¹³ C NMR spectra of novel compoundsS43	5
References	1

General biological experimental

Bacterial strains, media, and antibiotics *S. aureus* strains AH1263, AH5929, AH2360, AH2090 AH2087, AH2357, AH2106, AH1292, AH2099, AH2094, AH2084, AH2081, AH2075, AH2072, AH2066, AH2062, AH2216, AH3613, AH3614, AH1677, AH5151, AH5152, AH5380, AH5381, AH1716, AH1717, AH2222 were from our in-house library of *S. aureus* strains at The University of Colorado Anschutz School of Medicine, Aurora. MRSA strains MRSA ATCC BAA-1556 was obtained from the ATCC. Stock cultures were stored in 25% glycerol and maintained at -80 °C. Prior to use, colonies were grown on tryptic soy agar with either chloramphenicol (10 μg/mL strains AH1677, AH5151, AH5152, AH5380, AH5381) or erythromycin (10 μg/mL Strains AH3613, AH3614, AH 1716, AH1717, AH2222) or no antibiotic (all other strains). Cation adjusted mueller hinton broth (CAMHB) (cat# 212322) and tryptic soy broth (TSB) (cat# 211822) was purchased from BD. Oxacillin monosulfate was purchased from TCI (cat # 3LVBA-IK). Chloramphenicol was purchased from Alfa Aesar (cat # 10131638). Erythromycin was purchased from TCI (cat# JRD8F-AT). All assays were run twice from two separate cultures and then repeated at least two separate times (minimum of four biological replicates).

Biological assay protocols

GFP linked reporter strain assay: Bacteria was cultured overnighting in fresh TSB (3 mL) along with antibiotic (10 μ g/mL) to select for intended plasmid. Overnight cultures were diluted 1:500 in TSB and antibiotic (1:1000 dilution from a 10 μ g/mL stock) was added. To aliquots (0.5 mL) was added compound from 10 mM stock solutions in DMSO, such that the compound concentration equaled 50 μ M. Samples were then dispensed (200 μ L) in a black 96 well plate so that each sample occupied two wells. Two wells were filled with only media and two wells were

filled with inoculated media with no compound. Plates were covered with a lid and placed in a BioTek Synergy HTX multi-mode reader plate reader. The plate was continually shaken using the fast orbital setting with an orbital frequency of 807cpm at 37 °C for 24 hours. The OD₆₀₀ and fluorescence intensity with excitation at 485 nm and emission at 528 nm were recorded at the start then subsequently every hour with the gain set 35 and measurements being taken from the bottom of the plate.

Broth microdilution method for the determination of minimum inhibitory concentration (MIC): Bacteria were cultured for 4 to 6 hours in CAMHB and subcultured to 5 x 10⁵ CFU/mL in fresh CAMHB. To aliquots (0.5 mL) was added compound from 10 mM stock solutions in DMSO, such that the compound concentration equaled the highest concentration tested. Samples were then dispensed (200 µL) into the first row of a 96-well microtiter plate in which all but the final row of subsequent wells were prefilled with 100 µL of the untreated bacterial subculture. The final row was filled with media to act as a sterility control and blank. Row one wells were mixed 6-7 times, then, 100 µL was withdrawn and transferred to row two. Row two wells were mixed 6-7 times followed by a 100 µL transfer from row two to row three. This procedure was used to serially dilute the rest of the rows of the microtiter plate, excluding the last prefilled row, which was used to measure growth in the absence of compound. Plates were then sealed with GLAD Press'n Seal and incubated under stationary conditions at 37 °C. After 16 hours, the plates were removed, and MIC values were measured by recording the OD_{600} of each well. MIC values were determined as the minimum concentration required to achieve 90% growth inhibition compared to growth in untreated wells

Broth microdilution method for measurement of oxacillin potentiation: Bacteria were cultured for 4 to 6 hours in CAMHB and diluted to 5 x 10⁵ CFU/mL in fresh CAMHB. To aliquots (3 mL) was added compound from 10 mM stock solutions in DMSO. One aliquot was not dosed to allow measurement of the antibiotic MIC in the absence of compound. A 500 μ L aliquot of each sample was dosed with oxacillin, and from this 200 µL was dispensed into the first row of a 96-well microtiter plate in which all but the final row of subsequent wells was prefilled with 100 µL of the corresponding compound dosed bacterial suspension The final row was filled with media to act as a sterility control and blank. Row one wells were mixed 6-7 times, then, 100 µL was withdrawn and transferred to row two. Row two wells were mixed 6-7 times followed by a 100 μ L transfer from row two to row three. This procedure was used to serially dilute the rest of the rows of the microtiter plate, excluding the last prefilled row, which was used to measure growth in the presence of compound alone. Plates were then sealed with GLAD Press'n Seal and incubated under stationary conditions at 37 °C. After 16-18 hours, the plates were removed, and MIC values were measured by recording the OD₆₀₀ of each well. MIC values were determined as the minimum concentration required to achieve 90% growth inhibition compared to growth in untreated wells.

Compound	<i>mgrA</i> P2- GFP reporter	<i>spx</i> P2-GFP reporter	<i>agr</i> P3-YFP reporter	P _{hla} -GFP reporter
1	19	18	21	27
3 a	50	35	72	32
3b	37	25	23	-13
3c	42	32	73	10
3d	34	18	0	-44
3 e	50	27	17	-62
3f	48	24	12	-88
3 g	61	34	12	-46
3h	19	15	-13	-20
3i	17	17	25	38
3j	24	18	24	46
3k	19	3	1	52
31	19	0	19	3
3m	27	-10	-17	13
3 n	21	8	-9	15
30	11	9	4	3
3 p	36	30	32	26
3 q	18	12	3	5
3r	11	10	5	-3
3s	14	8	-7	24
3t	25	3	-4	11
<u>3u</u>	6	3	2	-1
3v	23	22	31	5
3 w	24	15	20	-29
3 x	30	16	5	3
3 y	29	28	25	-10
3z	21	12	18	-8
7a	24	11	21	34
7b	30	-4	6	15
10	13	2	-15	12
15	10	3	12	24

Table S1: Average percent inhibition of fluorescence normalized to growth in *mgrA* P2-GFP, *spx* P2-GFP, *agr* P3-YFP, and P_{hla} -GFP reporter strains when treated with 50 μ M of each compound.

16	33	26	52	41
17	61	51	48	-46
18	5	26	-6	0
19	25	24	24	-5
20	13	12	9	-2
21	1	3	-3	12

^aAll values given as percent inhibition compared to untreated samples. ⁿ Negative values denote

instances when fluorescence was increased compared to untreated samples.

Table S2: Strains of *S. aureus* used in this study and MIC of oxacillin in all deletion strains and MIC of oxacillin with 60μ M of compound 17 in strains with lower MICs than parent strain.

Strain number	LOCI	MIC of Oxacillin	MIC of Oxacillin with 60
	21/4	22	μM of compound 17
ATCC BAA-1556	N/A	32	2
AH 1263	USA 300 LAC. CA-	32	1
	VISA 300.0114 PEGE		
	type Frm sensitive		
AH 1292 ²	transduction of <i>agr</i> tet	32	N/A
	from RN7208 into	52	
	AH1263		
AH 2216 ³	AH1263 ΔsaePORS	32	N/A
AH 2062 ⁴	AH1263 $\Delta yes MN$	32	N/A
	LAC*SAUSA300 0217-		
	18Δ		
AH 2066 ⁴	AH1263 $\Delta lytRS$	32	N/A
	LAC*SAUSA300_0254-		
	55Δ		
AH 2072 ⁴	AH1263 $\Delta narL$	32	N/A
	LAC*SAUSA300_1219-		
	<u>20</u> Δ		27/4
AH 2075 ⁴	$AH1263 \Delta arl$	32	N/A
	LAC*SAUSA300_130/-		
A II 20014		22	NI/A
AH 2001	$A = 1205 \Delta p n 0 RS$	52	IN/A
	29A		
AH 2084 ⁴	AH1263 AairRS	32	N/A
	LAC*SAUSA300 1798-		
	<u> </u>		
AH 2087 ⁴	AH1263 ΔvraRS	8	1
	LAC*SAUSA300_1865-		
	66Δ		
AH 2090 ⁴	AH1263 $\Delta kdpDE$	8	0.5
	LAC*SAUSA300_2035-		
A 11 200 4 ⁴	<u>36</u> Δ	22	
AH 2094	LAC*SAUSA300_2308-	32	N/A
A H 2000 ⁴	09Δ A H1262 AmgaDS	22	NI/A
All 2033	I = C * SAUSA300 2558	32	IN/A
	59A		
AH2106 ⁴	AH1263 AnreBC	64	N/A
	LAC*SAUSA300 2337-		
	38Δ		
AH2357 ⁴	AH1263 ΔsrrAB	64	N/A
	LAC*SAUSA300_1441-		
	42Δ		
AH2360	AH1263 $\Delta graRS$	2	1
	LAC*SAUSA300_0645-		
	46Δ	-	
AH 5929 ⁸	AH1263 <i>mecA</i> ::Tet	0.25	0.25

AH3613 ⁵	AH1263 + pHC68	N/A	N/A
	(pCM11_PmgrA_sGFP,		
	ermR)		
AH3614 ⁵	AH1263 $\Delta arl + pHC68$	N/A	N/A
	(pCM11_PmgrA_sGFP,		
	ermR)		
AH1677 ⁶	AH845 / pDB59 (agr	N/A	N/A
	type I reporter)		
AH5151 ⁷	AH1263 + pHC151	N/A	N/A
	(pCM29_PsdrD, camR)		
AH5152 ⁷	AH1263 ∆arl + pHC151	N/A	N/A
	(pCM29_PsdrD, camR)		
AH5380 ⁷	AH1263 + pHC177	N/A	N/A
	(pCM29_ <i>spx</i> P2, camR)		
AH5381 ⁷	AH1263 ∆arl + pHC177	N/A	N/A
	(pCM29_ <i>spx</i> P2, camR)		
AH1716	AH1263 + pCM27	N/A	N/A
	$(P_{hla}_sGFP, ermR)$		
AH1717	AH1263 agr::tet +	N/A	N/A
	pCM27 (Phla_sGFP,		
	ermR)		
AH2222	AH1263 $\Delta saePQRS +$	N/A	N/A
	pCM27 (Phla_sGFP,		
	ermR)		

General Chemistry Experimental

All reactions were carried out under an atmosphere of nitrogen using anhydrous solvents unless otherwise specified. All chemical reagents for synthesis were used without further purification. Analytical thin layer chromatography (TLC) was performed using 250 µm Silica Gel 60 F254 pre-coated plates (EMD Chemicals Inc.). Flash column chromatography was performed using 230–400 mesh 60Å Silica Gel from Sorbent Technologies. NMR spectra were recorded using broadband probes on a Bruker AVANCE III HD Nanobay (400, 500 or 800 MHz for ¹H and 100 125 or 200 MHz for ¹³C). All Spectra are presented using MestReNova (Mnova) software and ¹H NMR are typically displayed from 12 to -0.7 ppm without the use of the signal suppression function. Spectra were obtained in the following solvents (reference peaks also included for the ¹H and ¹³C NMRs): *d*₆-DMSO (¹H NMR: 2.50 ppm; ¹³C NMR: 39.52 ppm), CD₃OD (¹H NMR: 3.31 ppm; ¹³C NMR: 49.00 ppm) and *d*₁-CDCl₃ (¹H NMR: 7.26 ppm; ¹³C NMR: 77.16 ppm). All NMR experiments were performed at room temperature. Chemical shift values (δ) are reported in parts per million (ppm) for all ¹H and ¹³C spectra. ¹H NMR multiplicities are reported as: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet, br = broad hept = heptet. High-resolution mass spectra were obtained for all new compounds from the mass spectrometry and proteomics facility at the University of Notre Dame performed on a Bruker-TOF-ESI spectrometer in positive module using direct infusion in 9:1 acetonitrile: water. The IR spectra analyses were conducted at the Center for Environmental Science and Technology (CEST) at University of Notre Dame using a Bruker Tensor 27, with a diamond lens ATR module, to gather transmission spectra. UV data was taken using a Thermo Scientific, Genesys 10 UV scanning spectrometer.

General procedure for aldol condensation

A mixture of the acetophenone (5-10 mmol, 1 equiv.) and the corresponding aldehyde (1 equiv.) in EtOH (20-40 mL) was stirred at room temperature without a cap and a 50% aqueous solution of NaOH (5-8 mL) was added. The reaction mixture was stirred at room temperature until all of the aldehyde had been consumed. HCl (10%) was then added until neutrality. Precipitated chalcones were generally filtered and crystallized from MeOH although in some cases the product was purified using column chromatography (Hexanes: EtOAc).

General procedure of Algar-Flynn-Oyamada cyclization and alkylation

A solution of the corresponding 2-hydroxychalcone (1-4 mmol) in 3.0 M KOH in MeOH (20-30 mL) was cooled to 0 °C with no cap. An aqueous solution of H_2O_2 (30%) (5-8 mL) was added to the chalcone solution. The resulting mixture was stirred and allowed to warm to room temperature and stirred overnight. The reaction mixture was again cooled to 0 °C and HCl (3 N) was added until the mixture reached pH 2. The precipitate was dissolved in EtOAC and washed with distilled water and brine three times each (20 mL). The organic layer was dried with anhydrous Na₂SO₄. The solvent was evaporated in vacuo and the residue run through a flash silica column. A portion of the resulting residue containing the product (20-100 mg) was added with K_2CO_3 (1.8 equiv.) to a flame dried vial, which was evacuated and placed under argon. The residue and base were then dissolved in CH₃CN (5 mL), and the mixture was heated to 40 °C. The desired alkyl halide (10 equiv.) was subsequently added, and the reaction was allowed to stir until the starting material was totally consumed (as evidenced by TLC). The reaction mixture was then, partitioned between ethyl acetate and water. The ethyl acetate layer was washed with brine, dried over Na₂SO₄, filtered and

concentrated. The crude material was purified by column chromatography to yield the final product.

General Procedure for MOM protection

A RBF was charged with DCM (30 mL), aldehyde (1 equiv.) and Hunig's base (1.6 equiv.). MOM-Cl (5.9 M in MeOAc) (1.5 equiv.) was added slowly. Reaction was stirred overnight at rt. The reaction was subsequently diluted with DCM, washed with HCl (2x), sodium bicarbonate (2x), brine (2x), and dried over sodium sulfate before being purified via column chromatography.

General procedure of MOM deprotection

Compound was added to vial and dissolved in DCM (1.5 mL). TFA (1.5 mL) was then added to the vial and the reaction was allowed to stir until the starting material was consumed (as evidenced by TLC). Following deprotection, compound was purified via column chromatography.

Previously Reported Compounds

3-Methoxy-2-(4-methoxyphenyl)-4*H***-chromen-4-one (1):** was synthesized using the general procedure for Algar-Flynn-Oyamada cyclization and alkylation with **2a** and methyl iodide. Spectral data were consistent with previous reports.⁹

(*E*)-1-(2-Hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (2a): was synthesized using the general procedure for aldol condensation. Spectral data were consistent with previous reports.¹⁰

(*E*)-3-(3,5-Bis(trifluoromethyl)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2k): was synthesized using the general procedure for aldol condensation. Spectral data were consistent with previous reports.¹¹

(E)-1-(2-Hydroxy-5-methoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (2q): was synthesized using the general procedure for aldol condensation. Spectral data were consistent with previous reports.¹²

3-(Benzyloxy)-2-(4-methoxyphenyl)-4*H***-chromen-4-one (3b)** was synthesized using the general procedure procedure for Algar-Flynn-Oyamada cyclization and alkylation with **2a** and benzyl bromide. Spectral data were consistent with previous reports.⁹

2-(4-Ethoxyphenyl)-3-methoxy-4*H***-chromen-4-one (3j):** was synthesized using the general procedure procedure for Algar-Flynn-Oyamada cyclization and alkylation with **2c** and methyl iodide. Spectral data were consistent with previous reports.⁹

2-(4-Isopropoxyphenyl)-3-methoxy-4*H***-chromen-4-one (3l):** was synthesized using the general procedure procedure for Algar-Flynn-Oyamada cyclization and alkylation with **2e** and methyl iodide. Spectral data were consistent with previous reports.⁹

2-(3,4-Dimethoxyphenyl)-3-methoxy-4*H***-chromen-4-one (3n):** was synthesized using the general procedure procedure for Algar-Flynn-Oyamada cyclization and alkylation with **2g** and methyl iodide. Spectral data were consistent with previous reports.⁹

2-(4-Hydroxyphenyl)-3-methoxy-4*H*-chromen-4-one (7a): was synthesized using the general procedure procedure for Algar-Flynn-Oyamada cyclization and alkylation with **6a** and methyl iodide followed by MOM deprotection. Spectral data were consistent with previous reports.¹³

(*E*)-1-(2-Iodophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (8): was synthesized using the general procedure for aldol condensation. Spectral data were consistent with previous reports.¹⁴

2-(4-Methoxyphenyl)thiochroman-4-one (9): Compound was synthesized using previously reported methods.¹⁵ Spectral data were consistent with previous reports.¹⁵

2-Azidobenzaldehyde (12): Compound was synthesized using previously reported methods.¹⁶ Spectral data were consistent with previous reports.¹⁶

1-(2-Azidophenyl)-3-(4-methoxyphenyl)prop-2-yn-1-ol (13): Compound was synthesized using previously reported methods.¹⁶ Spectral data were consistent with previous reports.¹⁶

1-(2-Azidophenyl)-3-(4-methoxyphenyl)prop-2-yn-1-one (14): Compound was synthesized using previously reported methods.¹⁶ Spectral data were consistent with previous reports.¹⁶

3-Methoxy-2-(4-methoxyphenyl)quinolin-4(1*H***)-one (15):** Compound was synthesized using previously reported methods.¹⁶ Spectral data were consistent with previous reports.¹⁶

Novel Compound Characterization

(*E*)-1-(2-Hydroxyphenyl)-3-phenylprop-2-en-1-one (2b): The general procedure for aldol condensation afforded 2g as a yellow solid. Yield 39% (436 mg, 1.94 mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.82 (s, 1H), 7.94 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.94 (d, *J* = 15.5 Hz, 1H), 7.71 – 7.66 (m, 3H), 7.51 (ddd, *J* = 8.6, 7.2, 1.6 Hz, 1H), 7.47 – 7.42 (m, 3H), 7.04 (dd, *J* = 8.3, 1.2 Hz, 1H), 6.96 (ddd, *J* = 8.2, 7.1, 1.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 193.9, 163.7, 145.6, 136.6, 134.7, 131.1, 129.8, 129.2, 128.8, 120.23, 120.1, 119.0, 118.8. UV (λ_{max} nm): 314; IR ν_{max} (cm⁻¹): 3080, 2360, 2342, 1638, 1571; HRMS (ESI): calcd. for C₁₅H₁₃O₂ [M+H]⁺: 225.0910 , found: 225.0919

(*E*)-3-(4-Ethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2c): The general procedure for aldol condensation afforded 2c as a yellow solid. Yield 64% (862 mg, 3.21 mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.96 (s, 1H), 7.93 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.91 (d, *J* = 15.5 Hz, 1H), 7.68 – 7.59 (m, 2H), 7.55 (d, *J* = 15.4 Hz, 1H), 7.49 (ddd, *J* = 8.6, 7.1, 1.6 Hz, 1H), 7.03 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.97 – 6.91 (m, 3H), 4.10 (q, *J* = 7.0 Hz, 2H), 1.45 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.6, 163.6, 161.5, 145.4, 136.1, 130.6, 129.6, 127.1, 120.1, 118.8, 118.5, 117.3, 115.0, 63.7, 14.7. UV (λ_{max} nm): 364; IR ν_{max} (cm⁻¹): 2980, 2359, 2331, 1633, 1603; HRMS (ESI): calcd. for C₁₇H₁₇O₃ [M+H]⁺: 269.1172 found: 269.1179

(*E*)-1-(2-Hydroxyphenyl)-3-(4-propoxyphenyl)prop-2-en-1-one (2d): The general procedure for aldol condensation afforded 2d as an orange solid. Yield 81% (1.71 g, 6.05mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.96 (s, 1H), 7.93 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.91 (d, *J* = 15.4 Hz, 1H), 7.66 – 7.59 (m, 2H), 7.55 (d, *J* = 15.4 Hz, 1H), 7.49 (ddd, *J* = 8.6, 7.2, 1.7 Hz, 1H), 7.03 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.98 – 6.91 (m, 3H), 3.98 (t, *J* = 6.6 Hz, 2H), 1.91 – 1.78 (m, 2H), 1.06 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.7, 163.6, 161.8, 145.6, 136.2, 130.7, 129.6, 127.1, 120.2, 118.8, 118.6, 117.4, 115.1, 69.8, 22.6, 10.6. UV (λ_{max} nm): 360; IR ν_{max} (cm⁻¹): 3038, 1693, 1558, 758; HRMS (ESI): calcd. for C₁₈H₁₉O₃ [M+H]⁺: 283.1329 found: 283.1334

(*E*)-1-(2-Hydroxyphenyl)-3-(4-isopropoxyphenyl)prop-2-en-1-one (2e): The general procedure for aldol condensation afforded 2e as a yellow solid. Yield 2% (65 mg, 0.23 mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.97 (s, 1H), 7.93 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.91 (d, *J* = 15.4 Hz, 1H), 7.65 – 7.59 (m, 2H), 7.54 (d, *J* = 15.4 Hz, 1H), 7.49 (ddd, *J* = 8.6, 7.2, 1.6 Hz, 1H), 7.02 (dd, *J* = 8.3, 1.2 Hz, 1H), 6.97 – 6.90 (m, 3H), 4.64 (hept, *J* = 6.0 Hz, 1H), 1.37 (d, *J* = 6.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 163.7, 160.7, 145.6, 136.3, 130.8, 129.7, 127.1, 120.3, 118.9,

118.7, 117.5, 116.1, 70.2, 22.1. UV (λ_{max} nm): 364; IR ν_{max} (cm⁻¹): 2974, 2360, 2342, 1636, 1562; HRMS (ESI): calcd. for C₁₈H₁₉O₃ [M+H]⁺: 283.1329, found: 283.1336.

(*E*)-3-(4-Butoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2f): The general procedure for aldol condensation afforded 2f as a yellow solid. Yield 81% (1.79 g, 6.05 mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.96 (s, 1H), 7.93 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.91 (d, *J* = 15.3 Hz, 1H), 7.64 – 7.61 (m, 2H), 7.54 (d, *J* = 15.4 Hz, 1H), 7.49 (ddd, *J* = 8.6, 7.1, 1.6 Hz, 1H), 7.02 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.98 – 6.90 (m, 3H), 4.02 (t, *J* = 6.5 Hz, 2H), 1.85 – 1.74 (m, 2H), 1.55 – 1.46 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.6, 163.6, 161.7, 145.5, 136.1, 130.6, 129.6, 127.0, 120.1, 118.8, 118.5, 117.2, 114.9, 67.9, 31.2, 19.2, 13.9. UV (λ_{max} nm): 362; IR ν_{max} (cm⁻¹): 2951, 2358. 2326, 1634, 1557; HRMS (ESI): calcd. for C₁₉H₂₁O₃ [M+H]⁺: 297.1485 found: 297.1485

(*E*)-3-(3,4-Dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2g): The general procedure for aldol condensation afforded 2g as an orange solid. Yield 37% (532 mg, 1.87 mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.93 (s, 1H), 7.94 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.90 (d, *J* = 15.4 Hz, 1H), 7.53 (d, *J* = 15.4 Hz, 1H), 7.50 (ddd, *J* = 8.6, 7.2, 1.6 Hz, 1H), 7.28 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.18 (d, *J* = 2.1 Hz, 1H), 7.03 (dd, *J* = 8.4, 1.1 Hz, 1H), 6.98 – 6.94 (m, 1H), 6.92 (d, *J* = 8.3 Hz, 1H), 7.18 (d, *J* = 2.1 Hz, 1H), 7.03 (dd, *J* = 8.4, 1.1 Hz, 1H), 6.98 – 6.94 (m, 1H), 6.92 (d, *J* = 8.3 Hz, 1H), 7.03 (dd, *J* = 8.4, 1.1 Hz, 1H), 6.98 – 6.94 (m, 1H), 6.92 (d, *J* = 8.3 Hz), 7.18 (d, *J* = 2.1 Hz, 1H), 7.03 (dd, *J* = 8.4, 1.1 Hz, 1H), 6.98 – 6.94 (m, 1H), 6.92 (d, *J* = 8.3 Hz), 7.18 (d, *J* = 2.1 Hz, 1H), 7.03 (dd, *J* = 8.4, 1.1 Hz, 1H), 6.98 – 6.94 (m, 1H), 6.92 (d, *J* = 8.3 Hz), 7.18 (d, *J* = 2.1 Hz, 1H), 7.03 (dd, *J* = 8.4, 1.1 Hz, 1H), 6.98 – 6.94 (m, 1H), 6.92 (d, *J* = 8.3 Hz), 7.18 (d, *J* = 2.1 Hz, 1H), 7.03 (dd, *J* = 8.4, 1.1 Hz), 7.03 (dd, *J* 1H), 3.98 (s, 3H), 3.95 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.7, 163.7, 152.0, 149.4, 145.8, 136.3, 129.7, 127.7, 123.8, 120.2, 118.9, 118.8, 117.9, 111.3, 110.4, 56.2, 56.2. UV (λ_{max} nm): 360; IR ν_{max} (cm⁻¹): 3017, 2360, 2342, 1638, 1566; HRMS (ESI): calcd. for C₁₇H₁₇O₄ [M+H]⁺: 285.1121, found: 285.1129.

(*E*)-3-(3,4-Diethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2h): The general procedure for aldol condensation afforded 2h as an orange solid. Yield 68% (1.06 g, 3.40 mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.95 (s, 1H), 7.93 (dd, J = 8.0, 1.7 Hz, 1H), 7.88 (d, J = 15.4 Hz, 1H), 7.51 (d, J = 15.3 Hz, 1H), 7.49 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.22 (dd, J = 19.0, 2.1 Hz, 2H), 7.03 (dd, J = 8.4, 1.2 Hz, 1H), 6.95 (ddd, J = 8.4, 7.3, 1.3 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 4.17 (q, J = 7.0 Hz, 2H), 4.16 (q, J = 7.0 Hz, 2H), 3.49 (t, 3H), 1.50 (t, J = 7.0 Hz, 3H), 1.49 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.7, 163.6, 151.8, 148.9, 145.9, 136.2, 129.6, 127.5, 123.7, 120.2, 118.8, 118.6, 117.6, 112.7, 112.6, 64.8, 64.6, 14.9, 14.8. UV (λ_{max} nm): 376; IRν_{max} (cm⁻¹): 2982, 1631, 1506, 1139, 1038; HRMS (ESI): calcd. for C₁₉H₂₁O₄ [M+H]⁺: 313.1434, found: 313.1440.

(*E*)-3-(3,5-Dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2i): The general procedure for aldol condensation afforded 2i as a yellow orange solid. Yield 38 % (534 mg, 1.88

mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.79 (s, 1H), 7.92 (dd, J = 8.2, 1.7 Hz, 1H), 7.84 (d, J = 15.4 Hz, 1H), 7.61 (d, J = 15.4 Hz, 1H), 7.51 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.04 (dd, J = 8.4, 1.2 Hz, 1H), 6.96 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 6.80 (d, J = 2.2 Hz, 2H), 6.55 (t, J = 2.2 Hz, 1H), 3.86 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 193.8, 163.7, 161.2, 145.6, 136.6, 136.5, 129.8, 120.7, 120.1, 119.0, 118.7, 106.7, 103.2, 55.6. UV (λ_{max} nm): 214; IR ν_{max} (cm⁻¹): 3015, 2360, 2342, 1637, 1574; HRMS (ESI): calcd. for C₁₇H₁₇O₄ [M+H]⁺: 285.1121, found: 285.112.

(*E*)-3-(3,5-Dimethylphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2j): The general procedure for aldol condensation afforded 2j as an orange brown solid. Yield 49% (622 mg, 2.47 mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.87 (s, 1H), 7.95 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.88 (d, *J* = 15.5 Hz, 1H), 7.65 (d, *J* = 15.4 Hz, 1H), 7.50 (ddd, *J* = 8.6, 7.1, 1.6 Hz, 1H), 7.29 (s, 2H), 7.09 (s, 1H), 7.03 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.95 (ddd, *J* = 8.2, 7.1, 1.2 Hz, 1H), 2.37 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 193.8, 163.7, 145.9, 138.6, 136.3, 134.5, 132.9, 129.7, 126.6, 120.1, 119.6, 118.9, 118.6, 21.3. UV (λ_{max} nm): 210; IR ν_{max} (cm⁻¹): 2915, 1639, 1484, 1201, 1155; HRMS (ESI): calcd. for C₁₇H₁₇O₂ [M+H]⁺: 253.1223, found: 253.1231.

(*E*)-3-(3,5-Difluorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2l): The general procedure for aldol condensation afforded 2l as a yellow solid. Yield 5% (67 mg, 0.26 mmol). ¹H

NMR (400 MHz, CDCl₃) δ 12.63 (s, 1H), 7.90 (dd, J = 8.1, 1.7 Hz, 1H), 7.79 (d, J = 15.5 Hz, 1H), 7.63 (d, J = 15.5 Hz, 1H), 7.53 (ddd, J = 8.7, 7.2, 1.6 Hz, 1H), 7.17 (dt, J = 6.4, 2.1 Hz, 2H), 7.05 (dd, J = 8.4, 1.2 Hz, 1H), 6.97 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 6.89 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 193.3, 163.8, 163.4 (dd, J = 249.6, 12.8 Hz), 142.7 (t, J = 3.0 Hz), 138.0 (t, J = 9.5 Hz), 137.0, 129.8, 122.7, 119.9, 119.2, 118.9, 111.3 (dd, J = 19.7, 5.9 Hz), 106.1 (t, J = 25.5 Hz). UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 3098, 2950, 2361, 2342, 1649; HRMS (ESI): calcd. for C₁₅H₁₁F₂O₂ [M+H]⁺: 261.0722, found: 261.0729.

(*E*)-3-(3,5-Dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2m): The general procedure of aldol condensation afforded 2m as an orange solid. Yield 15% (225 mg, 0.77 mmol). ¹H NMR (500 MHz, CDCl₃) δ 12.62 (d, J = 0.3 Hz, 1H), 7.91 (dd, J = 8.1, 1.6 Hz, 1H), 7.76 (dd, J = 15.5, 0.6 Hz, 1H), 7.65 (d, J = 15.3 Hz, 1H), 7.57 – 7.50 (m, 3H), 7.42 (t, J = 1.8 Hz, 1H), 7.05 (dd, J = 8.4, 1.2 Hz, 1H), 6.97 (ddd, J = 8.2, 7.2, 1.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 193.1, 163.8, 142.2, 137.7, 137.0, 135.9, 130.5, 129.8, 126.8, 122.8, 119.9, 119.2, 118.9. UV (λ_{max} nm): 208; IR ν_{max} (cm⁻¹): 3061, 2921, 2361, 2342, 1643; HRMS (ESI): calcd. for C₁₅H₁₁Cl₂O₂ [M+H]⁺: 293.0131, found: 293.0129.

(*E*)-3-(3,5-Dibromophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2n): The general procedure for aldol condensation afforded 2n as a yellow solid. Yield 16% (178 mg, 0.47 mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.62 (s, 1H), 7.91 (dd, J = 8.1, 1.6 Hz, 1H), 7.79 – 7.70 (m, 4H), 7.63 (d, J = 15.5 Hz, 1H), 7.53 (ddd, J = 8.5, 7.1, 1.6 Hz, 1H), 7.05 (dd, J = 8.4, 1.2 Hz, 1H), 6.97 (ddd, J = 8.2, 7.2, 1.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 193.1, 163.8, 142.0, 138.2, 137.0, 135.9, 130.1, 129.8, 123.7, 122.8, 119.9, 119.2, 118.9. UV (λ_{max} nm): 208; IR ν_{max} (cm⁻¹): 3054, 1642, 1567, 1484, 592; HRMS (ESI): calcd. for C₁₅H₁₁Br₂O₂ [M+H]⁺: 380.9120, found: 380.9119.

(*E*)-1-(2-Hydroxy-4-methoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (2o): The general procedure for aldol condensation afforded 2o as a yellow solid. Yield 54% (764 mg, 2.69 mmol). ¹H NMR (400 MHz, CDCl₃) δ 13.56 (s, 1H), 7.90 – 7.79 (m, 2H), 7.67 – 7.58 (m, 2H), 7.46 (d, *J* = 15.4 Hz, 1H), 7.00 – 6.89 (m, 2H), 6.48 (m, 2H), 3.86 (s, 3H), 3.86 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.9, 166.7, 166.1, 161.9, 144.3, 132.4, 131.2, 130.5, 127.6, 117.8, 114.5, 107.7, 101.1, 55.6, 55.5. UV (λ_{max} nm): 362; IR ν_{max} (cm⁻¹): 3079, 1626, 1570, 1361, 1213; HRMS (ESI): calcd. for C₁₇H₁₇O₄ [M+H]⁺: 285.1121 found: 285.1120

(*E*)-1-(2-Hydroxy-6-methoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (2p): The general procedure for aldol condensation afforded **2p** as an orange solid. Yield 48% (686 mg, 2.41

mmol). ¹H NMR (400 MHz, CDCl₃) δ 13.24 (s, 1H), 7.82 (d, J = 24.5 Hz, 1H), 7.78 (d, J = 24.5 Hz, 1H), 7.62 – 7.55 (m, 2H), 7.35 (t, J = 8.3 Hz, 1H), 6.94 (d, J = 8.8 Hz, 1H), 6.62 (dd, J = 8.4, 1.0 Hz, 1H), 6.43 (dd, J = 8.3, 1.1 Hz, 1H), 3.95 (s, 3H), 3.86 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 194.2, 164.8, 161.6, 160.9, 143.1, 135.7, 130.2, 127.9, 125.1, 114.4, 111.9, 110.8, 101.5, 55.8, 55.3. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 3019, 1626, 1556, 1236, 1170; HRMS (ESI): calcd. for C₁₈H₁₉O₄ [M+H]⁺: 299.1278 found: 299.1282.

(*E*)-1-(2-Hydroxy-5-methylphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (2r): The general procedure for aldol condensation afforded 2r as an orange solid. Yield 49% (983 mg, 3.66 mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.79 (s, 1H), 7.92 (d, *J* = 15.4 Hz, 1H), 7.72 (d, *J* = 2.1 Hz, 1H), 7.70 – 7.65 (m, 2H), 7.57 (d, *J* = 15.4 Hz, 1H), 7.33 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.99 (d, *J* = 8.7 Hz, 2H), 6.96 (d, *J* = 8.5 Hz, 1H), 3.90 (d, *J* = 0.8 Hz, 3H), 2.38 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.4, 161.9, 161.4, 145.0, 137.1, 130.5, 129.2, 127.7, 127.2, 119.6, 118.1, 117.4, 114.4, 55.3, 20.5. UV (λ_{max} nm): 356; IR ν_{max} (cm⁻¹): 2999, 1632, 1602, 1574, 1165; HRMS (ESI): calcd. for C₁₇H₁₇O₃ [M+H]⁺: 269.1172 found: 269.1180

(*E*)-1-(5-Ethoxy-2-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (2s): The general procedure for aldol condensation afforded 2s as an orange solid. Yield 73% (1.31 mg, 4.38

mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.47 (s, 1H), 7.90 (d, J = 15.4 Hz, 1H), 7.63 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 15.3 Hz, 1H), 7.38 (d, J = 3.0 Hz, 1H), 7.13 (dd, J = 9.0, 3.0 Hz, 1H), 6.98 – 6.93 (m, 3H), 4.05 (q, J = 7.0 Hz, 2H), 3.87 (s, 3H), 1.44 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.3, 162.0, 157.8, 151.0, 145.4, 130.6, 127.3, 124.1, 119.8, 119.1, 117.5, 114.5, 114.0, 64.5, 55.4, 15.0. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2978, 2359, 2342, 1634, 1551; HRMS (ESI): calcd. for C₁₈H₁₉O₄ [M+H]⁺: 299.1278 found: 299.1278.

3-Ethoxy-2-(4-methoxyphenyl)-4*H***-chromen-4-one (3a):** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2a** and ethyl iodide afforded **3a** as a pale-yellow solid. Yield 66% (94 mg, 0.32 mmol). ¹H NMR (500 MHz, CDCl₃) δ 8.29 (dd, *J* = 8.0, 1.7 Hz, 1H), 8.05 (d, *J* = 9.0 Hz, 2H), 7.66 (ddt, *J* = 8.5, 7.1, 1.5 Hz, 1H), 7.51 (dd, *J* = 8.5, 1.2 Hz, 1H), 7.43 – 7.36 (m, 3H), 7.28 (dd, *J* = 5.1, 2.1 Hz, 3H), 6.97 (d, *J* = 9.0 Hz, 2H), 5.12 (s, 2H), 3.89 (s, 3H), 1.33 (t, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 175.1, 161.6, 156.5, 155.3, 139.4, 136.9, 133.4, 130.7, 129.0, 128.3, 128.2, 125.9, 124.7, 124.3, 123.4, 118.0, 113.9, 74.1, 55.5. UV (λ_{max} nm): 226; IR ν_{max} (cm⁻¹): 2974, 2360, 2341, 1638, 1601; HRMS (ESI): calcd. for C₂₃H₁₉O₄ [M+H]⁺: 359.1278, found: 359.1283.

3-Isopropoxy-2-(4-methoxyphenyl)-4*H***-chromen-4-one (3c):** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2a** and 2-iodopropane afforded **3c** as a pale-yellow solid. Yield 35% (52 mg, 0.17 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, J = 8.0, 1.7 Hz, 1H), 8.17 (d, J = 9.0 Hz, 2H), 7.66 (ddd, J = 8.6, 7.1, 1.7 Hz, 1H), 7.52 (dd, J = 8.5, 1.2 Hz, 1H), 7.39 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 7.01 (d, J = 9.1 Hz, 2H), 4.68 (sep, J = 6.2 Hz, 1H), 3.90 (s, 3H), 1.20 (d, J = 6.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 175.5, 161.4, 156.4, 155.3, 138.7, 133.2, 130.8, 125.9, 124.6, 124.2, 124.0, 118.0, 113.7, 74.8, 55.5, 22.6. UV (λ_{max} nm): 330; IR ν_{max} (cm⁻¹): 2981, 2360, 2342, 1632, 1601; HRMS (ESI): calcd. for C₁₉H₁₉O₄ [M+H]⁺: 311.1278, found: 311.1280.

2-(4-Methoxyphenyl)-3-propoxy-4*H***-chromen-4-one (3d):** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2a** and 1-iodopropane afforded **3d** as an egg-shell white solid. Yield 56% (82 mg, 0.26 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, J = 8.0, 1.7 Hz, 1H), 8.13 (d, J = 8.9 Hz, 2H), 7.65 (ddd, J = 8.7, 7.0, 1.7 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 9.0 Hz, 2H), 4.00 (t, J = 6.8 Hz, 2H), 3.89 (s, 3H), 1.75 (h, J = 7.2 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.1, 161.4, 155.8, 155.2, 140.0, 133.2, 130.4, 125.7, 124.5, 124.2, 123.5, 117.9, 113.8, 74.2, 55.4, 23.4, 10.5. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2968, 2360, 2341, 1635, 1601; HRMS (ESI): calcd. for C₁₉H₁₉O4 [M+H]⁺: 311.1278, found: 311.1292.

3-Butoxy-2-(4-methoxyphenyl)-4*H***-chromen-4-one (3e):** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2a** and 1-iodobutane afforded **3e** as a cream colored solid. Yield 67% (103 mg, 0.32 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, *J* = 8.0, 1.7 Hz, 1H), 8.12 (d, *J* = 9.0 Hz, 2H), 7.65 (ddd, *J* = 8.7, 7.1, 1.7 Hz, 1H), 7.51 (dd, *J* = 8.4, 1.0 Hz, 1H), 7.37 (ddd, *J* = 8.1, 7.0, 1.1 Hz, 1H), 7.01 (d, *J* = 9.0 Hz, 2H), 4.03 (t, *J* = 6.7 Hz, 2H), 3.89 (s, 3H), 1.77 – 1.65 (m, 2H), 1.47 – 1.33 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 161.5, 155.9, 155.3, 140.2, 133.3, 130.5, 125.9, 124.6, 124.3, 123.6, 118.0, 113.9, 72.4, 55.5, 32.3, 19.2, 14.0. UV (λ_{max} nm): 204; IR ν_{max} (cm⁻¹): 2936, 2362, 2332, 1638, 1602; HRMS (ESI): calcd. for C₂₀H₂₁O₄ [M+H]⁺: 325.1434 , found: 325.143.

3-Isobutoxy-2-(4-methoxyphenyl)-4H-chromen-4-one (3f): Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2a** and 2-iodo-2-methylpropane afforded **3f** as an orange oil. Yield 32% (50 mg, 0.15 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, *J* = 8.0, 1.6 Hz, 1H), 8.14 – 8.08 (m, 2H), 7.66 (ddt, *J* = 8.2, 7.2, 1.3 Hz, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.39 (tt, *J* = 8.0, 1.0 Hz, 1H), 7.05 – 7.00 (m, 2H), 3.90 (d, *J* = 0.9 Hz, 3H), 3.79 (d, *J* = 6.6 Hz, 2H), 2.06 (hept, *J* = 6.7 Hz, 1H), 0.96 (dd, *J* = 6.7, 0.9 Hz, 6H). ¹³C NMR (126 MHz,

CDCl₃) δ 175.2, 161.6, 156.0, 155.3, 140.3, 133.3, 130.6, 125.9, 124.7, 124.4, 123.5, 118.0, 113.9, 79.1, 55.5, 29.2, 19.4. UV (λ_{max} nm): 328; IR ν_{max} (cm⁻¹): 2947, 2361, 2342, 1637, 1600; HRMS (ESI): calcd. for C₂₀H₂₁O₄ [M+H]⁺: 325.1434, found: 325.1431.

3-(Isopentyloxy)-2-(4-methoxyphenyl)-4H-chromen-4-one (3g): Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2a** and 1-iodo-3-methylbutane afforded **3g** as an orange oil. Yield 35% (56 mg, 0.17 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, J = 8.0, 1.7 Hz, 1H), 8.17 – 8.09 (m, 2H), 7.67 (ddd, J = 8.6, 7.0, 1.7 Hz, 1H), 7.53 (dd, J = 8.5, 1.1 Hz, 1H), 7.40 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 7.07 – 6.99 (m, 2H), 4.05 (t, J = 6.8 Hz, 2H), 3.90 (s, 3H), 1.77 (dp, J = 13.3, 6.7 Hz, 1H), 1.62 (m, 2H), 0.88 (d, J = 6.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 175.3, 161.5, 156.0, 155.3, 140.2, 133.3, 130.5, 125.9, 124.6, 124.3, 123.6, 118.0, 113.9, 71.2, 55.5, 39.0, 25.0, 22.7. UV (λ_{max} nm): 324; IR ν_{max} (cm⁻¹): 2955, 2361, 2342, 1637, 1602; HRMS (ESI): calcd. for C₂₁H₂₃O₄ [M+H]⁺: 339.1591 found: 339.1601.

3-(Sec-butoxy)-2-(4-methoxyphenyl)-4H-chromen-4-one (3h): Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2a** and 2-bromobutane afforded

3h as an orange oil. Yield 20% (30 mg, 0.09mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.14 (m, 2H), 8.07 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.58 (td, *J* = 7.8, 1.7 Hz, 1H), 7.35 (td, *J* = 7.6, 1.2 Hz, 1H), 7.20 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.03 – 6.94 (m, 2H), 4.98 (h, *J* = 6.3 Hz, 1H), 3.91 (s, 3H), 1.51 – 1.31 (m, 2H), 1.10 (d, *J* = 6.3 Hz, 3H), 0.82 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.6, 161.4, 156.5, 155.3, 138.7, 133.3, 130.9, 125.9, 124.6, 124.2, 124.0, 118.0, 113.7, 79.3, 55.5, 29.6, 19.2, 9.8. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2968, 2361, 2342, 1635, 1602; HRMS (ESI): calcd. for C₂₀H₂₁O₄ [M+H]⁺: 325.1434 found: 325.1435.

3-Methoxy-2-phenyl-4*H***-chromen-4-one (3i):** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2b** and methyl iodide afforded **3i** as a rusty orange solid. Yield 9% (10 mg, 0.04 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (dd, *J* = 7.9, 1.7 Hz, 1H), 8.13 – 8.09 (m, 2H), 7.69 (ddd, *J* = 8.7, 7.1, 1.7 Hz, 1H), 7.57 – 7.50 (m, 4H), 7.41 (ddd, *J* = 8.1, 7.1, 1.1 Hz, 1H), 3.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 155.8, 155.4, 141.7, 133.6, 131.1, 130.9, 128.7, 128.6, 126.0, 124.8, 124.4, 118.1, 60.3. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2924, 2360, 2342, 1638, 1607; HRMS (ESI): calcd. for C₁₆H₁₃O₃ [M+H]⁺: 253.0859, found: 253.0868.

3-Methoxy-2-(4-propoxyphenyl)-4*H***-chromen-4-one (3k):** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2d** and methyl iodide afforded **3k** as a pale-yellow solid. Yield 23% (54 mg, 0.17 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, *J* = 8.0, 1.7 Hz, 1H), 8.15 – 8.07 (m, 2H), 7.67 (ddd, *J* = 8.7, 7.0, 1.7 Hz, 1H), 7.53 (d, *J* = 8.3 Hz, 1H), 7.44 – 7.35 (m, 1H), 7.07 – 6.98 (m, 2H), 4.02 (t, *J* = 6.6 Hz, 2H), 3.89 (s, 3H), 1.86 (m, 2H), 1.07 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 161.3, 155.8, 155.3, 140.9, 133.4, 130.4 125.9, 124.7, 124.3, 123.1, 118.0, 114.6, 77.5, 77.2, 76.8, 69.8, 60.0, 22.6, 10.6. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2958, 2360, 2342, 1628, 1601; HRMS (ESI): calcd. for C₁₉H₁₉O₄ [M+H]⁺: 311.1278, found: 311.1273.

2-(4-Butoxyphenyl)-3-methoxy-4*H***-chromen-4-one (3m)** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2f** and methyl iodide afforded **3m** as a pale-yellow solid. Yield 26% (78 mg, 0.24 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, *J* = 8.0, 1.7 Hz, 1H), 8.15 – 8.07 (m, 2H), 7.67 (ddd, *J* = 8.7, 7.1, 1.7 Hz, 1H), 7.53 (dd, *J* = 8.5, 1.1 Hz, 1H), 7.39 (ddd, *J* = 8.1, 7.0, 1.1 Hz, 1H), 7.06 – 6.98 (m, 2H), 4.06 (t, *J* = 6.5 Hz, 2H), 3.89 (s, 3H), 1.82 (dq, *J* = 7.9, 6.4 Hz, 2H), 1.52 (h, *J* = 7.7 Hz, 2H), 1.00 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 161.2, 155.7, 155.2, 140.8, 133.3, 130.2, 125.8, 124.6, 124.2, 123.0, 117.9, 114.5, 67.9, 59.9, 31.2, 19.25, 13.9. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2960, 2360, 2342, 1627, 1601; HRMS (ESI): calcd. for C₂₀H₂₁O4 [M+H]⁺: 325.1434, found: 325.1434.

2-(3,4-Diethoxyphenyl)-3-methoxy-4H-chromen-4-one (30): Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2h** and methyl iodide afforded **3o** as a pale-yellow solid. Yield 5% (16 mg, 0.05 mmol). ¹H NMR (800 MHz, CDCl₃) δ 8.27 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.76 (d, *J* = 2.1 Hz, 1H), 7.75 (dd, *J* = 8.5, 2.2 Hz, 1H), 7.67 (ddd, *J* = 8.6, 7.0, 1.6 Hz, 1H), 7.54 (dd, *J* = 8.4, 0.9 Hz, 1H), 7.40 (ddd, *J* = 8.1, 7.0, 1.0 Hz, 1H), 7.00 (d, *J* = 8.5 Hz, 1H), 4.20 (q, *J* = 6.9 Hz, 2H), 4.19 (q, *J* = 7.0 Hz, 2H), 3.88 (s, 3H), 1.51 (t, *J* = 7.0 Hz, 3H), 1.51 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 175.2, 156.0, 155.3, 151.3, 148.3, 141.0, 133.5, 126.0, 124.8, 124.3, 123.3, 122.4, 118.0, 113.8, 112.5, 64.9, 64.6, 60.1, 14.9, 14.9. UV (λ_{max} nm): 244; IR ν_{max} (cm⁻¹): 2980, 2361, 2342, 1634, 1600; HRMS (ESI): calcd. for C₂₀H₂₁O₅ [M+H]⁺: 341.1384, found: 341.1376.

2-(3,5-Dimethoxyphenyl)-3-methoxy-4*H***-chromen-4-one (3p):** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2i** and methyl iodide afforded **3p** as a tan solid. Yield 21% (32 mg, 0.10 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, J = 8.0, 1.7 Hz, 1H), 7.69 (ddd, J = 8.7, 7.1, 1.7 Hz, 1H), 7.54 (dd, J = 8.5, 1.1 Hz, 1H), 7.41 (ddd, J = 8.0, 7.1, 1.1 Hz, 1H), 7.29 (d, J = 2.3 Hz, 2H), 6.62 (t, J = 2.3 Hz, 1H), 3.90 (s, 3H), 3.88 (s, 6H). ¹³C

NMR (101 MHz, CDCl₃) δ 175.3, 160.8, 155.4, 155.3, 141.8, 133.7, 132.7, 125.9, 124.8, 124.3, 118.2, 106.8, 103.0, 60.3, 55.7. UV (λ_{max} nm): 204; IR ν_{max} (cm⁻¹): 2925, 2360, 2342, 1632, 1602; HRMS (ESI): calcd. for C₁₈H₁₇O₅ [M+H]⁺: 313.1071, found: 313.1079.

2-(3,5-Dimethylphenyl)-3-methoxy-4*H***-chromen-4-one (3q):** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2j**, and methyl iodide afforded **3q** as an off-white solid. Yield 4% (12 mg, 0.04 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.70 – 7.66 (m, 3H), 7.55 (dd, *J* = 8.6, 1.1 Hz, 1H), 7.40 (ddd, *J* = 8.1, 7.1, 1.1 Hz, 1H), 7.16 (t, *J* = 1.8 Hz, 1H), 3.89 (s, 3H), 2.43 – 2.41 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 156.4, 155.5, 141.6, 138.2, 133.5, 132.6, 130.9, 126.4, 126.0, 124.8, 124.4, 118.2, 60.3, 21.6. UV (λ_{max} nm): 208; IR ν_{max} (cm⁻¹): 2917, 2361, 2342, 1632, 1608; HRMS (ESI): calcd. for C₁₈H₁₇O₃ [M+H]⁺: 281.1172, found: 281.1166.

2-(3,5-Bis(trifluoromethyl)phenyl)-3-methoxy-4*H*-chromen-4-one (3r): Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, 2k and methyl iodide afforded 3r as an off-white solid. Yield 8% (14 mg, 0.04 mmol). ¹H NMR (400 MHz, CDCl₃) δ

8.60 (d, J = 1.6 Hz, 2H), 8.28 (dd, J = 8.0, 1.7 Hz, 1H), 8.01 (s, 1H), 7.75 (ddd, J = 8.7, 7.1, 1.7 Hz, 1H), 7.65 – 7.58 (m, 1H), 7.55 – 7.36 (m, 1H), 4.00 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.03, 155.24, 151.65, 142.53, 134.29, 133.22, 132.27 (q, J = 33.8 Hz), 128.60 (d, J = 4.1 Hz), 126.13, 125.40, 124.25, 124.19 – 123.95 (m), 123.21 (q, J = 272.9 Hz), 118.22, 60.51. UV (λ_{max} nm): 204; IR ν_{max} (cm⁻¹): 1957, 2361, 2342, 1638, 1134; HRMS (ESI): calcd. for C₁₈H₁₁F₆O₃ [M+H]⁺: 389.0607, found: 389.0624.

2-(3,5-Difluorophenyl)-3-methoxy-4H-chromen-4-one (3s): Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2l** and methyl iodide afforded **3s** as an off-white solid. Yield 16% (15 mg, 0.05 mmol).¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, J = 8.1, 1.7 Hz, 1H), 7.72 (m 3H), 7.55 (dd, J = 8.5, 1.2 Hz, 1H), 7.43 (ddd, J = 8.1, 7.1, 1.0 Hz, 1H), 6.97 (tt, J = 8.6, 2.4 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.2, 163.1 (dd, J = 248.3, 12.7 Hz), 155.2, 152.5, 142.4, 134.1, 133.9 (t, J = 10.3 Hz), 126.1, 125.2, 124.2, 118.1, 111.7 (dd, J = 21.7, 6.8 Hz), 106.2 (t, J = 25.3 Hz), 60.4. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2950, 2361, 2342, 1649, 751; HRMS (ESI): calcd. for C₁₆H₁₁F₂O₃ [M+H]⁺: 289.0671, found: 289.0677.

2-(3,5-Dichlorophenyl)-3-methoxy-4*H***-chromen-4-one (3t):** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2m** and methyl iodide afforded **3t** as a white solid. Yield 31% (46 mg, 0.14 mmol).¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, *J* = 8.0, 1.7 Hz, 1H), 8.02 (d, *J* = 2.0 Hz, 2H), 7.72 (ddd, *J* = 8.6, 7.1, 1.7 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.50 (t, *J* = 1.9 Hz, 1H), 7.43 (ddd, *J* = 8.1, 7.0, 1.1 Hz, 1H), 3.96 (s, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 175.1, 155.3, 152.4, 142.3, 135.5, 134.1, 133.8, 130.6, 126.9, 126.1, 125.2, 124.2, 118.2, 60.5. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2947, 2360, 2342, 1649, 1135; HRMS (ESI): calcd. for C₁₆H₁₁Cl₂O₃ [M+H]⁺: 321.0080 , found: 321.0073.

2-(3,5-Dibromophenyl)-3-methoxy-4*H***-chromen-4-one (3u):** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2n** and methyl iodide afforded **3u** as a pale-yellow solid. Yield 3% (7 mg, 0.02 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, *J* = 8.1, 1.7 Hz, 1H), 8.21 (d, *J* = 1.8 Hz, 2H), 7.80 (t, *J* = 1.8 Hz, 1H), 7.72 (ddd, *J* = 8.7, 7.1, 1.7 Hz, 1H), 7.57 (dd, *J* = 8.5, 1.3 Hz, 1H), 7.43 (ddd, *J* = 8.1, 7.1, 1.1 Hz, 1H), 3.96 (s, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 175.1, 155.3, 152.2, 142.3, 136.0, 134.3, 134.1, 130.2, 126.1, 125.2, 124.2, 123.2, 118.2, 60.5. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2919, 2360, 2342, 1652, 1023; HRMS (ESI): calcd. for C₁₆H₁₁Br₂O₃ [M+H]⁺: 408.9069, found: 408.9060.

3,7-Dimethoxy-2-(4-methoxyphenyl)-4*H***-chromen-4-one (3v)**: Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2o** and methyl iodide afforded **3v** as an off-white solid. Yield 12% (20 mg, 0.06 mmol). ¹H NMR (400 MHz, CD₃OD) δ 8.17 – 8.11 (m, 2H), 8.07 (d, *J* = 9.0 Hz, 1H), 7.17 (d, *J* = 2.4 Hz, 1H), 7.13 – 7.08 (m, 2H), 7.06 (dd, *J* = 9.0, 2.4 Hz, 1H), 3.96 (s, 3H), 3.90 (s, 3H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 164.1, 161.5, 157.1, 155.4, 140.8, 130.2, 127.3, 123.5, 118.2, 114.4, 114.1, 100.0, 60.1, 56.0, 55.6. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2915, 2361, 2342, 1606, 1258; HRMS (ESI): calcd. for C₁₉H₁₉O₄ [M+H]⁺: 313.1071, found: 313.1074.

3,5-Dimethoxy-2-(4-methoxyphenyl)-4*H***-chromen-4-one (3w)** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2p** and methyl iodide afforded **3w** as a pale-yellow solid. Yield 4% (18 mg, 0.06 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.07 (m, 2H), 7.54 (t, *J* = 8.4 Hz, 1H), 7.06 – 6.99 (m, 2H), 6.79 (d, *J* = 8.2 Hz, 1H), 4.01 (s, 3H), 3.89 (d, *J* = 3.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 161.5, 160.1, 157.4, 153.4, 141.5, 133.5, 130.2, 123.3, 114.9, 114.1, 110.2, 105.7, 60.0, 56.6, 55.6. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2917, 2361, 2342, 1637, 1600; HRMS (ESI): calcd. for C₁₈H₁₇O₅ [M+H]⁺: 313.1071, found: 313.1078.

3,6-Dimethoxy-2-(4-methoxyphenyl)-4*H***-chromen-4-one (3x):** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2q** and methyl iodide afforded **3x** as a tan solid. Yield 37% (72 mg, 0.23 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.07 (m, 2H), 7.61 (d, *J* = 3.1 Hz, 1H), 7.46 (d, *J* = 9.2 Hz, 1H), 7.26 (dd, *J* = 9.2, 3.0 Hz, 1H), 7.06 – 7.00 (m, 2H), 3.92 (s, 3H), 3.90 (s, 3H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 161.5, 156.6, 155.5, 150.2, 140.6, 130.3, 124.9, 123.7, 123.4, 119.4, 114.1, 104.6, 60.0, 56.0, 55.5. UV (λ max nm): 330; IR ν max (cm⁻¹): 2926, 2360, 2342, 1158, 1611; HRMS (ESI): calcd. for C₁₈H₁₇O₅ [M+H]⁺: 313.1071, found: 313.1075.

3-Methoxy-2-(4-methoxyphenyl)-6-methyl-4*H***-chromen-4-one (3y): Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, 2r** and methyl iodide afforded **3y** as a tan solid. Yield 47% (90 mg, 0.30 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.16 – 8.08 (m, 2H), 8.05 (d, *J* = 2.6 Hz, 1H), 7.48 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.42 (d, *J* = 8.6 Hz, 1H), 7.07 – 6.99 (m, 2H), 3.90 (s, 3H), 3.87 (s, 3H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 161.5, 155.5, 153.5, 140.8, 134.7, 134.5, 130.3, 125.0, 123.9, 123.4, 117.7, 114.0, 60.0, 55.5, 21.0.

UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2918, 2360, 2342, 1604, 1024; HRMS (ESI): calcd. for C₁₈H-₁₇O₄ [M+H]⁺: 297.1121, found: 297.1124.

6-Ethoxy-3-methoxy-2-(4-methoxyphenyl)-4*H*-chromen-4-one (3z): Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, 2s and methyl iodide afforded 3z as an off-white solid. Yield 8% (19 mg, 0.06 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 9.1 Hz, 2H), 7.59 (d, J = 3.1 Hz, 1H), 7.45 (d, J = 9.1 Hz, 1H), 7.25 (d, J = 12.2 Hz, 1H), 7.03 (d, J = 9.0 Hz, 2H), 4.15 (q, J = 7.0 Hz, 2H), 3.90 (s, 3H), 3.88 (s, 3H), 1.46 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 161.6, 156.0, 155.6, 150.1, 140.6, 130.4, 124.9, 124.1, 123.5, 119.4, 114.1, 105.3, 64.3, 60.1, 55.6, 14.9. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2937, 2361, 2342, 1634, 1606; HRMS (ESI): calcd. for C₁₉H₁₉O₅ [M+H]⁺: 327.1227, found: 327.1237.

4-(Methoxymethoxy)benzaldehyde (5a): Following the general procedure for MOM protection with 4-hydroxybenzaldehyde afforded 5a as an egg white colored oil. Yield 95% (1.30 g, 7.82 mmol). ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 7.88 – 7.79 (m, 2H), 7.19 – 7.10 (m, 2H), 5.25 (s, 2H), 3.49 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 190.9, 162.2, 131.9, 130.8, 116.3, 94.1, 77.4, 77.2, 76.9, 56.4. UV (λ_{max} nm): 266; IR ν_{max} (cm⁻¹): 2829, 2361, 2342, 1683, 975; HRMS (ESI): calcd. for C₉H₁₁O₃ [M+H]⁺: 167.0703, found: 167.0710.

3-Methoxy-4-(methoxymethoxy)benzaldehyde (5b): Following the general procedure for MOM protection with 4-hydroxy-3-methooxybenzaldehyde afforded **5b** as a white solid. Yield 98% (128 mg, 0.65 mmol). ¹H NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 7.40 (dd, *J* = 7.2, 1.7 Hz, 2H), 7.27 – 7.22 (m, 1H), 5.30 (s, 2H), 3.93 (s, 3H), 3.50 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.1, 152.1, 150.2, 131.2, 126.6, 114.8, 109.6, 95.1, 56.7, 56.2. UV (λ_{max} nm): 224; IR ν_{max} (cm⁻¹): 2931, 2361, 2342, 1681, 970; HRMS (ESI): calcd. for C₁₀H₁₃O₄ [M+H]⁺: 197.0808, found: 197.0805.

(*E*)-1-(2-Hydroxyphenyl)-3-(4-(methoxymethoxy)phenyl)prop-2-en-1-one (6a): Following the general procedure for aldol condensation using **5a** afforded **6a** as an orange oil. Yield 13% (283 mg, 1.00 mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.92 (s, 1H), 7.95 – 7.87 (m, 2H), 7.66 – 7.60 (m, 2H), 7.56 (d, *J* = 15.4 Hz, 1H), 7.50 (ddd, *J* = 8.6, 7.1, 1.6 Hz, 1H), 7.12 – 7.07 (m, 2H), 7.03 (dd, *J* = 8.3, 1.2 Hz, 1H), 6.95 (ddd, *J* = 8.3, 7.2, 1.2 Hz, 1H), 5.24 (s, 2H), 3.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 163.7, 159.7, 145.4, 136.4, 130.6, 129.7, 128.5, 120.2, 118.9, 118.8, 118.2, 116.7, 94.3, 56.4. UV (λ_{max} nm): 358; IR ν_{max} (cm⁻¹): 2924, 2361, 2342, 1563, 1148; HRMS (ESI): calcd. for C₁₇H₁₇O₄ [M+H]⁺: 285.1121, found: 285.1120.

(*E*)-1-(2-Hydroxyphenyl)-3-(3-methoxy-4-(methoxymethoxy)phenyl)prop-2-en-1-one (6b): Following the general procedure for aldol condensation using 5b afforded 6b as a yellow solid. Yield 17% (370 mg, 1.18 mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.90 (s, 1H), 7.94 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.89 (d, *J* = 15.4 Hz, 1H), 7.54 (d, *J* = 15.4 Hz, 1H), 7.51 – 7.47 (m, 1H), 7.26 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 1H), 7.18 (d, *J* = 1.9 Hz, 1H), 7.03 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.00 – 6.91 (m, 1H), 5.30 (s, 2H), 3.97 (s, 3H), 3.53 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.8, 163.7, 150.0, 149.4, 145.6, 136.4, 129.7, 129.1, 123.1, 120.2, 118.9, 118.8, 118.5, 115.9, 111.3, 95.3, 56.6, 56.2. UV (λ_{max} nm): 368; IR ν_{max} (cm⁻¹): 2961, 2360, 2342, 1635, 996; HRMS (ESI): calcd. for C₁₈H₁₉O₅ [M+H]⁺: 315.1227, found: 315.1223.

(*E*)-1-(2-Hydroxy-5-methoxyphenyl)-3-(4-(methoxymethoxy)phenyl)prop-2-en-1-one (6c): Following the general procedure for aldol condensation using 5a afforded 6c as an orange solid. Yield 40% (952 mg, 3.03 mmol). ¹H NMR (400 MHz, CDCl₃) δ 12.46 (s, 1H), 7.90 (d, *J* = 15.4 Hz, 1H), 7.68 – 7.58 (m, 2H), 7.49 (d, *J* = 15.4 Hz, 1H), 7.36 (d, *J* = 3.1 Hz, 1H), 7.14 (dd, *J* = 9.1, 3.0 Hz, 1H), 7.11 – 7.07 (m, 2H), 6.98 (d, *J* = 9.0 Hz, 1H), 5.24 (s, 2H), 3.85 (s, 3H), 3.50 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 193.2, 159.6, 157.9, 151.7, 145.3, 130.5, 128.3, 123.6, 119.7, 119.2, 118.0, 116.6, 112.8, 94.1, 56.2, 56.0. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2899, 1643, 1568, 1148, 999; HRMS (ESI): calcd. for C₁₈H₁₉O₅ [M+H]⁺: 315.1227 found: 315.1234.

(*E*)-1-(2-Hydroxy-4-methoxyphenyl)-3-(4-(methoxymethoxy)phenyl)prop-2-en-1-one (6d): Following the general procedure for aldol condensation using 5a afforded 6d as an orange solid. Yield 49% (1.16 g, 3.68 mmol). ¹H NMR (400 MHz, CDCl₃) δ 13.53 (s, 1H), 7.90 – 7.79 (m, 2H), 7.65 – 7.57 (m, 2H), 7.47 (d, J = 15.4 Hz, 1H), 7.14 – 7.03 (m, 2H), 6.49 (d, J = 8.4 Hz, 2H), 5.23 (s, 2H), 3.86 (s, 3H), 3.50 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.6, 166.5, 165.9, 159.2, 143.9, 131.1, 130.2, 128.3, 118.0, 116.4, 114.0, 107.4, 101.0, 94.0, 56.0, 55.3. UV (λ_{max} nm): 358; IR ν_{max} (cm⁻¹): 2977, 1798, 1739, 1364, 1148; HRMS (ESI): calcd. for C₁₈H₁₉O₅ [M+H]⁺: 315.1227 found: 315.1227.

2-(4-Hydroxy-3-methoxyphenyl)-3-methoxy-4*H***-chromen-4-one (7b): Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation with 6b** and methyl iodide, followed by MOM deprotection afforded **7b** as a light pink solid. Yield 10% (16 mg, 0.05 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.77 (d, *J* = 2.0 Hz, 1H), 7.73 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.68 (ddd, *J* = 8.7, 7.1, 1.7 Hz, 1H), 7.54 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.41 (ddd, *J* = 8.1, 7.1, 1.1 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 5.97 (s, 1H), 3.99 (s, 3H), 3.88 (s, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 175.1, 155.8, 155.3, 148.3, 146.4, 141.0, 133.5, 126.0, 124.8, 124.3,

123.1, 122.9, 118.0, 114.7, 111.2, 60.1, 56.3. UV (λ_{max} nm): 202; IRν_{max} (cm⁻¹): 3290, 2360, 2342, 1633, 1207; HRMS (ESI): calcd. for C₁₇H₁₅O₅ [M+H]⁺: 299.0914, found: 299.0919.

3-Methoxy-2-(4-methoxyphenyl)-4H-thiochromen-4-one (10): Compound was synthesized using previously reported methods.¹⁵ Compound 9 (1.1 mmol) was dissolved in 1,4dioxane (5 mL). Selenium dioxide (1.1 equiv.) was dissolved in water (150 μ L) and added to the reaction mixture which was heated to 40 °C and allowed to stir for 3 hours. The reaction was allowed to cool to room temperature diluted with EtOAc, washed with brine three times and dried over sodium sulfate. The solvent was evaporated in vacuo and the residue was roughly purified using a flash column. Following rough purification, resulting residue (14 mg) was added with K_2CO_3 (1.8 equiv.) to a flame dried vial, which was evacuated and placed under argon. The residue and base were then dissolved in acetone (2 mL), and the mixture was heated to 40 °C. The desired alkyl halide (10 equiv.) was subsequently added, and the reaction was allowed to stir until the starting material was totally consumed (as evidenced by TLC). The reaction mixture was then, partitioned between ethyl acetate and water. The ethyl acetate layer was washed with brine, dried over Na₂SO₄, filtered and concentrated. The crude material was purified by column chromatography to yield the final product 10 as a white solid. Yield 1% (3 mg, 0.01 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.56 (dt, J = 8.1, 1.1 Hz, 1H), 7.66 – 7.58 (m, 4H), 7.53 (ddd, J = 8.3, 1.1 Hz, 1H), 7.66 – 7.58 (m, 4H), 7.53 (ddd, J = 8.3, 1.1 Hz, 1H), 7.66 – 7.58 (m, 4H), 7.53 (ddd, J = 8.3, 1.1 Hz, 1H), 7.66 – 7.58 (m, 4H), 7.53 (ddd, J = 8.3, 1.1 Hz, 1H), 7.66 – 7.58 (m, 4H), 7.53 (ddd, J = 8.3, 1.1 Hz, 1H), 7.66 – 7.58 (m, 4H), 7.53 (ddd, J = 8.3, 1.1 Hz, 1H), 7.66 – 7.58 (m, 4H), 7.53 (ddd, J = 8.3, 1.1 Hz, 1H), 7.66 – 7.58 (m, 4H), 7.53 (ddd, J = 8.3, 1.1 Hz, 1H), 7.54 (ddd, J = 8.3, 1.1 Hz, 1H), 7.55 (ddd, J = 8.5 5.3, 3.1 Hz, 1H), 7.05 – 6.96 (m, 2H), 3.88 (s, 3H), 3.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.9, 160.9, 147.3, 140.5, 137.1, 133.0, 131.3, 130.8, 129.2, 127.1, 126.0, 125.8, 114.2, 60.2, 55.6. UV (λ_{max} nm): 202; IR*v*_{max} (cm⁻¹): 2918, 2360, 2342, 1647, 1044; HRMS (ESI): calcd. for C₁₇H₁₅O₃S [M+H]⁺: 299.0736 found: 299.0729.

3-Ethoxy-2-(4-ethoxyphenyl)-4*H***-chromen-4-one (16):** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, **2c** and ethyl iodide afforded **16** as a paleyellow solid. Yield 10% (43 mg, 0.14 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, *J* = 7.9, 1.7 Hz, 1H), 8.17 – 8.09 (m, 2H), 7.65 (ddd, *J* = 8.6, 7.0, 1.7 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.04 – 6.96 (m, 2H), 4.12 (q, *J* = 7.0 Hz, 4H), 1.46 (t, *J* = 7.0 Hz, 3H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.3, 161.0, 156.0, 155.3, 139.9, 133.3, 130.5, 125.9, 124.6, 124.3, 123.4, 118.0, 114.4, 68.3, 63.8, 15.7, 14.9. UV (λ_{max} nm): 330; IR ν_{max} (cm⁻¹): 2986, 2361, 2342, 1636, 1601; HRMS (ESI): calcd. for C₁₉H₁₉O₄ [M+H]⁺: 311.1278 found: 311.1279.

3-(Isopentyloxy)-6-methoxy-2-(4-methoxyphenyl)-4*H*-chromen-4-one (17): Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, 2q and 1-iodo-3-methylbutane afforded 17 as a pale-yellow solid. Yield 12% (27 mg, 0.07 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.16 – 8.06 (m, 2H), 7.61 (d, *J* = 3.1 Hz, 1H), 7.45 (d, *J* = 9.1 Hz, 1H), 7.25 (dd,

J = 9.1, 3.0 Hz, 1H), 7.04 – 6.99 (m, 2H), 4.05 (t, J = 6.8 Hz, 2H), 3.91 (s, 3H), 3.90 (s, 4H), 1.77 (dh, J = 13.2, 6.7 Hz, 1H), 1.62 (q, J = 6.8 Hz, 2H), 0.89 (d, J = 6.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 175.0, 161.5, 156.7, 155.8, 150.3, 139.9, 130.5, 125.0, 123.8, 123.7, 119.5, 114.0, 104.7, 71.2, 56.1, 55.6, 39.1, 25.0, 22.7. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2943, 2360, 2342, 1614, 1164; HRMS (ESI): calcd. for C₂₂H₂₅O₅ [M+H]⁺: 369.1697 found: 369.1694.

3-(Isopentyloxy)-7-methoxy-2-(4-methoxyphenyl)-4*H***-chromen-4-one (18): Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation, 20** and 1-iodo-3methylbutane afforded **18** as an orange oil. Yield 9% (19 mg, 0.05 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.9 Hz, 1H), 8.13 – 8.08 (m, 2H), 7.03 – 7.00 (m, 2H), 6.99 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.92 (d, *J* = 2.4 Hz, 1H), 3.99 (t, *J* = 6.9 Hz, 2H), 3.92 (s, 3H), 3.90 (s, 3H), 1.73 (dh, *J* = 13.3, 6.7 Hz, 1H), 1.61 (q, *J* = 6.9 Hz, 2H), 0.86 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CD₃OD) δ 176.4, 166.0, 163.2, 158.5, 157.9, 140.7, 131.4, 127.5, 124.3, 118.6, 116.0, 114.9, 101.1, 72.1, 56.6, 55.9, 40.0, 26.0, 22.9. UV (λ_{max} nm): 210; IR ν_{max} (cm⁻¹): 2954, 2360, 2342, 1601, 1254; HRMS (ESI): calcd. for C₂₂H₂₅O₅ [M+H]⁺: 369.1697 found: 369.1702.

2-(4-Hydroxyphenyl)-3-(isopentyloxy)-6-methoxy-4*H***-chromen-4-one (19): Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation with 6c** and 1-iodo-3methylbutane, followed by MOM deprotection afforded **19** as a pale-yellow solid. Yield 28% (45 mg, 0.13 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.03 (m, 2H), 7.62 (d, *J* = 3.1 Hz, 1H), 7.50 (d, *J* = 9.2 Hz, 1H), 7.32 (dd, *J* = 9.2, 3.0 Hz, 1H), 7.04 – 6.96 (m, 2H), 6.73 (s, 3H), 3.94 (t, *J* = 6.9 Hz, 2H), 3.91 (s, 3H), 1.71 (dp, *J* = 13.0, 6.5 Hz, 1H), 1.61 (q, *J* = 6.9 Hz, 2H), 0.84 (d, *J* = 6.5 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 175.5, 159.1, 156.9, 156.8, 150.4, 139.7, 130.8, 124.7, 124.0, 122.9, 119.5, 115.8, 104.6, 77.4, 71.5, 56.0, 39.0, 25.0, 22.7. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 3101, 3025, 2362, 2342, 1585; HRMS (ESI): calcd. for C₂₁H₂₃O₅ [M+H]⁺ : 355.1540 found: 355.1542.

2-(4-Hydroxyphenyl)-3,6-dimethoxy-4*H***-chromen-4-one (20):** Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation with **6c** and iodomethane followed, by MOM deprotection afforded **20** as a light brown solid. Yield 28% (57 mg, 0.19 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.12 – 8.03 (m, 2H), 7.62 (d, *J* = 3.1 Hz, 1H), 7.46 (d, *J* = 9.1 Hz, 1H), 7.28 (dd, *J* = 9.1, 3.1 Hz, 1H), 7.03 – 6.95 (m, 2H), 3.92 (s, 3H), 3.88 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 173.2, 159.9, 156.2, 155.1, 149.4, 139.4, 130.1, 124.2 123.1, 121.1, 119.9, 115.6, 104.4, 59.3, 55.7. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 3234, 2939, 2361, 2342, 1599; HRMS (ESI): calcd. for C₁₇H₁₅O₅ [M+H]⁺: 299.0914 found: 299.0915.

2-(4-Hydroxyphenyl)-3-(isopentyloxy)-7-methoxy-4*H***-chromen-4-one (21): Following the general procedure for Algar-Flynn-Oyamada cyclization and alkylation with 6d** and 1-iodo-3methylbutane, followed by MOM deprotection afforded **21** as a light brown solid. Yield 7% (35 mg, 0.10 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.9 Hz, 1H), 8.10 – 8.01 (m, 2H), 7.02 – 6.94 (m, 2H), 6.97 (dd, *J* = 9.0, 2.4 Hz, 1H), 6.91 (d, *J* = 2.4 Hz, 1H), 4.03 (t, *J* = 6.8 Hz, 2H), 3.92 (s, 3H), 1.75 (dp, *J* = 13.3, 6.6 Hz, 1H), 1.61 (q, *J* = 6.8 Hz, 2H), 0.87 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (126 MHz, CD₃OD) δ 176.5, 166.0, 161.5, 158.6, 158.5, 140.5, 131.6, 127.5, 123.1, 118.6, 116.4, 116.0, 101.1, 72.2, 56.6, 40.0, 26.0, 22.9. UV (λ_{max} nm): 202; IR ν_{max} (cm⁻¹): 2959, 2360, 2341, 1580, 1173; HRMS (ESI): calcd. for C₂₁H₂₃O₅ [M+H]⁺: 355.1540 found: 355.1547.

S112

S130

S134

References

(1) Boles, B. R.; Thoendel, M.; Roth, A. J.; Horswill, A. R. Identification of Genes Involved in Polysaccharide-Independent Staphylococcus aureus Biofilm Formation. *Plos One* **2010**, *5* (4), -. DOI: ARTN e10146 DOI 10.1371/journal.pone.0010146.

(2) Benson, M. A.; Lilo, S.; Wasserman, G. A.; Thoendel, M.; Smith, A.; Horswill, A. R.; Fraser, J.; Novick, R. P.; Shopsin, B.; Torres, V. J. *Staphylococcus aureus* regulates the expression and production of the staphylococcal superantigen-like secreted proteins in a Rot-dependent manner. *Mol Microbiol* **2011**, *81* (3), 659-675. DOI: 10.1111/j.1365-2958.2011.07720.x.

(3) Flack, C. E.; Zurek, O. W.; Meishery, D. D.; Pallister, K. B.; Malone, C. L.; Horswill, A. R.; Voyich, J. M. Differential regulation of staphylococcal virulence by the sensor kinase SaeS in response to neutrophil-derived stimuli. *Proc Natl Acad Sci U S A* **2014**, *111* (19), E2037-2045. DOI: 10.1073/pnas.1322125111.

(4) White, M. J.; Boyd, J. M.; Horswill, A. R.; Nauseef, W. M. Phosphatidylinositol-specific phospholipase C contributes to survival of *Staphylococcus aureus* USA300 in human blood and neutrophils. *Infect Immun* **2014**, *82* (4), 1559-1571. DOI: 10.1128/IAI.01168-13.

(5) Crosby, H. A.; Schlievert, P. M.; Merriman, J. A.; King, J. M.; Salgado-Pabón, W.; Horswill, A. R. The Staphylococcus aureus Global Regulator MgrA Modulates Clumping and Virulence by Controlling Surface Protein Expression. *PLoS Pathog* **2016**, *12* (5), e1005604. DOI: 10.1371/journal.ppat.1005604.

(6) Kirchdoerfer, R. N.; Garner, A. L.; Flack, C. E.; Mee, J. M.; Horswill, A. R.; Janda, K. D.; Kaufmann, G. F.; Wilson, I. A. Structural basis for ligand recognition and discrimination of a quorumquenching antibody. *J Biol Chem* **2011**, *286* (19), 17351-17358. DOI: 10.1074/jbc.M111.231258.

(7) Crosby, H. A.; Tiwari, N.; Kwiecinski, J. M.; Xu, Z.; Dykstra, A.; Jenul, C.; Fuentes, E. J.; Horswill, A. R. The *Staphylococcus aureus* ArIRS two-component system regulates virulence factor expression through MgrA. *Mol Microbiol* **2020**, *113* (1), 103-122. DOI: 10.1111/mmi.14404.

(8) Fey, P. D.; Endres, J. L.; Yajjala, V. K.; Widhelm, T. J.; Boissy, R. J.; Bose, J. L.; Bayles, K. W. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. *MBio* **2013**, *4* (1), e00537-00512. DOI: 10.1128/mBio.00537-12.

(9) Rao, M. L. N.; Kumar, A. Pd-catalyzed atom-economic couplings of triarylbismuth reagents with 2-bromo- and 2,6-dibromochromones and synthesis of

medicinally important fisetin *Tetrahedron Letters* **2014**, (55), 5764–5770. DOI: 10.1016/j.tetlet.2014.08.081.

(10) Detsi, A.; Majdalani, M.; Kontogiorgis, C. A.; Hadjipavlou-Litina, D.; Kefalas, P. Natural and synthetic 2'-hydroxy-chalcones and aurones: synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. *Bioorg Med Chem* **2009**, *17* (23), 8073-8085. DOI: 10.1016/j.bmc.2009.10.002.

(11) Amole, K. L.; Bello, I. A.; Oyewale , A. O. Synthesis, Characterization and Antifungal Study of Five New Derivatives of E-1-(2-Hydroxyphenyl)chalcone *Chemistry Africa* **2019**, (2), 1-14.

(12) Thakkar, K.; Cushman, M. A Novel Oxidative Cyclization of 2,-Hydroxychalcones to 4,5-Dialkoxyaurones by Thallium(III) Nitrate. *J. Org. Chem.* **1995**, (60), 6499-6510.

(13) Estévez-Sarmiento, F.; Said, M.; Brouard, I.; León, F.; García, C.; Quintana, J.; Estévez, F. 3'-Hydroxy-3,4'-dimethoxyflavone blocks tubulin polymerization and is a potent apoptotic inducer in human SK-MEL-1 melanoma cells. *Bioorg Med Chem* **2017**, *25* (21), 6060-6070. DOI: 10.1016/j.bmc.2017.09.043.

(14) Hsieh, C. T.; Hsieh, T. J.; El-Shazly, M.; Chuang, D. W.; Tsai, Y. H.; Yen, C. T.; Wu, S. F.; Wu, Y. C.; Chang, F. R. Synthesis of chalcone derivatives as potential anti-diabetic agents. *Bioorg Med Chem Lett* **2012**, *22* (12), 3912-3915. DOI: 10.1016/j.bmcl.2012.04.108.

(15) Sangeetha, S.; Muthupandi, P.; Sekar, G. Copper-Catalyzed Domino Synthesis of 2-Arylthiochromanones through Concomitant C-S Bond Formations Using Xanthate as Sulfur Source. *Org Lett* **2015**, *17* (24), 6006-6009. DOI: 10.1021/acs.orglett.5b02977.

(16) Huang, J.; Su, H.; Bao, M.; Qiu, L.; Zhang, Y.; Xu, X. Gold(iii)-catalyzed azide-yne cyclization/O-H insertion cascade reaction for the expeditious construction of 3-alkoxy-4-quinolinone frameworks. *Org Biomol Chem* **2020**, *18* (20), 3888-3892. DOI: 10.1039/d0ob00745e.