Electronic Supplementary Information

Catalytic I_{2}-Moist DMSO Mediated Synthesis of Valuable α-Amidohydroxyketones and Unsymmetrical gemBisamides from Benzimidates

Shobhon Aich ${ }^{\text {a }}$, Rajesh Nandia ${ }^{\text {, Nirbhik Chatterjee }}{ }^{\text {b }}$, Krishnanka Shekhar Gayen ${ }^{\text {c }}$, Subhasis Pal ${ }^{\text {a }}$ and Dilip K. Maiti*a

[a] Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
[b] Department of Chemistry, Kanchrapara College, North 24 parganas-743145, India
[c] Raja Peary Mohan College, West Bengal, India
*Corresponding author Fax: 91-33-2351 9755, Tel: 91-33-2350 1014
Email: dkmchem@caluniv.ac.in
1.
2. General Procedure for the Synthesis of Benzimidates (1a-i)
3. General Procedure for the Synthesis of α-amidohydroxyketone (3aa-aj, 3ba-gd)

General Procedure for the Synthesis of Symmetric gem-Bisamides (4aa-ii)S-4

General Procedure for the Synthesis of Dissymmetric gem-Bisamide (5ab, 5ac, 5ae, 5be, 5ce, 5bh, 5ch)S-5
Plausible Mechanistic Cycle for the α-amidohydroxyketone Synthesis S-6
HRMS- Experimental Data for α-amidohydroxyketone S-7
Plausible Mechanistic Cycle for the bisamide Synthesis S-12
HRMS- Experimental Data for bisamide S-13
Spectroscopic Data of α-amidohydroxyketones (3), symmetric bisamides (4) and unsymmetrical S-18
bisamides (5)

11.	Spectroscopic Data of α-amidoketone	S-141
12.	Spectroscopic data of [3aa (d)] with labelling experiment	S-144
13.	Spectroscopic data of [4aa (d)] with labelling experiment	S-145
14.	HRMS data of 4aa(d)	S-147
15.	NMR titration of compound (3de)	S-148
16.	NMR titration of compound (3aa)	S-184
17.	NMR titration of compound (6)	S-188
18.	Crystal structure of compound 3ea (CCDC 2152756)	S-192
19.	Crystal summary data of compound 3ea (CCDC 2152756)	S-193
20.	References	S-194

1. Materials and Methods:

Unless otherwise stated, reactions were performed in oven-dried glassware fitted with rubber septa and were stirred with Tefloncoated magnetic stirring bars. Liquid reagents and solvents were transferred through syringe using standard Schlenk techniques. All the solvents and reagents were used as received unless otherwise noted. Petroleum ether used in our experiments was in the boiling range of $60-80^{\circ} \mathrm{C}$. Reaction temperatures above $25^{\circ} \mathrm{C}$ refer to oil bath temperature. Thin layer chromatography was performed using silica gel $60 \mathrm{~F}-254$ precoated plates $(0.25 \mathrm{~mm})$ and visualized by UV irradiation. Silica gel of particle size 100-200 and 230-400 mesh was used for column chromatography. Melting points were recorded on a digital melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and
${ }^{13} \mathrm{C}$ NMR spectra were recorded 300 MHz and 400 MHz spectrometers with ${ }^{13} \mathrm{C}$ operating frequencies of 75 MHz and 100 MHz chemical shifts (δ) are reported in ppm relative to the residual solvent CDCl_{3} signal ($\delta=7.24$ for 1 H NMR and $\delta=77.0$ for ${ }^{13} \mathrm{C}$ NMR), DMSO- d_{6} signal ($\delta=2.47$ for ${ }^{1} \mathrm{H}$ NMR and $\delta=39.4-40.6$ for ${ }^{13} \mathrm{C}$ NMR) and $\mathrm{CD}_{3} \mathrm{OD}$ signal ($\delta=49.0$ for ${ }^{13} \mathrm{C}$ NMR). Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (multiplicity, number of hydrogen and coupling constants). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). IR spectra were recorded on a FT-IR system and are reported in frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Only selected IR absorbance is reported. High-Resolution Mass Spectrometry (HRMS) data was recorded on Qtof-micro quadruple mass spectrophotometer using acetonitrile as a solvent.
2. General Procedure for the Synthesis of Benzimidates (1a-i) ${ }^{1}$: Ethanol (10 mmol) and aryl nitrile (1 mmol) were stirred in a round bottom flask. AcCl (10 mmol) was added to it drop wise for 15 minutes in an ice bath. The reaction mixture was stirred at room temperature for 6 h , solvent was removed under reduced pressure to afford the product as white solid. The white solid was washed with $\mathrm{Et}_{2} \mathrm{O}$, triturated with saturated NaHCO_{3} solution until the gas evolution ceased and extracted three times with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic layer was washed with water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to obtain the desired product 1a-i as colorless oil.

1a

1f

1b

1c

1d

$1 i$

Figure S1. List of Synthesized Benzimidates Used in the Reactions
3. General Procedure for the Synthesis of α-amidohydroxyketone (3aa-aj, 3ba-gd): A mixture of ethyl benzimidate (1, 1 mmol), aryl ketone ($2,1 \mathrm{mmol}$) and $\mathrm{I}_{2}(10 \mathrm{~mol} \%, 25 \mathrm{mg})$ as a catalyst, was heated in dimethyl sulfoxide (2 ml) for $12-14 \mathrm{~h}$ in open air at $120^{\circ} \mathrm{C}$. After the completion of the reaction, the solvent was removed under reduced pressure to get a crude residue, which was purified by column chromatography over silica gel (100-200 mesh) using 20\% ethyl acetate in petroleum ether as eluent to afford the desired
products (3aa-3aj, 3ba-3gd) with $70-85 \%$ yields. The compounds were characterized with the help of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, FT-IR and mass spectroscopy data.

Scheme 1

4. General Procedure for the Synthesis of Symmetric gem-Bisamides (4aa-ii): A mixture of ethyl benzimidate (1, 2 mmol), I_{2} (10 $\mathrm{mol} \%, 25 \mathrm{mg}$) as a catalyst, was heated in dimethyl sulfoxide ($2 \mathrm{ml}, 12 \mathrm{mmol}$) for $12-14 \mathrm{~h}$ in open air at $120^{\circ} \mathrm{C}$. After the completion of the reaction, the solvent was removed under reduced pressure to get a crude residue, which was purified by column chromatography over silica gel (100-200 mesh) using 20\% ethyl acetate in petroleum ether as eluent to afford the desired products (4aa-ii) with 88$94 \%$ yields. The compounds were characterized with the help of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, FT-IR and mass spectroscopy data.

Scheme 2
5. General Procedure for the Synthesis of Dissymmetric gem-Bisamide (5ab, 5ac, 5ae, 5be, 5ce, 5bh, 5ch): To a mixture of ethyl benzimidate ($\mathbf{1 a}, 1 \mathrm{mmol}$), substituted ethyl benzimidate ($\mathbf{1 b} \mathbf{b} \mathbf{c}, \mathbf{1 e}$ and $\mathbf{1 h}, 1 \mathrm{mmol}) \mathrm{I}_{2}(10 \mathrm{~mol} \%, 25 \mathrm{mg})$ as a catalyst, was heated in dimethyl sulfoxide ($2 \mathrm{~mL}, 12 \mathrm{mmol}$) for $12-14 \mathrm{~h}$ in open air at $120^{\circ} \mathrm{C}$. After completion of the reaction, the solvent was removed under reduced pressure at room temperature to get a crude residue, which was purified by column chromatography over silica gel (100-200 mesh) using 20-25\% ethyl acetate in petroleum ether as eluent to afford pure dissymmetric bisamide derivatives (5ab, 5ac, 5ae, 5be, 5ce, 5bh, 5ch) with 67-75\% yields. The formation of the dissymmetrical bisamide was confirmed by the isolation and characterization of compounds with the help of spectroscopic analysis solid compounds.

Scheme 3
6. Plausible Mechanistic Cycle for the α-amidohydroxyketone

Figure S2: Plausible mechanistic cycle for the α-amidohydroxy ketone synthesis
7. HRMS- Experimental Data for α-amidohydroxyketone After 2 hours the mass data

After 4 hours the mass data

After 6 hours the mass data

After 8 hours the mass data

After 10 hours the mass data

8. Plausible Mechanistic pathway for the bisamide

Cal: 243.06
Obs: $\mathbf{2 4 2 . 1 6 5 5}$ $\mathrm{MeSO}_{\mathbf{O}}{ }_{\mathbf{2}}$

Cal: 314.13
Obs: 314.12

Cal: 164.07
Obs: 164.99

Figure S3: Plausible mechanistic pathway for the bisamide synthesis

9. HRMS- Experimental Data for Bisamide

After 2 hours the mass data

After 4 hours the mass data

After 6 hours the mass data

After 8 hours the mass data

After 10 hours the mass data

10. Spectroscopic Data of α-amidohydroxyketones (3), symmetric bisamides (4) and unsymmetrical bisamides (5)

N-(1-Hydroxy-2-oxo-2-phenylethyl)benzamide (3aa): The compound (3aa) was prepared using ethyl benzimidate (1 mmol) and acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as white solid ($192 \mathrm{mg}, 0.75 \mathrm{mmol}, 75 \%$ yield), M.P. $125-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 6.52$ ($\mathrm{d}, \mathrm{J}=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.46-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-8.01(\mathrm{~m}, 2 \mathrm{H}), 9.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, d_{6}\right.$-DMSO): $\delta 73.6,127.6,128.4,128.6,128.7,131.8,133.5,133.6,134.3,166.0,195.2 ;$ FT-IR (KBr, cm^{-1}): $u_{\max }$ 1062, 1093, 1384, 1483, 1509, 1584, 1641, 1696, 3381; ESI-MS (m / z) for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 256.0974, found 256.0978.

\mathbf{N}-(2-(2-Chlorophenyl)-1-hydroxy-2-oxoethyl) benzamide (3ab): The compound (3ab) was prepared using ethyl benzimidate (1 mmol) and 2-chloro acetophenone (1 mmol) as starting materials. Purification by column chromatography (25% ethyl acetate in petroleum ether) afforded the title compound as gummy colorless liquid ($232 \mathrm{mg}, 0.80 \mathrm{mmol}, 80 \%$ yield); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, d_{6^{-}}\right.$ DMSO): $\delta 6.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.90(\mathrm{~m}, 3 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 9.44$ ($\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz, d_{6}-DMSO): $\delta 75.6,118.5,127.3,127.5,128.4,129.6,131.8,132.0,133.1,133.5$, 139.1, 166.3, 199.7; FT-IR (neat, cm^{-1}): $u_{\max } 1064,1094,1386,1482,1510,1586,1643,1695,3380$; ESI-MS (m / z) for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{CINO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 290.0584, found 290.0588 .

\mathbf{N}-(2-(2-Bromophenyl)-1-hydroxy-2-oxoethyl) benzamide (3ac): The compound (3ac) was prepared using ethyl benzimidate (1 mmol) and 2-bromo acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as gummy liquid ($265 \mathrm{mg}, 0.80 \mathrm{mmol}, 80 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 6.26$ (t, J=6.9 Hz, 1H), 6.71 (d, J=6.3 Hz, 1H), $7.44-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.86(\mathrm{~m}, 2 \mathrm{H}), 9.41(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz, d_{6}-DMSO): $\delta 75.5,118.4,127.3,127.5,128.4,129.6,131.8,132.0,133.1,133.4,139.1,166.2,199.6 ;$ FT-IR (Neat, cm^{-1}): $U_{\max } 1060,1094,1386,1481,1507,1585,1644,1698,3381$; ESI-MS (m / z) for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: Calculated 355.9898, found 355.9894 .

N-(2-(3-Bromophenyl)-1-hydroxy-2-oxoethyl) benzamide (3ad): The compound (3ad) was prepared using ethyl benzimidate (1 mmol) and 3-bromo acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as yellow solid ($273 \mathrm{mg}, 0.82 \mathrm{mmol}, 82 \%$ yield), M.P. $129-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, d_{6}-\right.$ DMSO): $\delta 6.42$ (d, J= $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.64(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.80-7.87(\mathrm{~m}, 3 \mathrm{H}), 7.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 9.43(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 74.0,121.8,127.4,127.5,128.4,130.8,131.1,131.8,133.4,135.8,136.5,166.0$, 194.3; FT-IR (KBr, cm${ }^{-1}$): $u_{\max } 1061,1094,1382,1484,1510,1586,1643,1697,3378 ;$ ESI-MS (m/z) for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 334.0079, found 334.0084.

N-(2-(4-Fluorophenyl)-1-hydroxy-2-oxoethyl) benzamide (3ae): The compound (3ae) was prepared using ethyl benzimidate (1 mmol) and 4-fluoro acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as yellow solid ($232 \mathrm{mg}, 0.85 \mathrm{mmol}, 85 \%$ yield), M.P. $125-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathbf{N M R}\left(300 \mathrm{MHz}, d_{6}-\right.$ DMSO): $\delta 6.51$ (d, J= $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.05-$ $8.10(\mathrm{~m}, 2 \mathrm{H}), 9.39(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 73.7,115.8\left(\mathrm{C}-\mathrm{F},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21.7 \mathrm{~Hz}\right.$), 127.6, 128.4, $131.0\left(\mathrm{C}-\mathrm{F},{ }^{4} \mathrm{~J}_{\mathrm{C}}\right.$ $\left.F^{F}=3 \mathrm{~Hz}\right), 131.5\left(C-F,{ }^{3} J_{C-F}=9.0 \mathrm{~Hz}\right), 131.8,133.5,165.0\left(C-F,{ }^{1} J_{C-F}=250.5\right), 166.0,193.8 ; F^{2}-I R\left(K B r, \mathrm{~cm}^{-1}\right): U_{\max } 1065,1092,1381$, 1484, 1508, 1585, 1640, 1697, 3383; ESI-MS (m / z) for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 274.0879, found 274.0882.

N-(2-(4-Chlorophenyl)-1-hydroxy-2-oxoethyl) benzamide (3af): The compound (3af) was prepared using ethyl benzimidate (1 mmol), 4-chloro acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as white solid ($243 \mathrm{mg}, 0.84 \mathrm{mmol}, 84 \%$ yield), M.P. $127-128{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}-\mathrm{DMSO}$): δ $6.47(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.86-7.98(\mathrm{~m}, 2 \mathrm{H}), 8.01-8.11(\mathrm{~m}, 2 \mathrm{H}), 9.41(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 73.9,127.6,128.4,128.8,130.4,131.8,133.1,133.4,138.3,166.0,194.4 ;$ FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right):$
$U_{\max } 1062,1093,1384,1483,1509,1584,1641,1696,3381$; ESI-MS $(\mathrm{m} / \mathrm{z})$ for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 290.0584, found 290.0586.

\mathbf{N}-(2-(4-Bromophenyl)-1-hydroxy-2-oxoethyl) benzamide (3ag): The compound (3ag) was prepared using ethyl benzimidate (1 mmol) and 4-bromo acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as yellow solid ($282 \mathrm{mg}, 0.82 \mathrm{mmol}, 82 \%$ yield), M.P. $126-128{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H} \mathbf{N M R}\left(300 \mathrm{MHz}, d_{6}-\right.$ DMSO): $\delta 6.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85$ $-7.88(\mathrm{~m}, 4 \mathrm{H}), 9.40(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 74.2,127.9,128.0,128.8,130.9,131.8,132.2,132.3,133.9$, 166.4, 195.0; FT-IR (KBr, cm^{-1}): $u_{\max } 1061,1095,1380,1480,1511,1585,1640,1699,3387$; ESI-MS (m / z) for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 334.0079, found 334.0075.

N-(1-Hydroxy-2-(4-iodophenyl)-2-oxoethyl) benzamide (3ah): The compound (3ah) was prepared using ethyl benzimidate (1 mmol), 4-iodo acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as yellow solid ($317 \mathrm{mg}, 0.83 \mathrm{mmol}, 83 \%$ yield), M.P. $125-126{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}-\mathrm{DMSO}$): δ 6.43 (d, J= $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.54(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.92 (d, J= $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 9.37 (d, J=7.8 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 73.7,102.0,127.5,128.4,130.1,131.8$, 133.4, 133.7, 137.6, 166.0, 194.9; FT-IR (KBr, cmr ${ }^{-1}$) $u_{\max } 1060,1096,1383,1481,1507,1585,1640,1697,3385$; ESI-MS (m / z) for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{INO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 381.9940, found 381.9938 .

N-(2-(2,4-Dichlorophenyl)-1-hydroxy-2-oxoethyl) benzamide (3ai): The compound (3ai) was prepared using ethyl benzimidate (1 mmol) and 2,4-di chloro acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as gummy liquid ($272 \mathrm{mg}, 0.84 \mathrm{mmol}, 84 \%$ yield); ${ }^{1} \mathbf{H} \mathbf{N M R}$ ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 6.20$ (d, J= $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.77(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 9.46$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 75.9,127.2,127.5,128.4,129.6,131.2,131.4,131.9,133.3,135.7$,
135.9, 166.2, 198.1; FT-IR (neat, cm^{-1}): $u_{\max } 1061,1095,1383,1480,1511,1585,1644,1699,3385$; ESI-MS (m / z) for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 324.0194, found 324.0190.

N-(1-Hydroxy-2-oxo-2-(p-tolyl) ethyl) benzamide (3aj): The compound (3aj) was prepared using ethyl benzimidate (1 mmol) and 4methyl acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as white solid ($194 \mathrm{mg}, 0.72 \mathrm{mmol}, 72 \%$ yield), M.P. $125-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 2.35$ (s, $3 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.89(\mathrm{~m}, 5 \mathrm{H}), 9.19(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 21.2,73.3,126.2,127.5,128.2,129.5,129.6,131.0,132.4,141.5,165.4,194.8 ;$ FT-IR (KBr, cm^{-1}): $u_{\max } 1062$, 1094, 1385, 1484, 1511, 1585, 1646, 1699, 3380; ESI-MS $(\mathrm{m} / \mathrm{z})$ for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 270.1130, found 270.1128.

N-(1-Hydroxy-2-oxo-2-phenylethyl)-4-methylbenzamide (3ba): The compound (3ba) was prepared using 4-methyl ethyl benzimidate (1 mmol) and acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as white solid ($216 \mathrm{mg}, 0.80 \mathrm{mmol}, 80 \%$ yield), M.P. $126-128{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathbf{N M R}\left(300 \mathrm{MHz}, d_{6}-\right.$ DMSO): $\delta 2.33(\mathrm{~s}, 3 \mathrm{H}), 6.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1$
$\mathrm{Hz}, 2 \mathrm{H}), 7.97-8.00(\mathrm{~m}, 2 \mathrm{H}), 9.28(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 21.4,73.9,128.0,128.9,129.1,129.3,131.2$, 133.9, 134.7, 142.2, 166.3, 195.7; FT-IR (KBr, cm^{-1}): $u_{\max } 1064,1095,1385,1486,1510,1584,1643,1697,3381$; ESI-MS (m / z) for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 270.1130, found 270.1134.

\boldsymbol{N}-(2-(2-Chlorophenyl)-1-hydroxy-2-oxoethyl)-4-methylbenzamide (3bb): The compound (3bb) was prepared using 4 methyl ethyl benzimidate (1 mmol) and 2-chloro acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as grey liquid ($224 \mathrm{mg}, 0.74 \mathrm{mmol}, 74 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}-\mathrm{DMSO}$): $\delta 2.33(\mathrm{~s}, 3 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.74(\mathrm{~m}, 5 \mathrm{H}), 9.37(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR(75MHz, d_{6}-DMSO): $\delta 21.0,75.8,127.1,127.5,128.7,128.9,129.5,130.5,131.2,131.3,135.8,141.8,166.0,198.2$; FT-IR (neat, cm^{-1}): $u_{\max } 1060,1096,1384,1486,1509,1584,1642,1696,3381$; ESI-MS $(\mathrm{m} / \mathrm{z})$ for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{CINO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 304.0740, found 304.0738 .

N-(2-(3-Bromophenyl)-1-hydroxy-2-oxoethyl)-4-methylbenzamide (3bd): The compound (3bd) was prepared using 4-methyl ethyl benzimidate (1 mmol) and 3-bromo acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as yellow solid ($264 \mathrm{mg}, 0.76 \mathrm{mmol}, 76 \%$ yield), M.P. $126-128{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 2.33(\mathrm{~s}, 3 \mathrm{H}), 6.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.76-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 9.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 21.0,74.0,121.8$, 127.4, 127.6, 128.9, 130.6, 130.8, 131.0, 135.8, 136.5, 141.8, 165.9, 194.3; FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right)^{2} \mathrm{u}_{\max } 1061,1093,1386,1482,1508$, 1586, 1643, 1697, 3382; ESI-MS $(\mathrm{m} / \mathrm{z})$ for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 348.0235, found 348.0239.

\mathbf{N}-(2-(4-Fluorophenyl)-1-hydroxy-2-oxoethyl)-4-methylbenzamide (3be): The compound (3be) was prepared using 4-methyl ethyl benzimidate (1 mmol), 4-fluoro acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as yellow solid ($224 \mathrm{mg}, 0.78 \mathrm{mmol}, 78 \%$ yield), M.P. $131-132{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 2.33$ (s, 3H), $6.46-6.49(\mathrm{~m}, 2 \mathrm{H}), 7.26$ (d, J=7.8 Hz, 2H), 7.36 (d, J= $9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.78 (d, J= $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $8.04-8.08(\mathrm{~m}, 2 \mathrm{H}), 9.26(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 21.0,73.6,115.7\left(\mathrm{C}-\mathrm{F},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21.7 \mathrm{~Hz}\right.$), 127.6, 128.9, 130.7, $131.0\left(C-F,{ }^{4} J_{C-F}=3 \mathrm{~Hz}\right)$, $131.5\left(\mathrm{C}-\mathrm{F},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.7 \mathrm{~Hz}\right), 141.8,165.0\left(\mathrm{C}-\mathrm{F},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=250.5 \mathrm{~Hz}\right), 165.8,193.9$; FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \mathrm{U}_{\max }$ 1060, 1097, 1387, 1488, 1512, 1587, 1644, 1696, 3382; ESI-MS (m / z) for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 288.1036, found 288.1034 .

\mathbf{N}-(2-(4-Chlorophenyl)-1-hydroxy-2-oxoethyl)-4-methylbenzamide (3bf): The compound (3bf) was prepared using 4-methyl ethyl benzimidate (1 mmol), 4-chloro acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as white solid ($240 \mathrm{mg}, 0.79 \mathrm{mmol}, 79 \%$ yield), M.P. $125-126{ }^{\circ} \mathrm{C} ; \mathbf{~}^{\mathbf{1}} \mathrm{H}$ NMR (300 MHz, d_{6}-DMSO): $\delta 2.33(\mathrm{~s}, 3 \mathrm{H}), 6.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 21.0,73.8,127.6,128.8,129.0,130.4$, 130.7, 133.1, 138.3, 141.9, 165.9, 194.5; FT-IR (KBr, cm ${ }^{-1}$): $u_{\max } 1061,1096,1387,1485,1511,1586,1647,1697$, 3381; ESI-MS $(\mathrm{m} / \mathrm{z})$ for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{CINO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 304.0740, found 304.0735.

\mathbf{N}-(2-(4-Bromophenyl)-1-hydroxy-2-oxoethyl)-4-methylbenzamide (3bg) The compound (3bg) was prepared using 4-methyl ethyl benzimidate (1 mmol) and 4-bromo acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as reddish yellow solid ($267 \mathrm{mg}, 0.77 \mathrm{mmol}, 77 \%$ yield), M.P. $128-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-$ NMR (300 MHz, d_{6}-DMSO): $\delta 2.33(\mathrm{~s}, 3 \mathrm{H}), 6.43(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.78(\mathrm{~m}$, $4 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 21.0,73.8,127.5,127.6,129.0,130.5,130.6$,
131.7, 133.5, 141.9, 166.0, 194.7; FT-IR (KBr, cmn ${ }^{-1}$) $u_{\max } 1063,1095,1386,1485,1507,1587,1647,1696,3383$; ESI-MS (m / z) for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 348.0235, found 348.0239.

\boldsymbol{N}-(1-Hydroxy-2-(4-iodophenyl)-2-oxoethyl)-4-methylbenzamide (3bh): The compound (3bh) was prepared using 4-methyl ethyl benzimidate (1 mmol) and 4-iodo acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as yellowish solid ($300 \mathrm{mg}, 0.76 \mathrm{mmol}, 76 \%$ yield), M.P. $124-126{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 2.34(\mathrm{~s}, 3 \mathrm{H}), 6.41$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.49 (d, J= $6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25 ($\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.70-7.78$ ($\mathrm{m}, 4 \mathrm{H}$), 7.91 (d, J= $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 9.27 (d, J= $8.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 21.0,73.6,102.0,127.6,128.9,130.1,130.6,133.7$, 137.5, 141.8, 165.8, 194.9; FT-IR (KBr, cm^{-1}): $u_{\max }$ 1061, 1095, 1384, 1485, 1509, 1584, 1645, 1697, 3385; ESI-MS (m/z) for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{INO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 396.0097, found 396.0099.

N-(1-Hydroxy-2-oxo-2-(thiophen-2-yl)ethyl)-4-methylbenzamide (3bk): The compound (3bk) was prepared using 4-methyl ethyl benzimidate (1 mmol) and 1-(thiophen-2-yl) ethan-1-one (1 mmol) as starting materials. Purification by column chromatography (25%
ethyl acetate in petroleum ether) afforded the title compound as white solid ($193 \mathrm{mg}, 0.70 \mathrm{mmol}, 70 \%$ yield); M.P. $132-134{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, d_{6}-DMSO): $\delta 2.33(\mathrm{~s}, 3 \mathrm{H}), 6.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, 2 H), $7.79-7.91$ (m, 3H), 8.95 ($\mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 21.4,73.5,127.9,128.7,129.2,131.6,131.9$, 134.4, 141.7, 166.9, 194.3; FT-IR (KBr, cm^{-1}): $u_{\max } 1064,1098,1384,1486,1512,1583,1643,1697,3383$; ESI-MS (m / z) for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 276.0694, found 276.0692.

N-(1-Hydroxy-2-oxo-2-phenylethyl)-4-methoxybenzamide (3ca): The compound (3ca) was prepared using 4-methoxy ethyl benzimidate (1 mmol) and acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as white solid ($226 \mathrm{mg}, 0.79 \mathrm{mmol}, 79 \%$ yield), M.P. $125-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}{ }^{-}$ DMSO): $\delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.44(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.86 (d, J= $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.97 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 9.21 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 55.8,73.9,114.0$, 126.1, 128.9, 129.1, 129.9, 133.9, 134.7, 162.4, 165.8, 195.7; FT-IR (KBr, cmºn): $u_{\max } 1060,1096,1388,1485,1509,1586,1648$, 1697, 3383; ESI-MS (m / z) for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 286.1079, found 286.1074.

\mathbf{N}-(2-(2-Chlorophenyl)-1-hydroxy-2-oxoethyl)-4-methoxybenzamide (3cb): The compound (3cb) was prepared using 4-methoxy ethyl benzimidate (1 mmol), 2-chloro acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as white solid ($253 \mathrm{mg}, 0.74 \mathrm{mmol}, 74 \%$ yield), M.P. $130-132{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, d_{6}-DMSO): $\delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.23(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.68$ (d, J= 6.9Hz, 1H), $7.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) 9.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 55.8,76.2,113.8,125.9,127.3$, 129.8, 129.9, 130.1, 130.4, 132.4, 137.4, 162.4, 166.1, 199.5; FT-IR (KBr, cm^{-1}): $u_{\max } 1061,1095,1386,1486,1508,1588,1641$, 1695, 3381; ESI-MS (m / z) for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{CINNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: Calculated 342.0509, found 342.0506.

N-(2-(4-Fluorophenyl)-1-hydroxy-2-oxoethyl)-4-methoxybenzamide (3ce): The compound (3ce) was prepared using 4-methoxy ethyl benzimidate (1 mmol) and 4-fluoro acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as yellow solid ($243 \mathrm{mg}, 0.80 \mathrm{mmol}, 80 \%$ yield), M.P. $132-134{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, d_{6}-DMSO): $\delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.04-$ 8.08 (m, 2H), 9.23 (d, J= $6.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 55.4,73.6,113.6,115.7$ (C-F, ${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21.7 \mathrm{~Hz}$), 125.6, 129.5,
$131.0\left(C-F,{ }^{4} J_{C-F}=3 \mathrm{~Hz}\right), 131.5\left(C-F,{ }^{3} J_{C-F}=9.7 \mathrm{~Hz}\right), 162.0,165.0\left(C-F,{ }^{1} J_{C-F}=250.5 \mathrm{~Hz}\right), 165.4,193.9$; FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): U_{\max } 1060$, 1095, 1388, 1483, 1512, 1586, 1647, 1701, 3386; ESI-MS (m/z) for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 304.0985, found 304.0984.

N-(1-Hydroxy-2-(4-iodophenyl)-2-oxoethyl)-4-methoxybenzamide (3cf): The compound (3cf) was prepared using 4-methoxy ethyl benzimidate (1 mmol) and 4-chloro acetophenone as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as white solid ($320 \mathrm{mg}, 0.70 \mathrm{mmol}, 70 \%$ yield), M.P. $129-131{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}{ }^{-}$ DMSO): $\delta 3.79$ (s, 3H), 6.41 (d, J= $6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.49(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.87(\mathrm{~m}$, 2H), $7.96-7.99(\mathrm{~m}, 2 \mathrm{H}), 9.23$ (d, J=7.8 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 55.4,73.7,113.6,125.5,128.7,129.5,130.3$, 133.1, 138.2, 162.0, 165.4, 194.4; FT-IR (KBr, cm^{-1}): $\mathrm{u}_{\max } 1065,1096,1384,1488,1509,1583,1644,1697,3381$; ESI-MS (m / z) for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{CINO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 320.0690, found 320.0682.

\mathbf{N}-(2-(4-Bromophenyl)-1-hydroxy-2-oxoethyl)-4-methoxybenzamide(3cg): The compound (3cg) was prepared using 4-methoxy ethyl benzimidate (1 mmol), 4-bromo acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as yellow solid ($287 \mathrm{mg}, 0.79 \mathrm{mmol}, 79 \%$ yield), M.P. $133-134{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.90(\mathrm{~m}, 4 \mathrm{H})$, 9.24 ($\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 55.4,73.7,113.6,125.5,127.3,129.5,130.4,131.7,133.5,162.0,165.4$, 194.7; FT-IR (KBr, cm ${ }^{-1}$): $u_{\max } 1064,1096,1382,1481,1513,1586,1648,1695,3382 ;$ ESI-MS (m / z) for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 364.0184, found 364.0181.

N-(1-Hydroxy-2-(4-iodophenyl)-2-oxoethyl)-4-methoxybenzamide (3ch): The compound (3ch) was prepared using 4-methoxy ethyl benzimidate (1 mmol), 4-iodo acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as yellowish solid ($329 \mathrm{mg}, 0.80 \mathrm{mmol}, 80 \%$ yield), M.P. $125-126{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, d_{6}-DMSO): $\delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.92(\mathrm{~m}, 4 \mathrm{H}), 9.23$
(d, J=7.2 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, d_{6}-DMSO): $\delta 55.4,73.6,102.0,113.6,125.5,129.5,130.1,133.7,137.5,162.0,165.3,195.0 ;$ FT-IR (KBr, cm ${ }^{-1}$): $u_{\max }$ 1063, 1096, 1388, 1482, 1517, 1582, 1643, 1701, 3385; ESI-MS (m/z) for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{INO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 412.0046, found 412.0042 .

N-(1-Hydroxy-2-oxo-2-(p-tolyl)ethyl)-4-methoxybenzamide (3cj): The compound (3cj) was prepared using 4-methoxy ethyl benzimidate (1 mmol) and 4-methyl acetophenone as a starting material. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as white solid ($222 \mathrm{mg}, 0.74 \mathrm{mmol}, 74 \%$ yield), M.P. $132-133{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathbf{N M R}\left(300 \mathrm{MHz}, d_{6}-\right.$ DMSO): $\delta 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.89(\mathrm{~m}, 4 \mathrm{H})$, 9.19 ($\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz, d_{6}-DMSO): $\delta 21.2,55.4,73.3,113.6,125.7,128.6,129.2,129.5,131.7,144.0,162.0$, 165.4, 194.8; FT-IR (KBr, cm^{-1}): $u_{\max } 1065,1097,1382,1487,1515,1588,1643,1695,3382$; ESI-MS (m / z) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 300.1236, found 300.1234.

N-(2-(4-Fluorophenyl)-1-hydroxy-2-oxoethyl)-4-nitrobenzamide (3de): The compound (3de) was prepared using 4-nitro ethyl benzimidate (1 mmol), 4-fluoro acetophenone (1 mmol) as a starting material. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as yellow solid ($239 \mathrm{mg}, 0.74 \mathrm{mmol}, 74 \%$ yield), M.P. $132-134{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 6.51$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.79(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{t}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 8.31(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 9.73 (d, J= $8.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 74.0,115.8$ (C-F, ${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21.7 \mathrm{~Hz}$), 123.6, 129.1, 130.9 , 131.6 (C-F, $\left.{ }^{3} J_{C-F}=9.7 \mathrm{~Hz}\right), 139.1,149.3,165.1\left(\mathrm{C}-\mathrm{F},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=251.2 \mathrm{~Hz}\right), 164.5,193.5 ;$ FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right): U_{\max } 1064,1096,1388,1488,1509,1582$, 1645, 1693, 3384; ESI-MS (m / z) for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 319.0730, found 319.0726.

N-(1-Hydroxy-2-oxo-2-phenylethyl) thiophene-2-carboxamide (3ea): The compound (3ea) was prepared using thiophene-2carbimidate (1 mmol), acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as white solid ($198 \mathrm{mg}, 0.76 \mathrm{mmol}, 76 \%$ yield), M.P. $130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}{ }^{-}$ DMSO): $\delta 6.51(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.80(\mathrm{~m}$, $1 \mathrm{H}), 7.88-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.97-8.00(\mathrm{~m}, 2 \mathrm{H}), 9.37(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 73.3,128.1,128.5,128.7$, 129.3, 131.8, 133.5, 134.2, 139.0, 160.9, 194.9; FT-IR (KBr, cm^{-1}): $u_{\max } 1064,1095,1387,1487,1513,1587,1647,1698,3378$; ESIMS (m / z) for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 262.0538, found 262.0536.

N -(2-(4-Fluorophenyl)-1-hydroxy-2-oxoethyl) thiophene-2-carboxamide (3ee): The compound (3ee) was prepared using ethyl thiophene-2-carbimidate (1 mmol) and 4-fluoro acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as yellow solid ($224 \mathrm{mg}, 0.80 \mathrm{mmol}, 80 \%$ yield), M.P. 130-132 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 6.49-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-8.11(\mathrm{~m}, 2 \mathrm{H}), 9.40(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}-\mathrm{DMSO}$): $\delta 73.5,115.8\left(\mathrm{C}-\mathrm{F},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.7 \mathrm{~Hz}\right), 128.2$, 129.4, $130.9\left(C-F,{ }^{4} J_{C-F}=3 \mathrm{~Hz}\right), 131.6\left(C-F,{ }^{3} J_{C-F}=9.7 \mathrm{~Hz}\right), 131.9,139.0,160.9,165.1\left(C-F,{ }^{1} J_{C-F}=250.5\right), 193.6 ; F T-I R\left(K B r, \mathrm{~cm}^{-1}\right):$ $u_{\max } 1066,1097,1388,1488,1512,1587,1647,1696,3383$; ESI-MS (m / z) for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 280.0444, found 280.0448.

\mathbf{N}-(2-(4-Bromophenyl)-1-hydroxy-2-oxoethyl) thiophene-2-carboxamide (3eg): The compound (3eg) was prepared using ethyl thiophene-2-carbimidate (1 mmol) and 4-bromo acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as reddish solid ($264 \mathrm{mg}, 0.78 \mathrm{mmol}, 78 \%$ yield), M.P. $128-130{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 6.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.91$ (d, J= $8.4 \mathrm{~Hz}, 3 \mathrm{H}$), 9.40 ($\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 73.5,127.6,128.1,129.3,130.5,131.8,131.9$,
133.3, 138.9, 160.9, 194.3; FT-IR (KBr, cm^{-1}): $U_{\max } 1067,1093,1384,1489,1507,1581,1642,1703,3387$; ESI-MS (m / z) for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 339.9643, found 339.9646.

N-(2-(2,4-Dichlorophenyl)-1-hydroxy-2-oxoethyl) thiophene-2-carboxamide (3ei): The compound (3ei) was prepared using thiophene-2-carbimidate (1 mmol) and 2,4-dichloro acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as white solid ($257 \mathrm{mg}, 0.78 \mathrm{mmol}, 78 \%$ yield), M.P. 132-134 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, d_{6}-DMSO): $\delta 6.14-6.18$ (m, 1H), 6.84 (d, J= $6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.14-7.17$ (m, 1H), 7.56 (d, J= 2.1 $\mathrm{Hz}, 1 \mathrm{H}), 7.69-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.87(\mathrm{~m}, 1 \mathrm{H}), 9.45(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, d_{6}-DMSO): $\delta 75.6$, 127.2, 128.1, 129.3, 129.6, 131.2, 131.4, 131.9, 135.6, 136.0, 138.7, 161.0, 197.8; FT-IR (KBr, cm^{-1}): $\mathrm{u}_{\max } 1064,1097,1386,1489$, 1508, 1586, 1642, 1704, 3386; ESI-MS (m / z) for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 329.9758, found 329.9759.

N-(1-Hydroxy-2-oxo-2-phenylethyl) furan-2-carboxamide (3fa): The compound (3fa) was prepared using furan-2-carbimidate (1 mmol) and acetophenone (1 mmol) as starting materials. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as white solid ($196 \mathrm{mg}, 0.80 \mathrm{mmol}, 80 \%$ yield), M.P. $136-138{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO): δ $6.48(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.63(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.98-8.00(\mathrm{~m}, 2 \mathrm{H}), 9.08(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 73.0,112.5,115.1,129.1,129.1,134.0,134.5,146.2,147.4,157.7,195.2 ; \mathrm{FT}-\mathrm{IR}(\mathrm{KBr}$, cm^{-1}): $u_{\max } 1066,1098,1385,1490,1510,1587,1640,1710,3380$; ESI-MS $(\mathrm{m} / \mathrm{z})$ for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 246.0766, found 246.0768.

(3-((2-(3-Bromophenyl)-1-hydroxy-2-oxoethyl)carbamoyl)phenyl)boronic acid (3gd): The compound (3gd) was prepared using (3(ethoxy(imino)methyl) phenyl) boronic acid (1 mmol) and 3-bromo acetophenone (1 mmol) as starting materials. Purification by column chromatography (50% ethyl acetate in petroleum ether) afforded the title compound as fluppy solid ($272 \mathrm{mg}, 0.72 \mathrm{mmol}, 72 \%$ yield); M.P. $138-140^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 6.42(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.63(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.49(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.86$ $(\mathrm{m}, 5 \mathrm{H}), 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 9.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 74.4$, 115.1, 122.2, 126.8, 127.9, 129.9, 131.3, 131.5, 134.3, 134.4, 135.1, 136.3, 136.9, 166.6, 194.7; FT-IR (KBr, cm- ${ }^{-1}$: $u_{\max } 1064,1098$, 1387, 1489, 1515, 1588, 1648, 1703, 3386, 3480; ESI-MS (m/z) for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BBrNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 378.0148, found 378.0153.

N, N^{\prime}-Methylenedibenzamide (4aa) ${ }^{2}$: The compound (4aa) was prepared using ethyl benzimidate (2 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as white solid ($229 \mathrm{mg}, 0.90 \mathrm{mmol}, 90 \%$ yield), M.P. $188-190^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, d_{6}-\mathrm{DMSO}\right.$): $\delta 4.89(\mathrm{t}$, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.54(\mathrm{~m}, 6 \mathrm{H}), 7.91-7.94(\mathrm{~m}, 4 \mathrm{H}), 9.07(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, d_{6}\right.$-DMSO): $\delta 45.2,127.4,128.3$, 131.4, 134.0, 166.5; FT-IR (KBr, cm^{-1}): $u_{\max }$ 1053, 1110, 1152, 1183, 1249, 1282, 1402, 1472, 1503, 1536, 1580, 1609, 1633, 2840, 2963, 3326; ESI-MS (m / z) for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 255.1134, found 255.1130.

N, N-Methylenebis(4-methylbenzamide) (4bb) ${ }^{2}$: The compound (4bb) was prepared using 4-methyl ethyl benzimidate (2 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (30% ethyl acetate in petroleum ether) afforded the title compound as white solid ($260 \mathrm{mg}, 0.92 \mathrm{mmol}, 92 \%$ yield), M.P. $195-197{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , d_{6}-DMSO): $\delta 2.34(\mathrm{~s}, 6 \mathrm{H}), 4.84(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 8.94(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ MHz, d_{6}-DMSO): $\delta 21.0,45.1,127.4,128.8,131.2,141.3,166.3$; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $\mathrm{u}_{\max } 1050,1115,1152,1185,1250,1286,1407$, 1475, 1507, 1540, 1582, 1607, 1635, 2847, 2961, 3330; ESI-MS (m / z) for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 283.1447, found 283.1443.

N, N '-Methylenebis(4-methoxybenzamide) (4cc)$)^{2}$: The compound (4cc) was prepared using 4-methoxy ethyl benzimidate (2 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (30% ethyl acetate in petroleum ether) afforded the title compound as white solid ($295 \mathrm{mg}, 0.94 \mathrm{mmol}, 94 \%$ yield), M.P. $196-198{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , d_{6}-DMSO): $\delta 3.80(\mathrm{~s}, 6 \mathrm{H}), 4.83(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.90(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ MHz, d_{6}-DMSO): $\delta 45.1,55.3,113.5,126.2,129.3,161.7,166.0 ;$ FT-IR (KBr, cm^{-1}): $u_{\max } 1058,1118,1153,1186,1248,1285,1407$, 1476, 1508, 1539, 1587, 1610, 1634, 2845, 2964, 3327; ESI-MS (m / z) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: Calculated 337.1164, found 337.1161 .

N, N^{\prime}-Methylenebis(4-nitrobenzamide) (4dd) ${ }^{2}$: The compound (4dd) was prepared using 4-nitro ethyl benzimidate (2 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (40% ethyl acetate in petroleum ether) afforded the title compound as white solid ($310 \mathrm{mg}, 0.90 \mathrm{mmol}, 90 \%$ yield), M.P. $218-220{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, d_{6^{-}}\right.$

DMSO): $\delta 4.90(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 9.49(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, d_{6^{-}}\right.$ DMSO): $\delta 45.4,123.6,129.1,139.6,149.2,165.2 ; ~ F T-I R\left(K B r, \mathrm{~cm}^{-1}\right): u_{\max } 1055,1112,1150,1180,1247,1281,1402,1470,1505$, 1534, 1585, 1607, 1634, 2845, 2964, 3323; ESI-MS (m/z) for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 345.0835, found 345.0830.

N, N^{\prime}-Methylenebis(thiophene-2-carboxamide) (4ee)$)^{2}$: The compound (4ee) was prepared using thiophene-2-carbimidate (2 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (40% ethyl acetate in petroleum ether) afforded the title compound as white solid ($245 \mathrm{mg}, 0.92 \mathrm{mmol}, 92 \%$ yield), M.P. $216-218{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , d_{6}-DMSO): $\delta 4.79(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 9.15(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 44.5,128.0,128.7,131.3,139.5,161.4 ;$ FT-IR (KBr, cm${ }^{-1}$): $u_{\max } 1054,1109,1157,1185,1250,1281$, 1405, 1475, 1507, 1536, 1585, 1612, 1636, 2845, 2964, 3325; ESI-MS (m/z) for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 267.0262, found 267.0266.

((Methylenebis(azanediyl)) bis(carbonyl)) bis(3,1-phenylene)) diboronic acid (4gg): The compound (4gg) was prepared using (3(ethoxy(imino)methyl) phenyl) boronic acid (2 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (40% ethyl acetate in petroleum ether) afforded the title compound as white solid (301 mg , $0.88 \mathrm{mmol}, 88 \%$ yield), M.P. $223-225^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, d_{6}\right.$-DMSO): $\delta 4.86(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.83-7.91(\mathrm{~m}, 8 \mathrm{H}), 8.23(\mathrm{~d}, \mathrm{~J}=3.6$ $\mathrm{Hz}, 4 \mathrm{H}$), 9.06 (t, J=5.1 Hz, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, d_{6}\right.$-DMSO): $\delta 45.8,124.0,126.8,129.4,134.3,139.9,149.6,165.5 ;$ FT-IR (KBr,
$\left.\mathrm{cm}^{-1}\right): u_{\max } 1057,1112,1153,1184,1244,1284,1409,1475,1505,1534,1585,1613,1635,2844,2964,3324,3456$; ESI-MS (m / z) for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~B}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 343.1273 , found 343.1271 .

N, N '-Methylenebis(4-chlorobenzamide) (4hh) ${ }^{2}$: The compound (4hh) was prepared using 4-chloro ethyl benzimidate (2 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (35% ethyl acetate in petroleum ether) afforded the title compound as white solid ($300 \mathrm{mg}, 0.93 \mathrm{mmol}, 93 \%$ yield), M.P. $210-212{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , d_{6}-DMSO): $\delta 4.84(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 9.17(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, d_{6}-\right.$ DMSO): $\delta 45.2,125.3,129.6,131.4,133.0,165.7 ; ~ F T-I R\left(K B r, m^{-1}\right): u_{\max } 1052,1112,1154,1187,1244,1289,1407,1478,1508$, 1539, 1588, 1607, 1634, 2844, 2966, 3323; ESI-MS (m/z) for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 323.0354, found 323.0359.

N, N^{\prime}-Methylenebis(4-bromobenzamide) (4ii): The compound (4ii) was prepared using 4-bromo ethyl benzimidate (2 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (30% ethyl acetate in petroleum ether) afforded the title compound as white solid ($373 \mathrm{mg}, 0.91 \mathrm{mmol}, 91 \%$ yield), M.P. $212-214{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, d_{6^{-}}$ DMSO): $\delta 4.84(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 9.17(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, d_{6^{-}}\right.$

DMSO): $\delta 45.2,125.2,129.6,131.3,133.0,165.6 ; \mathrm{FT}^{-I R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): u_{\max } 1057,1112,1154,1184,1247,1281,1405,1473,1504$, 1534, 1578, 1607, 1635, 2845, 2964, 3330; ESI-MS (m/z) for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 410.9344, found 410.9340.

N-(Benzamidomethyl)-4-methylbenzamide (5ab): The compound (5ab) was prepared using 4-methyl ethyl benzimidate (1 mmol), ethyl benzimidate (1 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (15% ethyl acetate in petroleum ether) afforded the title compound as white solid ($182 \mathrm{mg}, 0.68 \mathrm{mmol}, 68 \%$ yield), M.P. 202-204 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 5.04-5.11(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.5,45.7$, $127.4,128.5,129.2,130.7,131.9,131.9,133.6,142.4,168.6,168.7$; FT-IR (KBr, cm$\left.{ }^{-1}\right)$: $u_{\max } 1054,1116,1154,1187,1252,1287$, 1407, 1478, 1505, 1537, 1587, 1606, 1637, 2847, 2967, 3328; ESI-MS (m / z) for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 269.1290, found 269.1285.

\mathbf{N}-(Benzamidomethyl)-4-methoxybenzamide (5ac): The compound (5ac) was prepared using 4-methoxy ethyl benzimidate (1 mmol), ethyl benzimidate (1 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (15% ethyl acetate in petroleum ether) afforded the title compound as white solid ($199 \mathrm{mg}, 0.70 \mathrm{mmol}, 70 \%$ yield), M.P. 206-208 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.89(\mathrm{~s}, 3 \mathrm{H}), 5.06-5.12(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 44.7,55.9$, 114.0, 126.3, 127.5, 128.2, 129.6, 131.0, 141.5, 162.3, 163.4, 166.6; FT-IR (KBr, cm ${ }^{-1}$): $u_{\max } 1055,1117,1155,1185,1254,1283$, 1407, 1475, 1507, 1540, 1587, 1612, 1635, 2845, 2967, 3329; ESI-MS (m / z) for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 285.1239, found 285.1242 .

N -(Benzamidomethyl)thiophene-2-carboxamide (5ae): The compound (5ae) was prepared using ethyl benzimidate (1 mmol), thiophene-2-carbimidate (1 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (30% ethyl acetate in petroleum ether) afforded the title compound as white solid ($174 \mathrm{mg}, 0.67 \mathrm{mmol}, 67 \%$ yield), M.P. 210-212 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, d_{6}\right.$-DMSO): $\delta 4.81$ (t, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}$), $6.99(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.75$ (m, 2H), $7.90(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.95(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.06-9.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, d_{6}\right.$-DMSO): $\delta 45.2,127.6,128.1$, 129.3, 130.5, 131.8, 131.9, 133.3, 138.9, 163.4, 168.3; FT-IR (KBr, cm^{-1}): $u_{\max } 1055,1118,1157,1185,1251,1283,1407,1475,1504$, 1534, 1587, 1612, 1638, 2846, 2970, 3336; ESI-MS (m / z) for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 261.0698, found 261.0692.

N -((4-Methylbenzamido)methyl)thiophene-2-carboxamide (5be): The compound (5be) was prepared using thiophene-2carbimidate (1 mmol),4-methyl ethyl benzimidate (1 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (350% ethyl acetate in petroleum ether) afforded the title compound as white solid (192 mg , $0.70 \mathrm{mmol}, 70 \%$ yield), M.P. 218-220 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, d_{6}\right.$-DMSO): $\delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 4.82(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 1 \mathrm{H})$, $7.30(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.94-8.02(\mathrm{~m}, 2 \mathrm{H}), 8.95(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.08(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, d_{6}-DMSO): $\delta 21.4,45.2,128.0,128.3,129.1,129.2,131.4,131.9,140.8,141.5,163.4,168.3 ; \mathrm{FT}^{2} \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): u_{\max } 1054,1117$, 1157, 1184, 1248, 1283, 1406, 1475, 1505, 1540, 1587, 1602, 1635, 2845, 2965, 3336; ESI-MS (m/z) for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 275.0854, found 275.0856 .

4-Chloro- \boldsymbol{N}-((4-methylbenzamido)methyl)benzamide (5bh): The compound (5bh) was prepared using 4-chloro ethyl benzimidate (1 $\mathrm{mmol}), 4$-methyl ethyl benzimidate (1 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (35% ethyl acetate in petroleum ether) afforded the title compound as white solid ($217 \mathrm{mg}, 0.72 \mathrm{mmol}, 72 \%$ yield), M.P. 223-225 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, d_{6}\right.$-DMSO): $\delta 2.34$ (s, 3H), $4.84(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=5.4$
$\mathrm{Hz}, 2 \mathrm{H}$), $7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.95(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.13(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, d_{6^{-}}$ DMSO): $\delta 21.4,45.6,127.9,128.8,129.3,129.9,131.6,133.2,136.7,141.8,165.9,166.8 ;$ FT-IR (KBr, cmr$\left.{ }^{-1}\right): u_{\max } 1057,1108,1159$, 1188, 1250, 1285, 1405, 1477, 1504, 1537, 1587, 1610, 1635, 2845, 2967, 3325; ESI-MS (m/z) for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{CIN}_{2} \mathrm{O}_{2}$ [M] ${ }^{+}$: Calculated 302.0822 , found 302.0821 .

N-((4-Methoxybenzamido) methyl) thiophene-2-carboxamide (5ce): The compound (5ce) was prepared using 4-methoxy ethyl benzimidate (1 mmol), thiophene-2-carbimidate (1 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (30% ethyl acetate in petroleum ether) afforded the title compound as white solid (206 mg , $0.71 \mathrm{mmol}, 71 \%$ yield), M.P. $224-226^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, d_{6}\right.$-DMSO): $\delta 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.81(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, 1 H), $7.11-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.91(\mathrm{~m}, 2 \mathrm{H}), 8.95(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.08(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, d_{6}-DMSO): $\delta 45.2,55.8,113.9,128.4,129.1,129.2,129.8,131.5,140.7,162.2,163.4,166.5 ; \mathrm{FT}^{2} \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): u_{\max } 1055,1119$, 1158, 1184, 1247, 1282, 1409, 1478, 1502, 1537, 1588, 1607, 1634, 2845, 2965, 3332; ESI-MS (m/z) for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 291.0803, found 291.0799.

4-Chloro-N-((4-methoxybenzamido)methyl)benzamide (5ch): The compound (5ch) was prepared using 4-methoxy ethyl benzimidate (1 mmol), 4-chloro ethyl benzimidate (1 mmol), dimethyl sulfoxide (12 mmol) and iodine ($10 \mathrm{~mol} \%$) as a starting material. Purification by column chromatography (30% ethyl acetate in petroleum ether) afforded the title compound as white solid (238 mg , $0.75 \mathrm{mmol}, 75 \%$ yield), M.P. $225-227^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 3.79$ ($\mathrm{s}, 3 \mathrm{H}$), 4.84 (t, J=5.4 Hz, 2H), 7.25 (d, J= 8.4 Hz , $2 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.95(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.12(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 45.3,55.8,113.9,128.4,129.1,129.2,129.8,131.5,140.7,162.2,167.3,168.2 ;$ FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right)$: $\mathrm{u}_{\max } 1058$, 1112, 1153, 1187, 1258, 1283, 1407, 1475, 1509, 1540, 1589, 1615, 1635, 2845, 2967, 3337; ESI-MS (m/z) for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{CIN}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+}$: Calculated 318.0771, found 319.0774 .
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra of synthesized α-amidohydroxy ketones (3), symmetrical and un-symmetrical bisamide (4,5) ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3aa)

¢	©
\%	

	$\begin{aligned} & \stackrel{4}{0} \\ & \stackrel{0}{\top} \end{aligned}$	

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3ab)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3ac)

$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{9}{9} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{1} \end{aligned}$	

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3ad)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3ae)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3af)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3ag)

$\begin{array}{r} \stackrel{8}{0} \\ \stackrel{\leftrightarrow}{0} \\ \stackrel{1}{2} \end{array}$		

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3ah)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3ai)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3aj)

\%	$\begin{aligned} & \text { ! } \\ & \stackrel{4}{8} \\ & \stackrel{1}{1} \end{aligned}$		$\stackrel{n}{m}_{1}^{\infty}$	

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3ba)

$\begin{aligned} & 8.8 \\ & \stackrel{8}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{array}{r}\text { ल } \\ \stackrel{0}{0} \\ \hline\end{array}$	

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
10	200	190	180	170	160	150	140	130	120			90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3bb)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3bd)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3be)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3bf)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3bg)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3bh)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3bk)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3ca)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3cb)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3ce)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3cf)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3cg)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3ch)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3cj)

$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\rightharpoonup}{\mid} \end{aligned}$		$\begin{gathered} \text { g} \\ \stackrel{y}{\sim} \\ \stackrel{\sim}{\mid} \end{gathered}$		$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\oplus}{7} \\ & \hline \end{aligned}$	$\stackrel{\sim}{\sim}$	$\begin{gathered} \text { 㞱 } \\ \substack{0} \\ \hline \end{gathered}$	

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3de)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3ea)

S101

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3ee)

200	190	180	170	160	150	140	130	120		$\text { m) }{ }^{100}$	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3eg)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3ei)

$\stackrel{\infty}{2}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{8} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	

qugmmmo

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3fa)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (3gd)

$\stackrel{\underset{\sim}{*}}{\stackrel{\rightharpoonup}{\sigma}}$	तु 0 $\stackrel{0}{1}$ 1	 	$\stackrel{\text { J }}{\substack{\text { ¢ }}}$	

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (4aa)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (4bb)

S115

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (4cc)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (4dd)

㘶 gisigisis

0	200	190	180	170	160	150	140	130	120	110 f1	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (4ee)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound $(4 \mathrm{gg})$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (4hh)


```
&゙MOM
M% %%8
```


S126

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (4ii)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (5ab)

			-1

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (5ac)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (5ae)

ทinnすMNシム夺夺夺多名

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (5be)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (5bh)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (5ce)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (5ch)

R 向 f figisig

0	200	190	180	170		150		3													
. 0	200	190	180	170	160	150	140	130	120	110 f1		90	80	70	60	50	40	30	20	10	$20 \quad 10$

11. Spectroscopic Data of α-amidoketone

\mathbf{N}-(2-oxo-2-phenylethyl)benzamide (6) ${ }^{3}$: $\mathrm{Et}_{3} \mathrm{~N}\left(5 \mathrm{mmol}, 2.5\right.$ equiv.) was added to a solution of 2- aminoacetophenone hydrochloride ${ }^{4}$ (2 mmol) in DCM (5 mL). Benzoyl chloride ($2.6 \mathrm{mmol}, 1.3$ equiv.) was added to this reaction mixture at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm to room temperature for 2 h . Water (5 mL) was added, the mixture extracted with DCM ($3^{*} 5 \mathrm{~mL}$), the combined organic layer washed with sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product could be purified by silica gel chromatography (20% ethyl acetate in petroleum ether) afforded the title compound as white solid ($191 \mathrm{mg}, 0.80 \mathrm{mmol}, 80 \%$ yield), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.93$ (d, J=3.3 Hz, 2H), 7.43 $-7.57(\mathrm{~m}, 6 \mathrm{H}), 7.63-7.68(\mathrm{~m}, 1 \mathrm{H}), 8.02-8.05(\mathrm{~m}, 2 \mathrm{H}), 8.20-8.23(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 46.8,127.6,128.4,128.6$, 128.7, 131.8, 133.5, 134.3, 166.5, 196.0; ESI-MS (m/z) for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: Calculated 240.1025, found 240.1028.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Compound (6)

S148
12. Spectroscopic data of [3aa (d)] with labelling experiment ${ }^{1} \mathrm{H}$ NMR of 3aa (300 MHz, d_{6}-DMSO): $\delta 6.51$ (s, 1H), $7.45-7.54(\mathrm{~m}, 6 \mathrm{H}), 7.85-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.96-7.99(\mathrm{~m}, 2 \mathrm{H}), 9.37(\mathrm{~s}, 1 \mathrm{H})$ ${ }^{1} \mathrm{H}$ NMR of Compound [3aa (d)] with deuterated ($\mathrm{D}_{2} \mathrm{O}$)

aa (d)
13. Spectroscopic data of [4aa (d)] with labelling experiment
${ }^{1} \mathrm{H}$ NMR of 4aa(d) (300 MHz, d_{6}-DMSO): $\delta 7.46-7.54$ (m, 6H), $7.89-7.92$ (m, 4H), 9.05 (s, 2H)
${ }^{13} \mathrm{C}-$ NMR of 4aa(d) ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 78.9,79.6,127.8,128.8,131.9,134.3,167.1$
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}-$ NMR of Compound [4aa (d)] with deuterated (DMSO-D ${ }_{6}$)

永

लिश゚ 8

\11

ネig

14. HRMS data of 4aa(d)

daipXrep.d

| Bruker Compass DataAnalysis 4.1 | printed: 1/27/2023 4:55:48 PM | by: IISER Kolkata |
| :--- | :--- | :--- | :--- |

15. NMR titration of compound (3de)

NMR titration of \mathbf{N}-(2-(4-fluorophenyl)-1-hydroxy-2-oxoethyl)-4-nitrobenzamide (3de) with acetate anion After addition of $10 \mu \mathrm{l}$ of acetate anion

S153

After addition of $20 \mu \mathrm{l}$ of acetate anion

After addition of 30μ of acetate anion

S155

After addition of 40μ of acetate anion

NMR titration of \mathbf{N}-(2-(4-fluorophenyl)-1-hydroxy-2-oxoethyl)-4-nitrobenzamide (3de) with chloride anion After addition of $10 \mu \mathrm{l}$ of chloride anion

After addition of 20μ l of chloride anion

After addition of $30 \mu \mathrm{l}$ of chloride anion

After addition of 40μ l of chloride anion

NMR titration of N -(2-(4-fluorophenyl)-1-hydroxy-2-oxoethyl)-4-nitrobenzamide (3de) with cyanide anion After addition of 10μ of cyanide anion

After addition of 20μ of cyanide anion

oi in o $\infty \infty \infty \infty \infty \infty \infty$

After addition of $30 \mu \mathrm{l}$ of cyanide anion

After addition of $40 \mu \mathrm{l}$ of cyanide anion

NMR titration of \mathbf{N}-(2-(4-fluorophenyl)-1-hydroxy-2-oxoethyl)-4-nitrobenzamide (3de) with dihydrogen phosphate anion After addition of 10μ of dihydrogen phosphate anion

After addition of 20μ of dihydrogen phosphate anion

After addition of 30μ l of dihydrogen phosphate anion

After addition of 40μ l of dihydrogen phosphate anion

NMR titration of \boldsymbol{N}-(2-(4-fluorophenyl)-1-hydroxy-2-oxoethyl)-4-nitrobenzamide (3de) with fluoride anion After addition of 10μ of fluoride anion

After addition of 20μ of fluoride anion

After addition of $\mathbf{3 0} \boldsymbol{\mu}$ of fluoride anion

After addition of $40 \mu \mathrm{l}$ of fluoride anion

NMR titration of N-(2-(4-fluorophenyl)-1-hydroxy-2-oxoethyl)-4-nitrobenzamide (3de) with adenine

After addition of $10 \mu \mathrm{l}$ of adenine

After addition of 20μ of adenine

After addition of $30 \mu \mathrm{l}$ of adenine

After addition of $40 \mu \mathrm{l}$ of adenine

NMR titration of \boldsymbol{N}-(2-(4-fluorophenyl)-1-hydroxy-2-oxoethyl)-4-nitrobenzamide (3de) with thymine

After addition of $10 \mu \mathrm{l}$ of thymine

After addition of 20μ of thymine

After addition of 30μ of thymine

After addition of 40μ l of thymine

NMR titration of N-(2-(4-fluorophenyl)-1-hydroxy-2-oxoethyl)-4-nitrobenzamide (3de) with uracil

After addition of 10μ of uracil

$\stackrel{\text { Nơn }}{\substack{0 \\ \sim}}$

After addition of 20μ of uracil

After addition of $\mathbf{3 0} \boldsymbol{\mu}$ of uracil

After addition of 40μ of uracil

NMR titration of \mathbf{N}-(2-(4-fluorophenyl)-1-hydroxy-2-oxoethyl)-4-nitrobenzamide (3de) with ATP After addition of 10μ of ATP

After addition of 20μ of ATP

After addition of 30μ of ATP

After addition of 40μ of ATP

16. NMR titration of compound (3aa)

NMR titration of \mathbf{N}-(1-hydroxy-2-oxo-2-phenylethyl)benzamide (3aa)with chloride anion After addition of $10 \mu \mathrm{l}$ of chloride anion

After addition of $20 \mu \mathrm{l}$ of chloride anion
R

S191

After addition of $30 \mu \mathrm{l}$ of chloride anion

S192

After addition of $40 \mu \mathrm{l}$ of chloride anion

17. NMR titration of compound (6)

NMR titration of \mathbf{N}-(2-oxo-2-phenylethyl)benzamide (6)with chloride anion After addition of $10 \mu \mathrm{l}$ of chloride anion

8
1
1

After addition of 20μ of chloride anion

After addition of 30μ of chloride anion

After addition of 40μ l of chloride anion

18. Crystal structure of compound 3ea (CCDC 2152756)

Single crystal XRD structure of 3ea
19. Crystal summary data of compound 3ea (CCDC 2152756)

* Chemical formula and formula weight (M): $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ and 261.29
* Crystal system: Monoclinic Unit-cell dimensions (angstrom, degrees) and volume, with edges: a 5.107(4) b 24.81(2) c 9.865(8), 90.00, 92.955(17), 90.00, 1248.2(17)
* Temperature: 296 K
* Space group symbol: P 21
* No. of formula units in unit cell (Z): 4
* Number of reflections measured and/or number of independent reflections, $\mathrm{R}_{\text {int }}=0.0829$
* Final R values (and whether quoted for all or obrserved data): 0.2395

20. References

(1) R. Manikandan, M. Tamizmani, M. Jeganmohan, Org. Lett. 2017, 19, 6678 - 6682.
(2) P. S. Mahajan, S. D. Tanpure, N. A. More, J. M. Gajbhiye, S. B. Mhaske, RSC Adv. 2015, 5, 101641-101646.
(3) Y. Wang, M. Yang, C. Laoa, Z. Jiang, Org. Lett. 2022, 24, 2625-2629.
(4) M. Balti, S. A. Miller, M. L. Efrit, N. E. Leadbeater, RSC Adv., 2016, 6, 72165-72169.

