Palladium-catalyzed Regioselective Synthesis of Mono and Bis(arylthiol) Alkene from Propargyl Carbonate and Thiophenol

Indranil Chatterjee[†] and Gautam Panda*^{†‡}

[†]Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension, Sitapur Road, Lucknow 226031, UP, India

[‡]Academy of Scientific and Innovative Research, Ghaziabad- 201002, India.

*Corresponding Author: gautam.panda@gmail.com, gautam_panda@cdri.res.in

Phone: 915222772450, ext 4659, Fax: 915222771941

Table of contents

1.	General experimental	2
2.	Synthetic Details	.2-4
3.	Experimental section	4-27
4.	Optimization reaction conditions	27
5.	Unreactive thiols and propargyl carbonates	.28
6.	Gram scale synthesis	.28
7.	Confirmation of structure 4a through 1-D & 2-D NMR spectrum	.28-30
8.	Confirmation of structure 4g for mono(arylthiol) alkene product throu	gh 1-D &
	2-D NMR spectrum	31-33
9.	Confirmation of structure 3a for bis(arylthiol) alkene with literature-known	
	compound through 1-D NMR spectrum	34
10.	. Confirmation of structure 8a through 1-D & 2-D NMR spectrum	34-35
11.	. Substrates scope for Tsuji-Trost-type substitution	35-36
12.	. References	37
13.	. NMR Spectra for synthesized compounds	S1-S135

1. General experimental

Unless otherwise noted, all materials including solvents and reagents were obtained from commercial suppliers and were used without further purification. All dry reactions were carried out under argon or nitrogen atmosphere in dried glassware. All work-up and purification were carried out with reagent-grades solvents in air. Analytical TLC was performed using 2.5×5 cm plates coated with a 0.25 mmol thickness of silica gel (60F-254); visualization was accomplished under UV lamp. NMR spectra were recorded on 400 MHz spectrometer for ¹H NMR 100 MHz for ¹³C NMR spectroscopy and chemical shift for ¹H NMR and ¹³C NMR are expressed in parts per million(ppm) relative to the solvent. Chemical shifts are reported relative to the residual signals of either tetramethyl silane in CDCl₃ or deuterated DMSO for ¹H and ¹³C NMR spectroscopy. ¹H and ¹³C NMR chemical shift assignments are based on twodimensional NMR experiments including ¹H-COSY, NOESY, HSQC and HMBC. All ¹³C spectra are ¹H decoupled. NMR data is represented as follows chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = double doublet, m = multiplet, app. dd, = apparent doublet of doublets, app. t = apparent triplet), coupling constant (J) in Hertz (Hz), integration. HRMS were recorded by using Q-TOF mass spectrometer. Mass spectra were recorded using electron spray ionization (ESI-MS) using argon FAB gas. Column chromatography was performed with silica gel (100-200 mesh) as the stationary state. All reaction was monitored by TLC.

2. Synthetic Details

General Procedure 1 (GP1) for the preparation of 1a, 1c-1d and 1k-11:

As per literature procedure¹ a 250 ml schlenk flask was placed under an argon atmosphere and charged with functionalised propargyl alcohol (1 equiv.) and 0.2 M DCM, then stirred for 5 min at rt. After that pyridine (2 equiv.) was added to the solution and the mixture was stirred for 15 min. The solution was then cooled to 0°C using an ice water bath followed by the dropwise addition of functionalised chloroformate (2 equiv.) over few mins. Then resulting mixture was allowed to stir for 1h at 0°C and warmed to rt and stirred for 16 h. The reaction was quenched with the saturated solution of ammonium chloride and extracted into DCM and washed with water then brine. The crude product was dried over sodium sulphate and concentrated under reduced pressure. Then the liquid product (1a, 1c-1d and 1k-1l) was obtained by column- chromatography.

General Procedure 2 (GP2) for the preparation of 1b, 1e, 1g and 1i-1j:

According to the literature procedure² to a solution of alcohol (1 equiv.) in DCM (0.5 M) was added NEt₃ (1.1 equiv.), Boc₂O (1 equiv.) and DMAP (0.05 equiv.). The mixture was stirred

at rt and followed periodically by TLC. Upon completion, the reaction was quenched with water and extracted twice with diethyl ether. The combined organic layers were washed with brine, dried over MgSO₄, and evaporated under reduced pressure. The crude was purified by flash column chromatography (silica gel, petroleum ether/diethyl ether) to give the protected alcohol (1b, 1e, 1g and 1i-1j).

Procedure 1 (P1) for the preparation of 1h:³

To a solution of alkyne (1 equiv.) in THF (0.1 M), PhI (1.2 equiv.), $PdCl_2(PPh_3)_2$ (0.03 equiv.), CuI (0.05 equiv.) and NEt₃ (10 equiv.) were successively added. The reaction mixture was allowed to react at rt overnight. Upon completion, it was diluted with diethyl ether and filtered through silica, and the filtrate was concentrated under reduced pressure. The crude product was purified by flash column chromatography (silica gel, petroleum ether/diethyl ether) to afford the desired product (1h).

Procedure 2 (P2) for the preparation of 1f:

As per literature procedure⁴ a 250 ml schlenk flask was placed under an argon atmosphere and charged with but-3-yn-2-ol (1 equiv.) and 0.2 M DCM, then stirred for 5 min at rt. After that pyridine (2 equiv.) was added to the solution and the mixture was stirred for 15 min. The solution was then cooled to 0°C using an ice water bath followed by the dropwise addition of phenyl chloroformate (2 equiv.) over few mins. Then resulting mixture was allowed to stir for 1h at 0°C and warmed to rt and stirred for an additional hour. The reaction was quenched with the saturated solution of ammonium chloride and extracted into DCM and washed with water then brine. The crude product was dried over sodium sulphate and concentrated under reduced pressure. Then the colourless liquid product (1f) was obtained through column-chromatography.

General Procedure 3 (GP3) for the preparation of 3a-3g & 8a:

A Schlenk tube equipped with a stir bar was evacuated, backfilled with nitrogen and charged with substrate (2.0 mmol), $Pd_2(dba)_3$ (2 mol%) and S-phos (5 mol%) before propargyl carbonate (1.1 mmol) in acetonitrile (0.2 M with respect to the substrate) was added. The reaction was stirred at 80°C in an oil bath for 12 h. The suspension was filtered through a Celite pad and the resulting solution was concentrated in vacuo and the crude product was purified by flash column chromatography.

General Procedure 4 (GP4) for the preparation of 4a-4z',4a' & 4i':

A Schlenk tube equipped with a stir bar was evacuated, backfilled with nitrogen and charged with substrate (1.0 mmol), $Pd_2(dba)_3$ (2 mol%) and S-phos (5 mol%) before propargyl carbonate (1.1 mmol) in acetonitrile (0.2 M with respect to the substrate) was added. The reaction was stirred at 80°C in an oil bath for 12 h. The suspension was filtered through a Celite pad and the resulting solution was concentrated in vacuo and the crude product was purified by flash column chromatography to produce the products 4a- 4z'& 4a'.

3. Experimental section:

Ethyl prop-2-yn-1-yl carbonate (1a)

Colourless liquid. Synthesised by GP1 (87%).

¹**H NMR (400 MHz, CDCl₃):** δ = 4.72 (d, *J* = 2.34 Hz, 2H), 4.23 (q, *J* = 7.13 Hz, 2H), 2.55 (t, *J* = 2.44 Hz, 1H), 1.32 (t, *J* = 7.08 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 154.47, 75.49, 64.48, 63.67, 54.97, 14.12.$

HRMS (m/z): calculated for $C_6H_9O_3$ [M + H]⁺, 129.0546; found, 129.0538.

Tert-butyl prop-2-yn-1-yl carbonate (1b)³

Pale yellow liquid. Synthesised by GP2 (91%).

¹**H NMR (400 MHz, CDCl₃):** δ = 4.66 (d, *J* = 2.53 Hz, 2H), 2.49 (t, *J* = 2.44 Hz, 1H), 1.49 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 152.73, 82.98, 77.38, 75.18, 54.28, 27.68.$

But-2-yn-1-yl ethyl carbonate (1c)¹

Colourless liquid. Synthesised by GP1 (95%).

¹**H NMR (400 MHz, CDCl₃):** δ = 4.68-4.67 (m, 2H), 4.21 (q, *J* = 7.14 Hz, 2H), 1.86-1.84 (m, 3H), 1.30 (t, *J* = 7.12 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 154.52, 83.46, 72.65, 63.99, 55.62, 13.94, 3.18.$

But-3-yn-2-yl ethyl carbonate (1d)⁵

Yellow liquid. Synthesised by GP1 (97%).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 5.27$ (dq, J = 2.14 Hz, J = 6.70 Hz, 1H), 4.19 (q, J = 7.16 Hz, 2H), 2.48 (d, J = 2.14 Hz, 1H), 1.52 (d, J = 6.75 Hz, 3H), 1.29 (t, J = 7.15 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 154.12, 81.45, 73.64, 64.26, 63.69, 21.86, 14.17.$

But-3-yn-2-yl tert-butyl carbonate (1e)

Yellow liquid. Synthesised by GP2 (93%).

¹**H NMR (400 MHz, CDCl₃):** δ = 5.19 (dq, *J* = 2.10 Hz, *J* = 6.73 Hz, 1H), 2.44 (d, *J* = 2.12 Hz, 1H), 1.49 (d, *J* = 6.72 Hz, 3H), 1.45 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 152.37, 82.67, 81.76, 73.31, 62.76, 27.69, 21.19.$

HRMS (m/z): calculated for $C_9H_{15}O_3$ [M + H]⁺, 171.1016; found, 171.1023.

But-3-yn-2-yl phenyl carbonate (1f)

Colourless liquid. Synthesised by P2 (94%).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.40-7.33$ (m, 2H), 7.24-7.15 (m, 3H), 5.37 (dq, J = 2.12 Hz, J = 6.73 Hz, 1H), 2.53 (d, J = 2.14 Hz, 1H), 1.60 (d, J = 6.72 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): $\delta = 152.71$, 151.05, 129.50, 126.14, 120.99, 81.00, 74.33, 64.85, 21.22.

HRMS (m/z): calculated for $C_{11}H_{11}O_3$ [M + H]⁺, 191.0703; found, 191.0708.

Tert-butyl (1-phenylprop-2-yn-1-yl) carbonate (1g)³

Colourless liquid. Synthesised by GP2 (88%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.55-7.53 (m, 2H), 7.40-7.34 (m, 3H), 6.23 (d, *J* = 2.29, 1H), 2.68 (d, *J* = 2.32 Hz, 1H), 1.48 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ = 152.47, 136.25, 129.15, 128.69, 127.70, 83.16, 80.04, 76.00, 68.21, 27.76.

Tert-butyl (3-phenylprop-2-yn-1-yl) carbonate (1h)³

Colourless liquid. Synthesised by P1 (76%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.45-7.43 (m, 2H), 7.33-7.27 (m, 3H), 4.89 (s, 2H), 1.50 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 152.88$, 131.85, 128.72, 128.27, 122.19, 86.84, 82.88, 82.65, 55.26, 27.73.

Tert-butyl (2-methylbut-3-yn-2-yl) carbonate (1i)³

Colourless liquid. Synthesised by GP2 (89%).

¹**H NMR (400 MHz, CDCl₃):** $\delta = 2.54$ (s, 1H), 1.69 (s, 6H), 1.49 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ = 151.35, 84.47, 82.22, 72.81, 72.41, 28.86, 27.79.

Tert-butyl (2-phenylbut-3-yn-2-yl) carbonate (1j)⁶

Colourless liquid. Synthesised by GP2 (90%).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.60-7.58 (m, 2H), 7.37-7.33 (m, 2H), 7.31-7.27 (m, 1H), 2.81 (s, 1H), 1.88 (s, 3H), 1.40 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ = 150.88, 142.19, 128.39, 127.96, 124.68, 82.83, 82.63 75.70, 32.59, 27.71.

Allyl prop-2-yn-1-yl carbonate (1k)

Colourless liquid. Synthesised by GP1 (95%).

¹**H NMR (400 MHz, CDCl₃):** δ = 5.98-5.88 (m, 1H), 5.39-5.35 (m, 1H), 5.29-5.26 (m, 1H), 4.73(d, *J* = 2.47 Hz, 2H), 4.67-4.64 (m, 2H), 2.54 (t, *J* = 2.45 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ =154.34, 131.26, 119.04, 75.65, 68.83, 55.21.

HRMS (m/z): calculated for $C_7H_9O_3$ [M + H]⁺, 141.0546; found, 141.0532.

Isobutyl prop-2-yn-1-yl carbonate (11)

Colourless liquid. Synthesised by GP1 (90%).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 4.72$ (d, J = 2.45 Hz, 2H), 3.96 (d, J = 6.67 Hz, 2H), 2.53 (t, J = 2.46 Hz, 1H), 2.03-1.93 (m, 1H), 0.96 (d, J = 6.74 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ =154.67, 75.52, 74.54, 73.89, 55.06, 27.73, 18.79.

HRMS (m/z): calculated for $C_8H_{13}O_3$ [M + H]⁺, 157.0859; found, 157.0847.

Prop-2-ene-1,2-diylbis(phenylsulfane) (3a)

Pale yellow oil. Synthesised by GP3 (76%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.42-7.41 (m, 2H), 7.34-7.27 (m, 6H), 7.24 (s, 1H), 7.22-7.17 (m, 1H), 5.37 (s, 1H), 5.07 (s, 1H), 3.65 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ = 141.13, 133.09, 132.69, 130.76, 130.35, 129.24, 128.84, 128.02, 126.61, 116.94, 40.21.

IR v (cm⁻¹): 3740, 3419, 2921, 1635, 1068, 738, 688.

HRMS (m/z): calculated for $C_{15}H_{15}S_2$ [M + H]⁺, 259.0610; found, 259.0618.

Prop-2-ene-1,2-diylbis((4-fluorophenyl)sulfane) (3b)

Pale yellow oil. Synthesised by GP3 (82%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.42-7.35 (m, 4H), 7.05-6.96 (m, 4H), 5.17 (s, 1H), 4.88 (s, 1H), 3.56 (s, 2H).

¹³**C NMR** (**100 MHz, CDCl₃**): $\delta = 164.15$ (d, $J_{C-F} = 249.17$ Hz), 163.50 (d, $J_{C-F} = 248.14$ Hz), 161.67 (d, $J_{C-F} = 249.17$ Hz), 161.08 (d, $J_{C-F} = 248.14$ Hz), 141.91, 135.90 (d, $J_{C-F} = 8.43$ Hz), 135.82 (d, $J_{C-F} = 8.43$ Hz), 133.87 (d, $J_{C-F} = 8.18$ Hz), 133.79 (d, $J_{C-F} = 8.18$ Hz), 130.17 (d, $J_{C-F} = 3.28$ Hz), 130.14 (d, $J_{C-F} = 3.28$ Hz), 127.40 (d, $J_{C-F} = 3.99$ Hz), 127.37 (d, $J_{C-F} = 3.99$ Hz), 116.57 (d, $J_{C-F} = 27.79$ Hz), 116.36 (d, $J_{C-F} = 27.79$ Hz), 116.08 (d, $J_{C-F} = 21.84$ Hz), 115.45, 41.49.

¹⁹F NMR (376 MHz, CDCl₃): -112.59 (s, 1F), -114.37 (s, 1F).

IR v (cm⁻¹): 3838, 3436, 2064, 1635, 1065, 668.

HRMS (m/z): calculated for $C_{15}H_{13}F_2S_2$ [M + H]⁺, 295.0421; found, 295.0422.

Prop-2-ene-1,2-diylbis((2-bromophenyl)sulfane) (3c)

Colourless oil. Synthesised by GP3 (84%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.62-7.60 (m, 1H), 7.55-7.53 (m, 1H), 7.44-7.42 (m, 1H), 7.30-7.21 (m, 3H), 7.15-7.12 (m, 1H), 7.06-7.02 (m, 1H), 5.58 (s, 1H), 5.17 (s, 1H), 3.71 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ = 138.41, 136.63, 134.22, 133.73, 133.60, 133.02, 130.13, 129.23, 128.04, 127.73, 127.46, 127.31, 124.60, 119.38, 38.85.

IR v (cm⁻¹): 3433, 2921, 1634, 1444, 1105, 742.

HRMS (m/z): calculated for $C_{15}H_{13}Br_2S_2$ [M + H]⁺, 416.8820; found 416.8824.

Prop-2-ene-1,2-diylbis((2-chlorophenyl)sulfane) (3d)

Colourless oil. Synthesised by GP3 (85%).

¹**H NMR** (**400 MHz, CDCl₃**): $\delta = 7.45-7.42$ (m, 2H), 7.37-7.35 (m, 1H), 7.33-7.30 (m, 1H), 7.24-7.20 (m, 2H), 7.19-7.11 (m, 2H), 5.52 (s, 1H), 5.13 (s, 1H), 3.71 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ =138.46, 136.95, 134.63, 134.50, 134.07, 132.02, 130.68, 130.26, 129.71, 129.24, 127.46, 127.37, 127.07, 118.76, 38.54.

IR v (cm⁻¹): 3430, 2922, 1633, 1450, 1034, 744.

HRMS (m/z): calculated for $C_{15}H_{13}Cl_2S_2$ [M + H]⁺, 326.9830; found, 326.9837.

Prop-2-ene-1,2-diylbis(m-tolylsulfane) (3e)

Pale yellow oil. Synthesised by GP3 (65%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.25-7.24 (m, 1H), 7.22-7.20 (m, 2H), 7.15-7.13 (m, 3H), 7.12-7.09 (m, 1H), 7.01-6.99 (m, 1H), 5.39 (s, 1H), 5.10 (s, 1H), 3.65 (s, 2H), 2.32 (s, 3H), 2.30 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ =141.17, 139.07, 138.57, 135.50, 133.58, 132.39, 130.77, 130.03, 129.03, 128.82, 128.67, 127.39, 127.10, 116.87, 40.05, 21.31, 21.25.

IR v (cm⁻¹): 3839, 3740, 3422, 2921, 1634, 1064, 771.

HRMS (m/z): calculated for $C_{17}H_{19}S_2$ [M + H]⁺, 287.0923; found, 287.0932.

Prop-2-ene-1,2-diylbis(p-tolylsulfane) (3f)

Colourless oil. Synthesised by GP3 (68%).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.33-7.30$ (m, 2H), 7.26-7.25 (m, 2H), 7.14-7.12 (m, 2H), 7.08-7.05 (m, 2H), 5.24 (s, 1H), 4.95 (s, 1H), 3.59 (s, 2H), 2.34 (s, 3H), 2.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ =142.01, 138.32, 136.76, 133.67, 132.39, 131.96, 131.07, 130.01, 129.59, 115.28, 40.77, 21.17, 21.05.

IR v (cm⁻¹): 3432, 2921, 2316, 1634, 1490, 1091, 804.

HRMS (m/z): calculated for $C_{17}H_{19}S_2$ [M + H]⁺, 287.0923; found, 287.0928.

But-2-ene-1,2-diylbis(phenylsulfane) (3g)

Pale yellow oil. Synthesised by GP3 (56%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.33-7.26 (m, 5H), 7.25-7.15 (m, 5H), 6.11 (q, *J* = 6.76 Hz 1H), 3.62 (s, 2H), 1.85 (d, *J* = 6.79 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 136.14, 134.77, 134.25, 130.90, 130.60, 129.84, 129.13, 128.88, 126.58, 126.46, 42.01, 15.91.

IR v (cm⁻¹): 3394, 2920, 1456, 1068.

HRMS (m/z): calculated for $C_{16}H_{17}S_2$ [M + H]⁺, 273.0766; found, 273.0765.

But-2-ene-1,3-diylbis((4-fluorophenyl)sulfane) (8a)

Colourless oil. Synthesised by GP3 (62%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.38-7.35 (m, 2H), 7.25-7.21 (m, 2H), 7.01-6.97 (m, 4H), 5.56 (qt, *J* = 8.00 Hz, *J* = 1.24 Hz, 1H), 3.49 (d, *J* = 7.98 Hz, 2H), 1.64 (s, 3H).

¹³**C NMR** (**100 MHz, CDCl₃**): $\delta = 163.79$ (d, $J_{C-F} = 248.20$ Hz), 163.64 (d, $J_{C-F} = 247.87$ Hz), 161.30 (d, $J_{C-F} = 248.20$ Hz), 161.18 (d, $J_{C-F} = 247.87$ Hz), 134.79, 134.69 (d, $J_{C-F} = 5.03$ Hz), 134.64 (d, $J_{C-F} = 5.03$ Hz), 134.61 (d, $J_{C-F} = 5.14$ Hz), 134.56 (d, $J_{C-F} = 5.14$ Hz), 130.03 (d, $J_{C-F} = 4.12$ Hz), 129.99 (d, $J_{C-F} = 4.12$ Hz), 128.26 (d, $J_{C-F} = 2.64$ Hz), 128.24 (d, $J_{C-F} = 2.64$ Hz), 125.20, 116.31 (d, $J_{C-F} = 21.87$ Hz), 116.09 (d, $J_{C-F} = 21.87$ Hz), 116.05 (d, $J_{C-F} = 21.70$ Hz), 115.83 (d, $J_{C-F} = 21.70$ Hz), 34.31, 17.38.

¹⁹F NMR (376 MHz, CDCl₃): -113.67 (s, 1F), -114.19 (s, 1F).

IR v (cm⁻¹): 3379, 2920, 1384, 1225, 1080.

HRMS (m/z): calculated for $C_{16}H_{15}F_2S_2 [M + H]^+$, 309.0578; found, 309.0574.

Ethyl (2-((2-hydroxyphenyl)thio)allyl) carbonate (4a)

Pale yellow oil. Synthesised by GP4 (82%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.47-7.44 (m, 1H), 7.36-7.32 (m, 1H), 7.03-7.01 (m, 1H), 6.94-6.89 (m, 1H), 6.39 (s, 1H), 5.41 (s, 1H), 4.97 (s, 1H), 4.64 (s, 2H), 4.22 (q, *J* = 7.13 Hz, 2H), 1.32 (t, *J* = 7.13 Hz, 3H).

¹³**C NMR (100 MHz, CDCl₃):** δ = 157.14, 154.69, 138.39, 136.61, 132.40, 121.20, 115.71, 115.04, 114.55, 68.36, 64.47, 14.25.

IR v (cm⁻¹): 3396, 2923, 1743, 1647, 1382, 1260, 1020, 767.

HRMS (m/z): calculated for $C_{12}H_{15}O_4S$ [M + H]⁺, 255.0686; found, 255.0682.

Ethyl (2-((3-methoxyphenyl)thio)allyl) carbonate (4b)

Yellow oil. Synthesised by GP4 (74%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.23-7.21 (m, 1H), 7.01-6.97 (m, 2H), 6.83-6.81 (m, 1H), 5.60 (s, 1H), 5.39 (s, 1H), 4.65 (s, 2H), 4.20 (q, *J* = 7.12 Hz, 2H), 3.80 (s, 3H), 1.31 (t, *J* = 7.14 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 160.07, 154.67, 138.30, 130.04, 124.15, 118.63, 116.95, 113.92, 68.33, 64.30, 55.33, 14.24.

IR v (cm⁻¹): 3391, 2921, 1617, 1383, 1051, 771.

HRMS (m/z): calculated for $C_{13}H_{17}O_4S$ [M + H]⁺, 269.0842; found, 269.0835.

Ethyl (2-((4-methoxyphenyl)thio)allyl) carbonate (4c)

Pale yellow oil. Synthesised by GP4 (70%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.42-7.39 (m, 2H), 6.89-6.87 (m, 2H), 5.39 (s, 1H), 5.05 (s, 1H), 4.63 (s, 2H), 4.23-4.18 (q, *J* = 7.14 Hz, 2H), 3.81 (s, 3H), 1.31 (t, *J* = 7.13 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 160.15, 154.73, 140.69, 135.67, 121.74, 114.95, 114.42, 68.48, 64.27, 55.35, 14.26.

IR v (cm⁻¹): 3407, 2924, 1743, 1383, 1246, 1021, 753.

HRMS (m/z): calculated for $C_{13}H_{17}O_4S [M + H]^+$, 269.0842; found, 269.0840.

Tert-butyl (2-((2-methoxyphenyl)thio)allyl) carbonate (4d)

Colourless oil. Synthesised by GP4 (72%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.40-7.38 (m, 1H), 7.30-7.25 (m, 1H), 6.95-6.88 (m, 2H), 5.55 (s, 1H), 5.27 (s, 1H), 4.59 (s, 2H), 3.86 (s, 3H), 1.48 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ = 158.41, 153.00, 137.89, 133.35, 129.47, 121.50, 121.30, 120.43, 117.29, 111.18, 82.38, 67.68, 55.90, 27.76.

IR v (cm⁻¹): 3781, 3409, 2921, 2854, 2042, 1739, 1616, 1582, 1465, 1374, 1251, 1155, 1093, 1029, 943, 855, 751, 673, 578, 497.

HRMS (m/z): calculated for $C_{15}H_{21}O_4S$ [M + H]⁺, 297.1155; found, 297.1155.

Tert-butyl (2-(naphthalen-2-ylthio)allyl) carbonate (4e)

Colourless oil. Synthesised by GP4 (74%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.93 (s, 1H), 7.82-7.76 (m, 3H), 7.49-7.47 (m, 3H), 5.59 (s, 1H), 5.35 (s, 1H), 4.62 (s, 2H), 1.47 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ = 152.98, 138.99, 133.76, 132.65, 131.44, 129.62, 129.30, 128.90, 127.74, 127.55, 126.63, 126.52, 117.83, 67.80, 27.74.

IR v (cm⁻¹): 3391, 2923, 2854, 1743, 1646, 1381, 1275, 1160, 745.

HRMS (m/z): calculated for $C_{18}H_{21}O_3S$ [M + H]⁺, 317.1206; found, 317.1213.

Ethyl (3-(phenylthio)but-3-en-2-yl) carbonate (4f)

Pale yellow oil. Synthesised by GP4 (88%).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.47-7.45 (m, 2H), 7.36-7.27 (m, 3H), 5.52 (s, 1H), 5.22 (q, J = 6.56 Hz, 1H), 5.07 (s, 1H), 4.18 (q, J = 7.11 Hz, 2H), 1.51 (d, J = 6.57 Hz, 3H), 1.30 (t, J = 7.14 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 154.19, 145.26, 132.97, 132.22, 129.25, 128.01, 114.77, 75.60, 64.04, 20.27, 14.25.

IR v (cm⁻¹): 3381, 2923, 1744, 1379, 1257, 1068, 771.

HRMS (m/z): calculated for $C_{13}H_{17}O_3S [M + H]^+$, 253.0893; found, 253.0902.

Ethyl (3-((4-fluorophenyl)thio)but-3-en-2-yl) carbonate (4g)

Yellow oil. Synthesised by GP4 (88%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.47-7.43 (m, 2H), 7.06-7.02 (m, 2H), 5.46 (s, 1H), 5.20 (q, J = 6.55 Hz, 1H), 4.96 (s, 1H), 4.18 (q, J = 7.19 Hz, 2H), 1.50 (d, J = 6.59 Hz, 3H), 1.30 (t, J = 7.18 Hz, 3H).

¹³**C NMR (100 MHz, CDCl₃):** $\delta = 164.11$ (d, $J_{C-F} = 248.56$ Hz), 161.64 (d, $J_{C-F} = 248.56$ Hz), 154.17, 145.88, 135.65 (d, $J_{C-F} = 8.38$ Hz), 135.57 (d, $J_{C-F} = 8.38$ Hz), 127.03 (d, $J_{C-F} = 3.49$ Hz), 126.99 (d, $J_{C-F} = 3.49$ Hz), 116.58 (d, $J_{C-F} = 22.11$ Hz), 116.36 (d, $J_{C-F} = 22.11$ Hz), 113.67, 75.46, 64.06, 20.24, 14.23.

¹⁹F NMR (376 MHz, CDCl₃): -112.85 (s, 1F).

IR v (cm⁻¹): 3383, 2984, 1745, 1590, 1488, 1377, 1258, 1069, 831.

HRMS (m/z): calculated for $C_{13}H_{16}FO_3S [M + H]^+$, 271.0799; found, 271.0804.

3-((2-chlorophenyl)thio)but-3-en-2-yl ethyl carbonate (4h)

Yellow oil. Synthesised by GP4 (90%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.52-7.50 (m, 1H), 7.42-7.40 (m, 1H), 7.25-7.20 (m, 2H), 5.65 (s, 1H), 5.22 (q, *J* = 6.56 Hz, 1H), 5.15 (s, 1H), 4.19 (q, *J* = 7.13 Hz, 2H), 1.53 (d, *J* = 6.58 Hz, 3H), 1.30 (t, *J* = 7.15 Hz, 3H).

¹³**C NMR (100 MHz, CDCl₃):** δ = 154.18, 142.88, 136.06, 133.59, 132.05, 130.15, 128.91, 127.34, 117.43, 75.50, 64.09, 20.21, 14.26.

HRMS (m/z): calculated for $C_{13}H_{16}ClO_3S [M + H]^+$, 287.0503; found, 287.0519.

3-((2-bromophenyl)thio)but-3-en-2-yl ethyl carbonate (4i)

Colourless oil. Synthesised by GP4 (92%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.60-7.58 (m, 1H), 7.52-7.50 (m, 1H), 7.30-7.26 (m, 1H), 7.14-7.10 (m, 1H), 5.68 (s, 1H), 5.22 (q, *J* = 6.53 Hz, 1H), 5.18 (s, 1H), 4.19 (q, *J* = 7.12 Hz, 2H), 1.53 (d, *J* = 6.52 Hz, 3H), 1.31 (t, *J* = 7.18 Hz, 3H).

¹³**C NMR (100 MHz, CDCl₃):** δ = 154.19, 143.02, 134.28, 133.46, 133.25, 128.88, 127.99, 126.25, 117.90, 75.46, 64.11, 20.25, 14.27.

IR v (cm⁻¹): 3391, 2926, 1744, 1615, 1446, 1378, 1258, 1023, 753.

HRMS (m/z): calculated for $C_{13}H_{16}BrO_3S [M + H]^+$, 330.9998; found, 330.9987.

3-((4-bromophenyl)thio)but-3-en-2-yl ethyl carbonate (4j)

Pale yellow oil. Synthesised by GP4 (90%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.47-7.43 (m, 2H), 7.33-7.29 (m, 2H), 5.57 (s, 1H), 5.19 (q, J = 6.57 Hz, 1H), 5.15 (s, 1H), 4.17 (q, J = 7.15 Hz, 2H), 1.49 (d, J = 6.56 Hz, 3H), 1.30 (t, J = 7.16 Hz, 3H).

¹³**C NMR (100 MHz, CDCl₃):** δ = 154.15, 144.48, 134.05, 132.37, 131.71, 122.16, 116.35, 75.47, 64.11, 20.21, 14.25.

IR v (cm⁻¹): 3388, 1743, 1382, 1259, 1066, 765.

HRMS (m/z): calculated for $C_{13}H_{16}BrO_3S [M + H]^+$, 330.9998; found, 330.9995.

Ethyl (3-(p-tolylthio)but-3-en-2-yl) carbonate (4k)

Colourless oil. Synthesised by GP4 (60%).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.35$ (d, J = 8.09 Hz, 2H), 7.15 (d, J = 7.94 Hz, 2H), 5.43 (s, 1H), 5.21 (q, J = 6.58 Hz, 1H), 4.95 (s, 1H), 4.18 (q, J = 7.08 Hz, 2H), 2.34 (s, 3H), 1.51 (d, J = 6.54 Hz, 3H), 1.30 (t, J = 7.13 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 146.06, 138.38, 133.62, 130.08, 128.18, 113.04, 75.58, 64.02, 21.18, 20.31, 14.26.$

IR v (cm⁻¹): 3386, 2922, 1633, 1383, 1060, 770.

HRMS (m/z): calculated for $C_{14}H_{19}O_3S$ [M + H]⁺, 267.1049; found, 267.1061.

Ethyl (3-(m-tolylthio)but-3-en-2-yl) carbonate (4l)

Colourless oil. Synthesised by GP4 (65%).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.28-7.20 (m, 3H), 7.11-7.09 (m, 1H), 5.50 (s, 1H), 5.22 (q, J = 6.54 Hz, 1H), 5.05 (s, 1H), 4.18 (q, J = 7.18 Hz, 2H), 2.33 (s, 3H), 1.51 (d, J = 6.56 Hz, 3H), 1.30 (t, J = 7.10 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 154.19, 145.41, 139.11, 133.58, 131.79, 130.02, 129.06, 128.87, 114.40, 75.61, 64.02, 21.21, 20.31, 14.25.

IR v (cm⁻¹): 3396, 1744, 1383, 1258, 1058, 771.

HRMS (m/z): calculated for $C_{14}H_{19}O_3S$ [M + H]⁺, 267.1049; found, 267.1055.

Tert-butyl (3-((2-methoxyphenyl)thio)but-3-en-2-yl) carbonate (4m)

Pale yellow oil. Synthesised by GP4 (78%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.45-7.43 (m, 1H), 7.31-7.27 (m, 1H), 6.95-6.88 (m, 2H), 5.49 (s, 1H), 5.17 (q, *J* = 6.55 Hz, 1H), 4.99 (s, 1H), 3.85 (s, 3H), 1.50 (d, *J* = 6.55 Hz, 3H), 1.48 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ = 158.60, 152.56, 144.38, 134.35, 129.62, 121.23, 120.58, 114.06, 111.25, 82.13, 74.76, 55.89, 27.81, 20.34.

IR v (cm⁻¹): 3380, 2927, 1739, 1580, 1471, 1375, 1266, 1161, 1085, 761.

HRMS (m/z): calculated for $C_{16}H_{23}O_4S$ [M + H]⁺, 311.1312; found, 311.1327.

Tert-butyl (3-((3-methoxyphenyl)thio)but-3-en-2-yl) carbonate (4n)

Pale yellow oil. Synthesised by GP4 (80%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.25-7.18 (m, 1H), 7.08-7.00 (m, 2H), 6.83-6.74 (m, 1H), 5.54 (s, 1H), 5.17 (q, *J* = 6.58 Hz, 1H), 5.14 (s, 1H), 3.80 (s, 3H), 1.48 (d, *J* = 6.54 Hz, 3H), 1.48 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ =160.03, 152.53, 145.09, 133.71, 129.96, 124.65, 117.29, 115.27, 114.12, 82.25, 74.65, 55.31, 27.80, 20.29.

IR v (cm⁻¹): 3380, 2928, 1740, 1585, 1380, 1261, 1160, 1087, 773.

HRMS (m/z): calculated for $C_{16}H_{23}O_4S$ [M + H]⁺, 311.1312; found, 311.1316.

Tert-butyl (3-((2-hydroxyphenyl)thio)but-3-en-2-yl) carbonate (40)

Yellow oil. Synthesised by GP4 (84%).

¹**H NMR** (**400 MHz, CDCl₃**): $\delta = 7.46-7.44$ (m, 1H), 7.36-7.32 (m, 1H), 7.03-7.01 (m, 1H), 6.94-6.89 (m, 1H), 6.44 (s, 1H), 5.31 (m, 1H), 5.18 (q, J = 6.57 Hz, 1H), 4.61 (s, 1H), 1.52-1.50 (m, 12H).

¹³C NMR (100 MHz, CDCl₃): δ = 157.16, 152.87, 144.83, 136.78, 132.28, 121.07, 115.82, 114.70, 110.29, 82.78, 74.85, 27.79, 20.37.

IR v (cm⁻¹): 3413, 2923, 1737, 1382, 1264, 1160, 1090, 767.

HRMS (m/z): calculated for $C_{15}H_{21}O_4S [M + H]^+$, 297.1155; found, 297.1159.

Ethyl (3-(o-tolylthio)but-3-en-2-yl) carbonate (4p)

Yellow oil. Synthesised by GP4 (66%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.49 (d, *J* = 7.44 Hz.,1H), 7.26-7.25 (m, 2H), 7.20-7.16 (m, 1H), 5.36 (s, 1H), 5.26-5.22 (q, *J* = 6.55 Hz, 1H), 4.65 (s, 1H), 4.22-4.17 (q, *J* = 7.12 Hz, 2H), 2.40 (s, 3H), 1.54 (d, *J* = 6.55 Hz, 3H), 1.31 (t, *J* = 7.12 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 154.23, 145.15, 141.74, 135.29, 130.76, 130.32, 129.03, 126.78, 111.13, 75.74, 64.05, 20.36, 14.27.

IR v (cm⁻¹): 3417, 2924, 1744, 1630, 1379, 1256, 1054, 766.

HRMS (m/z): calculated for $C_{14}H_{19}O_3S [M + H]^+$, 267.1049; found, 267.1042.

3-((4-chlorophenyl)thio)but-3-en-2-yl ethyl carbonate (4q)

Yellow oil. Synthesised by GP4 (88%).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.39-7.37 (m, 2H), 7.31-7.29 (m, 2H), 5.56 (s, 1H), 5.22-5.17 (q, *J* = 6.53 Hz, 1H), 5.12 (s, 1H), 4.20-4.14 (m, 2H), 1.50 (d, *J* = 6.53 Hz, 3H), 1.30 (t, *J* = 7.14 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 154.16, 144.74, 134.17, 133.97, 130.92, 129.44, 115.90, 75.48, 64.11, 20.21, 14.23.

IR v (cm⁻¹): 3425, 2926, 1744, 1634, 1381, 1257, 1076, 821.

HRMS (m/z): calculated for $C_{13}H_{16}ClO_3S [M + H]^+$, 287.0503; found, 287.0508.

3-(naphthalen-2-ylthio)but-3-en-2-yl phenyl carbonate (4r)

Colourless oil. Synthesised by GP4 (70%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.99 (s, 1H), 7.81-7.77 (m, 2H), 7.52-7.47 (m, 2H), 7.39-7.34 (m, 3H), 7.28-7.18 (m, 3H), 7.14-7.12 (m, 3H), 5.63 (s, 1H), 5.41-5.36 (m, 1H), 5.18 (s, 1H), 1.64-1.61 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 152.72, 151.05, 144.76, 133.80, 132.76, 132.19, 129.81, 129.50, 129.45, 129.01, 127.77, 127.62, 126.65, 126.15, 126.01, 121.03, 120.99, 115.69, 64.85, 20.24.

IR v (cm⁻¹): 3401, 2924, 1759, 1383, 1250, 1078, 759.

HRMS (m/z): calculated for $C_{21}H_{19}O_3S [M + H]^+$, 351.1049; found, 351.1052.

3-((4-methoxyphenyl)thio)but-3-en-2-yl phenyl carbonate (4s)

Colourless oil. Synthesised by GP4 (73%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.40-7.36 (m, 5H), 7.28-7.18 (m, 4H), 6.83 (s, 1H), 6.82 (s, 1H), 5.40 (q, *J* = 6.72 Hz, 1H), 3.79 (s, 3H), 1.63 (d, *J* = 6.72 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 159.94, 152.71, 151.04, 132.68, 129.50, 128.46, 126.14, 120.98, 114.63, 64.84, 55.37, 21.23.

IR v (cm⁻¹): 3403, 2922, 1384, 1218, 1062, 770.

HRMS (m/z): calculated for $C_{18}H_{19}O_4S [M + H]^+$, 331.0999; found, 331.1004.

Tert-butyl (2-((4-fluorophenyl)thio)-1-phenylallyl) carbonate (4t)

Colourless oil. Synthesised by GP4 (70%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.56-7.54 (m, 1H), 7.41-7.32 (m, 7H), 7.03-6.99 (m, 1H), 6.02 (s, 1H), 5.56 (s, 1H), 5.10 (s, 1H), 1.47 (s, 9H).

¹³**C NMR (100 MHz, CDCl₃):** $\delta = 164.09$ (d, $J_{C-F} = 248.51$ Hz), 161.62 (d, $J_{C-F} = 248.51$ Hz), 152.42, 144.82, 135.68 (d, $J_{C-F} = 8.38$ Hz), 135.60 (d, $J_{C-F} = 8.38$ Hz), 129.15, 128.69, 128.43, 127.70, 127.42, 127.24 (d, $J_{C-F} = 2.68$ Hz), 127.22 (d, $J_{C-F} = 2.68$ Hz), 116.51 (d, $J_{C-F} = 21.94$ Hz), 116.29 (d, $J_{C-F} = 21.94$ Hz), 114.91, 82.69, 79.27, 27.76.

¹⁹F NMR (376 MHz, CDCl₃): -112.92 (s, 1F).

IR v (cm⁻¹): 3406, 2923, 1741, 1382, 1258, 1157, 1079, 755.

HRMS (m/z): calculated for $C_{20}H_{22}FO_3S [M + H]^+$, 361.1268; found, 361.1274.

Tert-butyl (1-phenyl-2-(o-tolylthio)allyl) carbonate (4u)

Pale yellow oil. Synthesised by GP4 (72%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.44-7.30 (m, 7H), 7.26-7.13 (m, 3H), 6.05 (s, 1H), 5.45 (s, 1H), 4.79 (s, 1H), 2.26 (s, 3H), 1.47 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃): δ = 152.48, 144.26, 141.87, 137.56, 135.38, 130.71, 130.51, 129.00, 128.48, 128.36, 127.35, 126.71, 112.28, 82.59, 79.44, 27.80, 20.31.

IR v (cm⁻¹): 3420, 1742, 1626, 1458, 1376, 1263, 1159, 1083, 875, 760.

HRMS (m/z): calculated for $C_{21}H_{25}O_3S$ [M + H]⁺, 357.1519; found, 357.1522.

Tert-butyl (2-((4-chlorophenyl)thio)-1-phenylallyl) carbonate (4v)

Pale yellow oil. Synthesised by GP4 (68%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.37-7.31 (m, 6H), 7.30-7.28 (m, 3H), 6.01 (s, 1H), 5.65 (s, 1H), 5.24 (s, 1H), 1.46 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ =152.40, 143.76, 137.21, 134.02, 131.12, 129.39, 128.62, 128.44, 127.70, 127.44, 116.91, 79.29, 75.97, 27.77.

IR v (cm⁻¹): 3411, 1741, 1383, 1259, 1158, 1085.

HRMS (m/z): calculated for $C_{20}H_{22}ClO_3S$ [M + H]⁺, 377.0973; found, 377.0978.

Tert-butyl (2-((3-((ethoxycarbonyl)oxy)but-1-en-2-yl)thio)phenyl)carbamate (4w)

Colourless oil. Synthesised by GP4 (55%).

¹**H NMR** (**400 MHz**, **CDCl**₃): $\delta = 8.17$ (d, J = 8.04 Hz, 1H), 7.54-7.48 (m, 1H), 7.44 (s, 1H), 7.41-7.37 (m, 1H), 7.04-7.00 (m, 1H), 5.31 (s, 1H), 5.28-5.23 (q, J = 6.49 Hz, 1H), 4.58 (s, 1H), 4.24-4.18 (m, 2H), 1.57-1.55 (m, 3H), 1.51 (s, 9H), 1.32 (t, J = 7.14 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ =154.19, 144.46, 140.65, 136.83, 131.15, 123.13, 119.31, 117.04, 110.53, 80.68, 75.52, 64.17, 28.28, 20.40, 14.26.

IR v (cm⁻¹): 3780, 3397, 2920, 1736, 1638, 1508, 1453, 1382, 1254, 1073, 948, 755, 668.

HRMS (m/z): calculated for $C_{18}H_{26}NO_5S$ [M + H]⁺, 368.1526; found, 368.1528.

Tert-butyl (2-((4-fluorophenyl)thio)-3-phenylallyl) carbonate (4x)

Pale yellow oil. Synthesised by GP4 (72%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.60 (d, *J* = 7.73 Hz, 2H), 7.39-7.34 (m, 4H), 7.30-7.27 (m, 1H), 7.02 (s, 1H), 7.00-6.96 (m, 2H), 4.59 (s, 2H), 1.47 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 163.45$ (d, $J_{C-F} = 248.17$ Hz), 161.48 (d, $J_{C-F} = 248.17$ Hz), 152.91, 135.34, 134.32, 133.72 (d, $J_{C-F} = 8.12$ Hz), 133.66 (d, $J_{C-F} = 8.12$ Hz), 129.50, 129.20, 128.16, 128.12, 127.78 (d, $J_{C-F} = 3.46$ Hz), 127.75 (d, $J_{C-F} = 3.46$ Hz), 116.36 (d, $J_{C-F} = 22.21$ Hz), 116.18 (d, $J_{C-F} = 22.21$ Hz), 82.49, 69.16, 27.76.

¹⁹F NMR (376 MHz, CDCl₃): -113.84 (s, 1F).

IR v (cm⁻¹): 3778, 3399, 3300, 2921, 2853, 1757, 1590, 1246, 1171, 1090, 1028, 918, 825, 756, 682, 526.

HRMS (m/z): calculated for $C_{20}H_{22}FO_3S [M + H]^+$, 361.1268; found, 361.1276.

Allyl (2-((2-hydroxyphenyl)thio)allyl) carbonate (4y)

Colourless oil. Synthesised by GP4 (65%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.47-7.32 (m, 2H), 7.04-6.92 (m, 2H), 6.38 (s, 1H), 5.99-5.89 (m, 1H), 5.41-5.27 (m, 3H), 4.98 (s, 1H), 4.66 (s, 4H).

¹³C NMR (100 MHz, CDCl₃): δ =157.14, 154.52, 138.27, 136.62, 132.43, 131.35, 121.22, 119.17, 115.71, 115.17, 68.83, 68.55.

IR v (cm⁻¹): 3777, 3417, 2923, 1744, 1627, 1458, 1384, 1254, 1101, 767.

HRMS (m/z): calculated for $C_{13}H_{15}O_4S$ [M + H]⁺, 267.0686; found, 267.0681.

Isobutyl (2-(naphthalen-2-ylthio)allyl) carbonate (4z)

Colourless oil. Synthesised by GP4 (63%).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.94-7.93$ (m, 1H), 7.82-7.76 (m, 3H), 7.50-7.47 (m, 3H), 5.61 (s, 1H), 5.37 (s, 1H), 4.69 (s, 2H), 3.91-3.90 (d, J = 6.72 Hz, 2H), 1.99-1.92 (m, 1H), 0.94-0.93 (d, J = 6.73 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 154.89, 138.79, 133.77, 132.68, 131.47, 129.52, 129.27, 128.94, 127.76, 127.55, 126.66, 126.56, 118.17, 74.37, 68.53, 27.77, 18.86.

IR v (cm⁻¹): 3835, 3737, 3388, 2923, 2856, 2350, 1747, 1617, 1456, 1384, 1250, 1153, 1064, 816, 747, 476.

HRMS (m/z): calculated for $C_{18}H_{21}O_3S$ [M + H]⁺, 317.1206; found, 317.1204.

Isobutyl (2-((4-methoxyphenyl)thio)allyl) carbonate (4z')

Colourless oil. Synthesised by GP4 (75%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.41-7.38 (m, 2H), 6.89-6.81 (m, 2H), 5.39 (s, 1H), 5.06(s, 1H), 4.63 (s, 2H), 3.93 (d, *J* = 6.72 Hz, 2H), 3.80 (s, 3H), 2.03-1.93 (m, 1H), 0.95 (d, *J* = 6.72 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ =160.14, 154.92, 140.72, 135.66, 132.66, 121.75, 114.94, 114.40, 74.33, 68.50, 55.34, 27.78, 18.88.

IR v (cm⁻¹): 3917, 3777, 3413, 2924, 2304, 1744, 1598, 1490, 1459, 1383, 1247, 1101, 1032, 827, 765, 628.

HRMS (m/z): calculated for $C_{15}H_{21}O_4S$ [M + H]⁺, 297.1155; found, 297.1164.

Tert-butyl (2-(phenylthio)allyl) carbonate (4a')

Colourless oil. Synthesised by GP4 (86%).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.45-7.42 (m, 2H), 7.35-7.28 (m, 3H), 5.55 (s, 1H), 5.29 (s, 1H), 4.58 (s, 2H), 1.48 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ = 152.99, 139.07, 132.37, 132.27, 129.26, 127.89, 117.47, 82.49, 67.69, 27.76.

IR v (cm⁻¹): 3782, 2921, 1740, 1382, 1260, 1070.

HRMS (m/z): calculated for $C_{14}H_{19}O_3S [M + H]^+$, 267.1049; found, 267.1057.

Ethyl (3-(phenylselanyl)but-3-en-2-yl) carbonate (7)

Pale yellow oil. The compound (7) was Synthesized by follow the same procedure GP4 (75%).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.58-7.56$ (m, 2H), 7.31-7.29 (m, 3H), 5.84 (s, 1H), 5.27-5.23 (m, 2H), 4.19-4.13 (m, 2H), 1.49 (d, J = 6.54 Hz, 3H), 1.29 (t, J = 7.14 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ =154.15, 142.35, 134.59, 132.46, 129.35, 128.20, 128.04, 118.31, 115.66, 64.03, 20.52, 14.25.

IR v (cm⁻¹): 3781, 3397, 2921, 2854, 1742, 1603, 1449, 1381, 1256, 1154, 1063, 1026, 883, 831, 739, 689.

HRMS (m/z): calculated for $C_{13}H_{17}O_3Se [M + H]^+$, 301.0337; found, 301.0335.

Ethyl (2-((2-bromophenyl)thio)allyl) carbonate (4i')

Colourless oil. Synthesised by GP4.

¹**H NMR (400 MHz, CDCl₃):** δ = 7.60-7.57 (m, 1H), 7.44-7.42 (m, 1H), 7.30-7.26 (m, 1H), 7.14-7.09 (m, 1H), 5.76 (s, 1H), 5.47 (s, 1H), 4.66 (s, 1H), 4.21 (q, *J* = 7.16 Hz, 2H), 1.32 (t, *J* = 7.14 Hz, 3H).

Table 1. Optimization of the reaction conditions^a

^{*a*}**Reaction Conditions:** propargyl carbonate (1.1 mmol), thiophenol (2.0 mmol), catalyst (2 mol%), ligand (5 mol%), 0.2 M, 12 h. ^{*b*}Determined by ¹H NMR, ^{*c*}propargyl carbonate (1.1 mmol), thiophenol (1.0 mmol), catalyst (2 mol%), ligand (5 mol%), 0.2 M, 80°C, 12 h. ^{*d*}4a' formed.

Unreactive thiols

Unreactive propargyl carbonates

Gram scale synthesis

Confirmation of structure 4a through 1-D & 2-D NMR spectrum

Fig 1: comparison of ¹H NMR between SM (2-mercapto phenol) and product (4a).

mono(arylthiol) alkene (**4a**) having free –OH group was observed in a higher yield by using 2mercapto phenol as a nucleophile. The structure **4a** was identified by 1D and 2D NMR spectrum. We have performed ¹H NMR of 2-mercapto phenol (blue colour spectrum) and our compound **4a** (red colour spectrum). (**Fig 1**). For 2-mercapto phenol, the phenolic -OH proton comes around δ value 6.26 (s, 1H) and -SH proton around δ 3.02 (s, 1H). In our compound **4a**, there are no peak around δ vale 3.00-4.00, that proves -SH proton is not present in this compound. In 2-mercapto phenol, the phenolic -OH proton is coming around δ value 6.26 and after formation of mono(arylthiol) alkene (4a) that proton is coming in the same region (δ value 6.39). In compound 4a, δ value 6.39 in proton

Fig 2: 2D HSQC spectrum of product (4a).

NMR corresponds no carbon which show in HSQC spectrum (**Fig 2**), that proves this is phenolic -OH proton. In our novel methodology, mono(arylthiol) alkenes were formed via newly C-S bond formation through single attack by soft thio nucleophile without any decarboxylation. The phenolic -OH does not react as a nucleophile in our case, that may be more electronegativity of O than S. Another point is that why phenolic -OH group does not react as a second nucleophile by using 2-mercapto phenol as substrate, whereas external thiol attack as a second nucleophile by using 2 equiv. of thiophenol, and intramolecular -SH group attack as a second nucleophile when 2-mercapto thiophenol is used instead of 2-mercapto phenol. This may be -SH group of thiophenol is more reactive as compare to aromatic -OH group.

Confirmation of structure 4g for mono(arylthiol) alkene product through 1-D & 2-D NMR spectrum

Fig 3: Protons and carbon numbering of compound (4g).

The structure **4g** for mono(arylthiol) alkene product was identified and all protons and carbons are assigned by using 1D (1H and 13C) and 2D NMR (COSY, NOESY, HSQC, HMBC) spectrum. In aromatic region two **g** protons are most downfilded, which comes around 7.47-7.43 (m, 2H). After that, two remaining aromatic protons (**h**) are appeared at 7.06-7.02 (m, 2H). Two olefinic protons are identified by NOESY and HSQC. In NOESY spectrum has some weak correlation between δ value 5.46 and δ value 5.20 and strong correlation between δ value 5.46 and δ value 4.96. In HSQC spectrum shows δ value 5.46 and 4.96 corresponds same carbon. That proves 5.46 (s, 1H) is proton **a**, 5.20 (q, *J* = 6.55 Hz, 1H) is proton **d** and 4.96 (s, 1H) is proton **b**. In 1H spectrum same J values and coupling nature shows that 1.50 is coming doublet for 3H **c** protons, 4.18 (q, *J* = 7.19 Hz, 2H) for **e** protons and 1.30 (t, *J* = 7.18 Hz, 3H) for **f** protons. All carbons of compound 4g are assigned by DEPT, HSQC and HMBC spectrum.

¹**H NMR (400 MHz, CDCl₃):** $\delta = 7.47-7.43$ (m, 2H, g), 7.06-7.02 (m, 2H, h), 5.46 (s, 1H, a), 5.20 (q, J = 6.55 Hz, 1H, d), 4.96 (s, 1H, b), 4.18 (q, J = 7.19 Hz, 2H, e), 1.50 (d, J = 6.59 Hz, 3H, c), 1.30 (t, J = 7.18 Hz, 3H, f).

¹³**C NMR (100 MHz, CDCl₃):** $\delta = 164.11$ (d, $J_{C-F} = 248.56$ Hz, **C11**), 161.64 (d, $J_{C-F} = 248.56$ Hz), 154.17 (**C5**), 145.88 (**C2**), 135.65 (d, $J_{C-F} = 8.38$ Hz, **C9**), 135.57 (d, $J_{C-F} = 8.38$ Hz), 127.03 (d, $J_{C-F} = 3.49$ Hz, **C8**), 126.99 (d, $J_{C-F} = 3.49$ Hz), 116.58 (d, $J_{C-F} = 22.11$ Hz, **C10**), 116.36 (d, $J_{C-F} = 22.11$ Hz,), 113.67 (**C1**), 75.46 (**C3**), 64.06 (**C6**), 20.24 (**C4**), 14.23 (**C7**).

Fig 4: 2D HSQC spectrum of product (4g).

Fig 5: 2D HMBC spectrum of product (4g).

Fig 6: Magnified 2D HMBC Spectrum of 4g.

Fig 7: Magnified 2D NOESY Spectrum of 4g.

Confirmation of structure 3a for bis(arylthiol) alkene product with literature-known compound⁷ through 1-D NMR spectrum

Fig 8: Protons numbering of compound (3a).

Our reported spectral data as follow

¹**H NMR (400 MHz, CDCl₃):** δ = 7.42-7.41 (m, 2H, **d,e,f,g,h,i**), 7.34-7.27 (m, 6H, **d,e,f,g,h,i**), 7.24 (s, 1H, **d,e,f,g,h,i**), 7.22-7.17 (m, 1H, **d,e,f,g,h,i**), 5.37 (s, 1H, **a,b**), 5.07 (s, 1H, **a,b**), 3.65 (s, 2H, **c**).

¹³C NMR (100 MHz, CDCl₃): δ = 141.13, 133.09, 132.69, 130.76, 130.35, 129.24, 128.84, 128.02, 126.61, 116.94, 40.21.

The same compound was reported by Cohen group⁷ (Org. Lett., 2006, 8 (10), 2087-2090). The spectral data of this compound which reported in their manuscript are shown below.

¹**H NMR (300 MHz, CDCl₃):** δ = 3.66 (s, 2H), 5.08 (s, 1H), 5.38 (s, 1H), 7.17-7.44 (m, 10H).

¹³C NMR (**75.5** MHz, CDCl₃): δ = 141.1, 135.7, 133.1, 132.7, 130.3, 129.2, 128.8, 128.0, 126.6, 116.9, 40.2.

Confirmation of structure 8a through 1-D & 2-D NMR spectrum

The structure **8a** (1,3-dithiolated product) was identified and all protons and carbons are assigned by using 1D (1H and 13C) and 2D NMR (COSY, NOESY, HSQC, HMBC) spectrum. All assigned protons and carbons are mentioned below.

Fig 9: Protons and carbon numbering of compound (8a).

¹H NMR (400 MHz, CDCl₃): $\delta = 7.38-7.35$ (m, 2H, d,e,f,g), 7.25-7.21 (m, 2H, d,e,f,g), 7.01-6.97 (m, 4H, d,e,f,g), 5.56 (qt, J = 8.00 Hz, J = 1.24 Hz, 1H, b), 3.49 (d, J = 7.98 Hz, 2H, c), 1.64 (s, 3H, a).

¹³C NMR (100 MHz, CDCl₃): $\delta = 163.79$ (d, $J_{C-F} = 248.20$ Hz, C8, C12), 163.64 (d, $J_{C-F} = 247.87$ Hz, C8, C12), 161.30 (d, $J_{C-F} = 248.20$ Hz), 161.18 (d, $J_{C-F} = 247.87$ Hz), 134.79 (C2), 134.69 (d, $J_{C-F} = 5.03$ Hz, C6, C7, C10, C11), 134.64 (d, $J_{C-F} = 5.03$ Hz), 134.61 (d, $J_{C-F} = 5.14$ Hz, C6, C7, C10, C11), 134.56 (d, $J_{C-F} = 5.14$ Hz), 130.03 (d, $J_{C-F} = 4.12$ Hz, C5, C9), 129.99 (d, $J_{C-F} = 4.12$ Hz), 128.26 (d, $J_{C-F} = 2.64$ Hz, C5, C9), 128.24 (d, $J_{C-F} = 2.64$ Hz), 125.20 (C3), 116.31 (d, $J_{C-F} = 21.87$ Hz, C6, C7, C10, C11), 115.83 (d, $J_{C-F} = 21.70$ Hz), 34.31 (C4), 17.38 (C1).

"Reaction Conditions: propargyl carbonate (1.1 mmol), thiophenol (2.0 mmol), catalyst (2 mol%), ligand (5 mol%), 0.2 M, 12 h.

Without any substitution on terminal alkyne of propargyl carbonate, there was no possibility formation of regioisomer **8**. When the methyl group was present in the terminal alkyne of

propargylic carbonate (1c), two types of regioisomers were found and the yield of products (3g & 8a) were comparatively poor.

Fig 10: Plausible reaction mechanism of formation of regioisomer 3 and 8.

By using normal thiophenol as nucleophile with the reaction of 1c, the geminal disulfide 3g was formed. Surprisingly electron withdrawing group containing thiophenol reacted with 1c to produce another regioisomer 8a as a major product. The probable reaction mechanism are shown in Fig. 10.
References

- 1. C. Q. O'Broin, P. J. Guiry, Org. Lett., 2020, 22, 879-883.
- 2. J. Stambask, A. V. Malkov, P. Kocovsk, Collect. Czech. Chem. Commun., 2008, 73, 705.
- 3. H. Yamamoto, M. Nishiyama, H. Imagawa, M. Nishizawa, Tetrahedron Lett., 2006, 47, 8369.
- 4. M. Yoshida, T. Okada, K. Shishido, Tetrahedron., 2007, 63, 6996-7002.
- 5. V. L. Ravalec, C. Fischmeister, C. Bruneau, Advanced Synthesis & Catalysis, 2009, 351, 1115-1122.
- 6. A. K. Buzas, F. M. Istrate, F. Gagosz, *Tetrahedron.*, 2009, **65**, 1889-1901.
- 7. W. Chen, X. Zhao, L. Lu, T. Cohen, Org. Lett., 2006, 8 (10), 2087-2090.
- 8. C. Q. O'Broin, P. J. Guiry, J. Org. Chem., 2020, 85, 10321-10333.

Palladium-catalyzed Regioselective Synthesis of Mono and Bis(arylthiol) Alkene from Propargyl Carbonate and Thiophenol.

Indranil Chatterjee[†] and Gautam Panda^{*}[†][‡]

*Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension, Sitapur Road, Lucknow 226031, UP, India
*Academy of Scientific and Innovative Research, Ghaziabad- 201002, India.
*Corresponding Author: gautam.panda@gmail.com, gautam_panda@cdri.res.in Phone: 915222772450, ext 4659, Fax: 915222771941

Fig.S2 ¹³C NMR Spectrum of 1a

— 152.73			89. INDR-45 13C,CDCl3
			Current Data Parameters NAME 13C EXPNO 140 PROCNO 1
			F2 - Acquisition Parameters Date_ 20201210 Time 6.46 INSTRUM spect PROBHD 5 mm PATXI 1H/ PULPROG zgpg30 TD 65536 SOLVENT CDCI3 NS 512 DS 4 SWH 29761.904 Hz FIDRES 0.454131 Hz AQ 1.1010048 sec RG 56.22 DW 16.800 usec DE 6.50 usec TE 303.0 K D1 2.0000000 sec D11 0.0300000 sec D11 0.0300000 sec TD0 1
			====== CHANNEL f1 ==== SF01 125.9077573 MHz NUC1 13C P1 9.23 usec PLW1 244.00000000 W
	ł	ł	====== CHANNEL f2 ==== SFO2 500.6783527 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 13.60000038 W PLW12 0.08840500 W PLW13 0.05657900 W
	Ť		
		·····	
200 190 180 170 160 150 140 130	120 110 100 90 80 70	60 50 40 3	0 20 10 0 ppm

Fig.S4 ¹³C NMR Spectrum of 1b

Fig.S6 ¹³C NMR Spectrum of 1c

Fig.S10¹³C NMR Spectrum of 1e

Fig.S12 ¹³C NMR Spectrum of 1f

152.47	136.25 129.15 128.69	127.70	83.16 80.04 76.00	68.21	27.76	INDR 96 13C,CDCl3
		/				Current Data Parameters NAME 13C EXPNO 270 PROCNO 1
						F2 - Acquisition Parameters Date20210618 Time 5.53 INSTRUM spect PROBHD_5 5mm PABBO BB. PULPROG zgpg30 TD 65536 SOLVENT CDCI3 NS 512 DS 0 SWH 24038.461 Hz FIDRES 0.366798 Hz AQ 1.3631488 sec RG 201.48 DW 20.800 usec DE 6.50 usec TE 300.0 K D1 2.00000000 sec D11 0.03000000 sec D11 0.13000000 sec D10 1
I						====== CHANNEL f1 === SFO1 100.6304993 MHz NUC1 13C P1 9.90 usec PLW1 53.000000 W ====== CHANNEL f2 === SFO2 400.1621006 MHz NUC2 1H CPDPRGI2 waitz16 PCPD2 90.00 usec PLW2 13.0000000 W PLW12 0.27963999 W PLW13 0.22651000 W

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50

Fig.S14¹³C NMR Spectrum of 1g

40 30 20 10

0 ppm

Fig.S16 ¹³C NMR Spectrum of 1h

Fig.S18 ¹³C NMR Spectrum of 1i

	128.39	~ 82.83	82.63 77.32 76.81 75.70		27.71	INDR-80 13C,CDCl3
						Current Data Parameters NAME 13C EXPNO 150 PROCNO 1
Lo Lo K						F2 - Acquisition Parameters Date_ 20210324 Time 10.58 INSTRUM spect PROBHD 5 mm PATXI 11- PULPROG zgpg30 TD 65536 SOLVENT CDCl3 NS 512 DS 0 SWH 29761.904 Hz FIDRES 0.454131 Hz AQ 1.1010048 sec RG 56.22 DW 16.800 usec DE 6.50 usec TE 299.2 K D1 0.03000000 sec D11 0.03000000 sec D11 0.10300000 sec D11 0.1
	1					======= CHANNEL f1 =: SFO1 125.9077573 Mł NUC1 13C P1 9.23 usec PLW1 244.00000000 W
				ĺ		====== CHANNEL f2 =: SFO2 500.6783527 Mł NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 13.6000038 W PLW12 0.08840500 W PLW13 0.05657900 W
				1	L.T. T	
	any a second float a		6.12. Innered Mary and a start of a	م يەرىكى ب ەر بەر مەرىپى بەر بەر مەرىپى بەر م	haladahan na danaya	
190 180 170 160 150 1 ⁴	40 130	120 110 100 90	80 70 60 50 4	0 30	20 10	0 0 ppm

Fig.S20 ¹³C NMR Spectrum of 1j

				77.34 77.08 76.99 75.65 68.83		INDR-136 13C, CDCl3
		1	1	W/ I	l	Current Data Parameters NAME 13C EXPNO 20 PROCNO 1
						F2 - Acquisition Parameters Date20210915 Time 12.53 INSTRUM spect PROBHD_5 mm PATXI 1H, PULPROG20930 2gpg30 TD 65536 SOLVENT CDCI3 NS 512 DS 4 SWH 29761.904 Hz FIDRES 0.454131 Hz AQ 1.1010048 sec RG 56.22 DW 16.800 usec DE 6.50 usec TE 303.0 K D1 2.00000000 sec D11 0.0300000 sec TD0 1
						====== CHANNEL f1 == SFO1 125.9077573 MH NUC1 13C P1 9.23 usec PLW1 244.0000000 W
		1	l I			====== CHANNEL f2 == SFO2 500.6783527 MH NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 13.60000038 W PLW12 0.08840500 W PLW13 0.05657900 W
5. 1971 1971 1971 1971 1971 1971 1971 197	1					F2 - Processing parameters
190 180 170 160	150 140	130 1	20 110 100 9	0 80 70 60) 50 40 30	20 10 0 ppm

Fig.S22 ¹³C NMR Spectrum of 1k

Fig.S24 ¹³C NMR Spectrum of 1I

Fig.S25 ¹H NMR Spectrum of 3a

Fig.S26¹³C NMR Spectrum of 3a

Fig.S27 DEPT-135 Spectrum of 3a

Fig.S29 ¹³C NMR Spectrum of 3b

Fig.S30¹³C NMR Spectrum of 3b (magnified region between 164.5-160.7) _{S30}

F	-112.59	INDR-28 19F, CDCL3
		Current Data Parameters NAME 19F EXPNO 30 PROCNO 1
S-C-F		F2 - Acquisition Parameter Date_ 20200814 Time 14.13 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgfhigqn.2 TD 131072 SOLVENT CDC13 NS 16 DS 4 SWH 89285.711 Hz FIDRES 0.681196 Hz AQ 0.7340032 se RG 201.48 DW 5.600 us DE 6.50 us DI 1.0000000 se D1 1.00300000 se D11 0.33000000 se D12 0.0002000 se TD0 1
		====== CHANNEL f1 ====== SF01 376.4894122 MH NUC1 19F P1 15.00 us PLW1 21.0000000 W
		CHANNEL f2 SF02 400.1621006 MF NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 us PLW2 13.0000000 W PLW12 0.27963999 W
		F2 - Processing parameters SI 65536 SF 376.5270650 MF WDW EM SSB 0 LB 0.30 Hz
-1 -1 -1 -1 -1 0 -20 -40 -60 -80	-100 -120 -140	-160 -180 -200 ppm

Fig.S31 ¹⁹F NMR Spectrum of 3b

Fig.S33 ¹³C NMR Spectrum of 3c

Fig.S34 ¹H NMR Spectrum of 3d

Fig.S39 ¹³C NMR Spectrum of 3f

Fig.S40 ¹H NMR Spectrum of 3g

Fig.S41 ¹H NMR Spectrum of isomeric mixture of 3g (magnified region between 6.35-5.75)

Fig.S42 ¹³C NMR Spectrum of 3g

42.00

Fig.S43 DEPT-135 Spectrum of 3g

Fig.S44 HSQC Spectrum of 3g

Fig.S46 ¹³C NMR Spectrum of 8a

Fig.S48 DEPT-135 Spectrum of 8a

Fig.S50 NOESY Spectrum of 8a

Fig.S51 HSQC Spectrum of 8a

Fig.S54 ¹³C NMR Spectrum of 4a

Fig.S55 DEPT-135 Spectrum of 4a

Fig.S56 HSQC Spectrum of 4a

Fig.S57 comparison of 1H NMR between SM (2-mercapto phenol) and product (4a).

Fig.S58 ¹H NMR Spectrum of 4b

Fig.S61 ¹³C NMR Spectrum of 4c

Fig.S63 ¹³C NMR Spectrum of 4d

Fig.S65 HSQC Spectrum of 4d

Fig.S69 ¹³C NMR Spectrum of 4f

Fig.S71 ¹³C NMR Spectrum of 4g

Fig.S72 DEPT-135 Spectrum of 4g

- - -	135.5	\sim 116.5	/ 113.6		75.47	• • •	64.07		20.25	 INDR-68 DEPT-13
									I	
	L			 1 12 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -				 	 	
 				 				 	 	 ·····

50

600

Fig.S74 COSY Spectrum of 4g

Fig.S77 HMBC Spectrum of 4g

Fig.S80 DEPT-135 Spectrum of 4h

Fig.S81 ¹H NMR Spectrum of 4i

Fig.S82 ¹³C NMR Spectrum of 4i

Fig.S84 ¹³C NMR Spectrum of 4j

Fig.S88 ¹³C NMR Spectrum of 4I

Fig.S90 ¹³C NMR Spectrum of 4m

Fig.S92 ¹³C NMR Spectrum of 4n

Fig.S94 ¹³C NMR Spectrum of 40

Fig.S95 DEPT-135 Spectrum of 4o

Fig.S98 ¹³C NMR Spectrum of 4p

Fig.S100 ¹³C NMR Spectrum of 4q

Fig.S101 ¹H NMR Spectrum of 4r

Fig.S102 ¹³C NMR Spectrum of 4r

Fig.S104 ¹³C NMR Spectrum of 4s

Fig.S107 ¹³C NMR Spectrum of 4t

Fig.S108 ¹⁹F NMR Spectrum of 4t

S109

Fig.S110 ¹³C NMR Spectrum of 4u

S111

Fig.S113 ¹³C NMR Spectrum of 4v

Fig.S114 ¹H NMR Spectrum of 4w

Fig.S115 ¹³C NMR Spectrum of 4w

Fig.S117 ¹³C NMR Spectrum of 4x

Fig.S121 ¹³C NMR Spectrum of 4y

Fig.S122 ¹H NMR Spectrum of 4z

Fig.S123 ¹³C NMR Spectrum of 4z

							27.7823	18.8856	INDR-141 13C,CDCl3
									Current Data Parameters NAME 13C EXPNO 90 PROCNO 1
									F2 - Acquisition Parameters Date_ 20210923 Time 2.05 INSTRUM spect PROBHD 5 mm PABBO BI PULPROG zgpg30 TD 65536 SOLVENT CDCl3 NS 512 DS 0 SWH 24038.461 Hz FIDRES 0.366798 Hz AQ 1.3631488 sec RG 201.48 DW 20.800 usec DE 6.50 usec TE 300.0 K D1 2.0000000 sec D11 0.03000000 sec TD0 1
		ľ.	1					E	======= CHANNEL f1 == SFO1 100.6304993 MH NUC1 13C P1 9.90 usec PLW1 53.0000000 W
	1.1	ĺ							====== CHANNEL f2 == SFO2 400.1621006 MH NUC2 1H CPDPRG[2 waltz16 PCPD2 90.00 usec PLW2 13.0000000 W PLW12 0.27963999 W PLW13 0.22651000 W
anii yina dan ya sa di wa na cha ni afan ani yina ani yina ani yi			,	a na mangalang ng ma		and the state of t			the second s
200 190 180 170	160 150	140 130	120 110 1		70 60	0 50 40	30	20 10	0 ppm

Fig.S125 ¹³C NMR Spectrum of 4z'

Fig.S126 ¹H NMR Spectrum of 4a'

Fig.S127 ¹³C NMR Spectrum of 4a'

Fig.S130 ¹H NMR Spectrum of 4i'

Fig.S131 ¹H NMR Spectrum (Crude) of the reaction between propargyl carbonate (1.1 mmol) and 2-bromothiophenol (1.0 mmol) for preparation of mono(arylthiol) alkene **4i'**

Fig.S132 Comparison between crude ¹H NMR Spectrum of the reaction between propargyl carbonate (1.0 mmol) and 2-bromothiophenol (1.5 mmol) under optimized reaction condition and ¹H NMR of purified mono(arylthiol) alkene **4i'** as well as bis(arylthiol) alkene **3c** S132

Fig.S133 Magnified region of crude ¹H NMR Spectrum of the reaction between propargyl carbonate (1.0 mmol) and 2-bromothiophenol (1.5 mmol) under optimized reaction condition and ¹H NMR of purified mono(arylthiol) alkene **4i'** as well as bis(arylthiol) alkene **3c** s133

Fig.S134 Distribution of products (**3c** and **4i'**) from magnified region of crude ¹H NMR Spectrum of reaction mixture of propargyl carbonate (1.0 mmol) and 2-bromothiophenol (1.5 mmol) under optimized reaction condition