Supplementary Information

An attempt to consider cooperativity in helical-sense preferences induced in fused macrocycles

Ryo Katoono,* Takaaki Kudo and Shunsuke Kawai
Department of Chemistry, Faculty of Science, Hokkaido University

Contents
Supplementary Figures (Figures S1-S7) S2-S11
Experimental S12-S16
Note and references S16
Copies of the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR and MS spectra of new compounds S17-S34

Supplementary Figures

Fig. S1A Partial VT- ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz ; left: aromatic protons and right: methylene protons) of $\mathbf{1 b},{ }^{1}$ measured in chloroform- d at 223-323 K.

Fig. S1B Partial VT- ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz ; left: aromatic protons and right: methylene protons) of $\mathbf{2 b},{ }^{2}$ measured in chloroform- d at 213-313 K.

Fig. S1C Partial VT- ${ }^{1}$ H NMR spectra (400 MHz ; left: aromatic protons and right: methylene protons) of 3b, measured in chloroform- d at $223-323 \mathrm{~K}$.

Fig. S2A Partial VT- ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz ; left: aromatic protons and right: methine protons) of 1a, ${ }^{1}$ measured in chloroform- d at 223-323 K.

Fig. S2B Partial VT- ${ }^{1}$ H NMR spectra (400 MHz ; left: aromatic protons and right: methine protons) of 2a, ${ }^{2}$ measured in chloroform- d at $223-323 \mathrm{~K}$.

Fig. S2C Partial VT- ${ }^{1}$ H NMR spectra (400 MHz ; left: aromatic protons and right: methine protons) of 3a, measured in chloroform- d at 223-323 K.

Fig. S3 UV spectra of $\mathbf{1 b},{ }^{1} \mathbf{2 b}^{2}$ and $\mathbf{3 b}$, measured in dichloromethane at room temperature.

Fig. S4 Partial ${ }^{1} \mathrm{H}$ NMR spectra (aromatic region) of $\mathbf{3 b}$ in the presence of $(R)_{2}-\mathbf{5}([\mathbf{3 b}]:[\mathbf{5}]=10: 0(\mathbf{3 b}$ only), 1:1, 1:3 and $0: 10(5$ only $)$), and Job plots based on changes in the chemical shift $\left(\Delta \delta=\delta_{3 \mathrm{~b} \cdot 5}-\delta_{3 \mathrm{~b} \text { or } 5}\right.$) on complexation, measured in $3 \mathrm{vol} \%$ acetonitrile $-d_{3} /$ chloroform $-d$ at $303 \mathrm{~K} . \chi$ denotes the molar fraction, $[\mathbf{3 b}]$ or $[\mathbf{5}] /[\mathbf{3 b}]+[\mathbf{5}],[\mathbf{3 b}]+[\mathbf{5}]=2 \mathrm{mM}$.

Fig. S5 UV spectra of (a) $\mathbf{1 b}\left([\mathbf{1 b}]=2.28 \times 10^{-4} \mathrm{M}\right)$, (b) $\mathbf{2 b}\left([\mathbf{2 b}]=1.34 \times 10^{-4} \mathrm{M}\right)$, and (c) $\mathbf{3 b}\left([\mathbf{3 b}]=1.31 \times 10^{-4} \mathrm{M}\right)$ in the presence of $(R)_{2}-5[(0$ equiv., black line) and (a) $0.25,0.50,0.75,1.0,1.5,2.0,3.0,4.0,6.0$ and 8.0 equiv., (b) $0.25,0.50,0.75,1.0,1.5,2.0,3.0,4.0,6.0$ and 8.0 equiv., (c) $3.0,6.0,9.0$ and 12 equiv. (blue lines)]. All spectra were measured in dichloromethane at room temperature. Cell length $=0.1 \mathrm{~cm}$.

Fig. S6 CD spectra of (a) $\mathbf{1 b}\left([\mathbf{1 b}]=2.28 \times 10^{-4} \mathrm{M}\right)$ and $(b) \mathbf{2 b}\left([\mathbf{2 b}]=1.34 \times 10^{-4} \mathrm{M}\right)$ in the presence of $(R)_{2}-\mathbf{5}(0.25$, $0.50,0.75,1.0,1.5,2.0,3.0,4.0,6.0$ and 8.0 equiv.). All spectra were measured in dichloromethane at 293 K .

Fig. S7A Titration curves 1:1-fitted with a program of TitrationFit software ${ }^{3}$, based on plots of complexation-induced molar CDs [$\Delta \varepsilon$ at 301 nm (circle) and 338 nm (square)] versus equivalents of $(R)_{2}-\mathbf{5}$ added to a solution of $\mathbf{1 b}$ ([1b] $=2.28 \times 10^{-4} \mathrm{M}$), measured in dichloromethane at 293 K .

Fig. S7B Titration curves 1:1-fitted with a program of TitrationFit software ${ }^{3}$, based on plots of complexation-induced molar CDs [$\Delta \varepsilon$ at 310 nm (circle) and 331 nm (square)] versus equivalents of $(R)_{2}-\mathbf{5}$ added to a solution of $\mathbf{2 b}$ ([2b] $=1.34 \times 10^{-4} \mathrm{M}$, [Terephthalamide $\left.]=2.68 \times 10^{-4} \mathrm{M}\right)$, measured in dichloromethane at 293 K .

Fig. S7C Titration curves 1:1-fitted with a program of TitrationFit software ${ }^{3}$, based on plots of complexation-induced molar CDs [$\Delta \varepsilon$ at 313.5 nm (circle) and 334 nm (square)] versus equivalents of $(R)_{2}-\mathbf{5}$ added to a solution of $\mathbf{3 b}$ ([3b] $=1.31 \times 10^{-4} \mathrm{M}$, [Terephthalamide] $=3.92 \times 10^{-4} \mathrm{M}$), measured in dichloromethane at 293 K .

Experimental

(a) Preparation of 7

To a solution of $6(250 \mathrm{mg}, 0.532 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(221 \mathrm{mg}, 1.60 \mathrm{mmol})$ at room temperature. The mixture was stirred at room temperature for 30 min and diluted with water and dichloromethane. The organic layer was separated, dried over magnesium sulfate, and then purified by column chromatography on SiO_{2} (dichloromethane) to give $\mathbf{6}$ ' as a pale pinkish white

6 solid ($127 \mathrm{mg}, 94 \%$), which was immediately subjected to the next reaction.

To a solution of $\mathbf{1 0}(5.72 \mathrm{~g}, 19.1 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(295 \mathrm{mg}, 0.255 \mathrm{mmol})$ and $\mathrm{CuI}(98$ $\mathrm{mg}, 0.51 \mathrm{mmol})$ in THF $(85 \mathrm{~mL})$ and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}(85 \mathrm{~mL})$ was added a solution of 6' $(1.07 \mathrm{~g}, 4.23$ $\mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ at $51^{\circ} \mathrm{C}$ via a syringe pump over 2.5 h under an argon atmosphere and the mixture was further stirred at that temperature for 3 h . After removal of a solid by filtration through a Celite pad, the filtrate was concentrated and purified by column chromatography on SiO_{2} (dichloromethane/hexane) to give $7(1.75 \mathrm{~g})$ as a white amorphous solid in 54% yield. An

7 analytical sample was obtained as a white amorphous solid by further purification through GPC (chloroform; JAIGEL-1H \& 2H, Japan Analytical Industry Co., Ltd., Japan).
7: mp 128-129 ${ }^{\circ} \mathrm{C}$; IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 2958,2216,2159,1479,1441,1387,1371,1249,865,841,756,644,510 ;{ }^{1} \mathrm{H}$

NMR $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) / \mathrm{ppm} 7.64-7.60(3 \mathrm{H}, \mathrm{m}), 7.57-7.52(3 \mathrm{H}, \mathrm{m}), 7.36-7.31(6 \mathrm{H}, \mathrm{m}), 0.25(27 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm} 138.4,132.8,132.7,128.9,128.2,125.6,124.9,123.0,102.9,99.4,99.4,86.6,0.0$; FD-LRMS $m / z 768.1\left(\mathrm{M}^{+}, 80 \%\right), 769.1\left([\mathrm{M}+1]^{+}, 54\right), 770.1\left([\mathrm{M}+2]^{+}, 100\right), 771.1\left([\mathrm{M}+3]^{+}, 59\right), 772.1\left([\mathrm{M}+4]^{+}, 52\right)$, $773.1\left([\mathrm{M}+5]^{+}, 26\right)$; FD-HRMS Found: 768.14164, Calc. for $\mathrm{C}_{45} \mathrm{H}_{39} \mathrm{Cl}_{3} \mathrm{Si}_{3}$: 768.14251.
(b) Preparation of $\mathbf{8 a}$ and $\mathbf{8 b}$

To a solution of $\mathbf{7 , 1 1 a} / \mathbf{b}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and CuI in THF and $\mathrm{Et}_{3} \mathrm{~N}$ was added a solution of TBAF in THF under an argon atmosphere. The reaction mixture was diluted with ethyl acetate, which was passed through a Celite $/ \mathrm{SiO}_{2}$ pad. The filtrate was concentrated and purified by column chromatography on SiO_{2} (dichloromethane/hexane) to give 8 (a: $482 \mathrm{mg}, 85 \%$) as a yellowish white amorphous solid. For $\mathbf{8 b}$, the product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ containing a small amount of $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL})$, which was treated with trifluoroacetic anhydride (1.8 mL), washed with aq. satd. NaHCO_{3}, dried over magnesium sulfate, and then purified by column chromatography on SiO_{2} (dichloromethane/hexane) to give $\mathbf{8 b}$ as a yellow amorphous solid ($2.07 \mathrm{~g}, 83 \%$). Each analytical sample was obtained as a white amorphous solid by further purification through GPC (chloroform).

	7	11a/b	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	CuI	1M TBAF	addition	THF/Et3N
8 a	$\begin{aligned} & 301 \quad \mathrm{mg} \\ & (0.391 \mathrm{mmol}) \end{aligned}$	$\begin{aligned} & 995 \mathrm{mg}(2.34 \\ & \mathrm{mmol}) \end{aligned}$	41 mg (0.035 mmol)	$\begin{aligned} & 12 \mathrm{mg}(0.063 \\ & \mathrm{mmol}) \end{aligned}$	$\begin{aligned} & 1.2 \mathrm{~mL}(1.2 \\ & \mathrm{mmol}) \end{aligned}$	$\begin{aligned} & 61{ }^{\circ} \mathrm{C} \\ & 20 \mathrm{~min} \end{aligned}$	$18 \mathrm{~mL} / 18 \mathrm{~mL}$
8b	$\begin{aligned} & 1.50 \mathrm{~g}(1.95 \\ & \mathrm{mmol}) \end{aligned}$	$\begin{aligned} & 4.34 \mathrm{~g}(11.7 \\ & \mathrm{mmol}) \end{aligned}$	$\begin{aligned} & 203 \mathrm{mg}(0.176 \\ & \mathrm{mmol}) \end{aligned}$	$\begin{aligned} & 50 \mathrm{mg}(0.26 \\ & \mathrm{mmol}) \end{aligned}$	$\begin{aligned} & 6.1 \mathrm{~mL}(6.1 \\ & \mathrm{mmol}) \end{aligned}$	$\begin{aligned} & 60^{\circ} \mathrm{C} \\ & 1 \mathrm{~h} \end{aligned}$	$45 \mathrm{~mL} / 45 \mathrm{~mL}$

8a: mp 125-127 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{26}=-29\left(c=0.10\right.$, chloroform); IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 2930$, 2852, 2213, 1695, 1509, 1447, 1419, 1372, 1207, 1188, 1150, 831, 756, 560; ${ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) / \mathrm{ppm} 7.64-7.59(6 \mathrm{H}, \mathrm{m}), 7.57-7.48$ (6 H, br.m), 7.43-7.35 ($6 \mathrm{H}, \mathrm{m}$), 7.18-7.07 (6 H, br.m), $4.35(3 \mathrm{H}, \mathrm{dq}, J=6.8,10 \mathrm{~Hz}$), 1.92 (3 H, br.d), 1.79-1.49 $(12 \mathrm{H}, \mathrm{m}), 1.46-1.33(3 \mathrm{H}, \mathrm{m}), 1.33-0.97(12 \mathrm{H}, \mathrm{m}), 1.03(9 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 0.97-0.79$ $(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm} 156.8\left(\underline{\mathrm{C}}(=\mathrm{O}) \mathrm{CF}_{3}\right), 138.4,136.0,132.7$, $132.3,132.2,132.1,130.7,129.3,129.2,128.5,125.3,124.6,124.2,123.0,116.4$ ($\underline{C F}_{3}$),
 $99.5,92.2,89.6,86.5,59.8,40.3,30.6,29.7,26.1,25.9,25.7,16.2$; FD-LRMS $m / z 1443.3\left(\mathrm{M}^{+}, 72 \%\right), 1444.3\left([\mathrm{M}+1]^{+}\right.$, $68), 1445.3\left([\mathrm{M}+2]^{+}, 100\right), 1446.3\left([\mathrm{M}+3]^{+}, 75\right), 1447.3\left([\mathrm{M}+4]^{+}, 56\right), 1448.3\left([\mathrm{M}+5]^{+}, 32\right), 1449.3\left([\mathrm{M}+6]^{+}, 15\right)$; FD-HRMS Found: 1443.42597, Calc. for $\mathrm{C}_{84} \mathrm{H}_{69} \mathrm{Cl}_{3} \mathrm{~F}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$: 1443.42608.
8b: mp 95-97 ${ }^{\circ} \mathrm{C}$; IR (KBr) $v_{\max } / \mathrm{cm}^{-1}$ 2931, 2213, 1698, 1510, 1384, 1208, 1151, 846, $756 ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) / \mathrm{ppm} 7.64-7.59(6 \mathrm{H}, \mathrm{m}), 7.55(6 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}), 7.43-7.35(6 \mathrm{H}, \mathrm{m}), 7.15(6 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 3.68(6 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.52-1.44$ $(6 \mathrm{H}, \mathrm{m}), 1.31-1.21(6 \mathrm{H}, \mathrm{m}), 0.84(9 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) / \mathrm{ppm} 156.4\left(\underline{\mathrm{C}}(=\mathrm{O}) \mathrm{CF}_{3}\right), 138.9,138.4,132.7,132.7,132.3,129.2,128.5,128.3$, $125.2,124.6,124.0,123.0,116.3\left(\underline{C F}_{3}\right), 99.5,92.2,89.5,86.5,51.5,28.8,19.7,13.6$;
 FD-LRMS $m / z 1281.2\left(\mathrm{M}^{+}, 80 \%\right), 1282.2\left([\mathrm{M}+1]^{+}, 65\right), 1283.2\left([\mathrm{M}+2]^{+}, 100\right), 1284.2$ $\left([\mathrm{M}+3]^{+}, 70\right), 1285.2\left([\mathrm{M}+4]^{+}, 52\right), 1286.2\left([\mathrm{M}+5]^{+}, 28\right), 1287.1\left([\mathrm{M}+6]^{+}, 13\right)$; FD-HRMS Found: 1281.28474, Calc.
for $\mathrm{C}_{72} \mathrm{H}_{51} \mathrm{Cl}_{3} \mathrm{~F}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}: 1281.28523$.

(c) Preparation of $9 \mathbf{a}$ and $9 \mathbf{b}$

To a solution of $\mathbf{8 a} / \mathbf{b}$ and $\mathbf{1 2 a} / \mathbf{b}$ in 1,4-dioxane and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}$ were added $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$, X-Phos ${ }^{6}$ and CuI at room temperature under an argon atmosphere. The mixture was stirred at $90^{\circ} \mathrm{C}$ for 23 h for $\mathbf{9 a}$ or 28 h for $\mathbf{9 b}$. After removal of a solid by filtration through a Celite pad, the filtrate was concentrated and purified by column chromatography on SiO_{2} (dichloromethane-ethyl acetate/dichloromethane for $\mathbf{9 a}$ or dichloromethane/hexane-ethyl acetate/dichloromethane for $\mathbf{9 b}$), followed by GPC (chloroform) to give 9 (a: $479 \mathrm{mg}, 63 \%$ and $\mathbf{b}: 320 \mathrm{mg}, 69 \%$) as a brown solid. Each analytical sample was obtained as a yellow amorphous solid by further purification through HPLC with a standard normal-phase column ($0.5 \mathrm{vol} \%$ for $\mathbf{9 a}$ or $1 \mathrm{vol} \%$ for $\mathbf{9 b}$ tetrahydrofuran/dichloromethane; YMC-Pack SIL, SIL-06, YMC Co., Ltd., Japan).

	8a/b	12a/b	$\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$	X-Phos	CuI	dioxane/ $/ \mathrm{Pr}_{2} \mathrm{NH}$
9a	$\begin{aligned} & 480 \mathrm{mg}(0.332 \\ & \mathrm{mmol}) \end{aligned}$	$\begin{aligned} & 3.22 \mathrm{~g} \quad(9.96 \\ & \mathrm{mmol}) \end{aligned}$	$13 \mathrm{mg} \quad(0.050$ $\mathrm{mmol})$	$47 \mathrm{mg} \quad(0.099$ mmol)	16 mg (0.084 mmol)	$6.4 \mathrm{~mL} / 3.7 \mathrm{~mL}$
9b	$\begin{aligned} & 300 \mathrm{mg}(0.234 \\ & \mathrm{mmol}) \end{aligned}$	$\begin{aligned} & 1.89 \mathrm{~g} \quad(7.00 \\ & \mathrm{mmol}) \end{aligned}$	$\begin{aligned} & 13 \mathrm{mg} \quad(0.050 \\ & \mathrm{mmol}) \end{aligned}$	$\begin{aligned} & 45 \mathrm{mg} \quad(0.093 \\ & \mathrm{mmol}) \end{aligned}$	18 mg (0.095 mmol)	$12 \mathrm{~mL} / 7.3 \mathrm{~mL}$

9a: mp 136-137 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{26}=-27(c=0.12$, chloroform $)$; $\mathrm{IR}(\mathrm{KBr}) \nu_{\text {max }} / \mathrm{cm}^{-}$ ${ }^{1} 2931,2853,2204,1698,1509,1449,1415,1207,831,756 ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) / \mathrm{ppm} 7.71-7.66(6 \mathrm{H}, \mathrm{m}), 7.48-7.37(18 \mathrm{H}, \mathrm{m}), 6.99(6 \mathrm{H}$, d, $J=8.8 \mathrm{~Hz}), 6.97(6 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 4.36-4.24(6 \mathrm{H}, \mathrm{m}), 1.91(3 \mathrm{H}, \mathrm{br} . \mathrm{d})$, $1.86(3 \mathrm{H}, \mathrm{br} . \mathrm{d}), 1.78-1.50(24 \mathrm{H}, \mathrm{m}), 1.43-0.80(36 \mathrm{H}, \mathrm{m}), 1.03(9 \mathrm{H}, \mathrm{d}, J=6.8$ $\mathrm{Hz}), 0.97(9 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm} 156.7$ $\left(\underline{C}(=O) \mathrm{CF}_{3}\right), 136.5,135.8,132.6,132.3,132.2,132.1,130.4,129.1,129.1$, 128.9, 128.5, 127.8, 127.6, 125.4, 125.3, 123.9 123.6, 116.4 (CF $_{3}$), 116.3 $\left(\underline{C F}_{3}\right), 98.9,98.3,92.9,90.2,89.7,88.5,60.0,59.8,40.2,40.1,30.6,30.5$,
 29.8, 29.7, 26.1, 26.0, 25.9, 25.8, 25.8, 25.6, 16.2, 16.1; FD-LRMS m/z $2304.9\left(\mathrm{M}^{+}, 65 \%\right), 2305.9\left([\mathrm{M}+1]^{+}, 100\right), 2306.9\left([\mathrm{M}+2]^{+}, 79\right), 2307.9\left([\mathrm{M}+3]^{+}, 43\right), 2308.9\left([\mathrm{M}+4]^{+}, 19\right)$; FDHRMS Found: 2304.94488, Calc. for $\mathrm{C}_{138} \mathrm{H}_{126} \mathrm{~F}_{18} \mathrm{~N}_{6} \mathrm{O}_{6}$: 2304.94514.

9b: mp 105-107 ${ }^{\circ} \mathrm{C}$; IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 2960,2934,2874,2205,1698,1510$, $1427,1209,1149,845,756 ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) / \mathrm{ppm} 7.71(3 \mathrm{H}$, br.d), $7.67(3 \mathrm{H}$, br.d), $7.48-7.40(6 \mathrm{H}, \mathrm{m}), 7.46(6 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.40(6 \mathrm{H}, \mathrm{d}, J$ $=8.4 \mathrm{~Hz}), 7.01(6 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.99(6 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 3.65(6 \mathrm{H}, \mathrm{t}, J=7.2$ $\mathrm{Hz}), 3.59(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.50-1.37(12 \mathrm{H}, \mathrm{m}), 1.34-1.17(12 \mathrm{H}, \mathrm{m}), 0.89(9 \mathrm{H}$, $\mathrm{t}, J=7.2 \mathrm{~Hz}), 0.81(9 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm} 156.3$ $\left(\underline{\mathrm{C}}(=\mathrm{O}) \mathrm{CF}_{3}\right), 156.3\left(\underline{\mathrm{C}}(=\mathrm{O}) \mathrm{CF}_{3}\right), 139.3,138.7,133.0,132.7,132.2,132.1,129.2$, $128.5,128.1,128.0,127.8,127.6,125.3,125.3,123.7123 .4,116.3\left(\underline{C F}_{3}\right), 116.2$
 ($\underline{C F}_{3}$), 98.9, $98.3,92.8,90.2,89.6,88.4,51.5,51.5,28.8,28.8,19.7,19.7,13.6,13.5$; FD-LRMS $m / z 1980.6\left(\mathrm{M}^{+}\right.$,
$78 \%), 1981.6\left([\mathrm{M}+1]^{+}, 100\right), 1982.6\left([\mathrm{M}+2]^{+}, 65\right), 1983.6\left([\mathrm{M}+3]^{+}, 31\right), 1984.6\left([\mathrm{M}+4]^{+}, 11\right)$; FD-HRMS Found: 1980.66542, Calc. for $\mathrm{C}_{114} \mathrm{H}_{90} \mathrm{~F}_{18} \mathrm{~N}_{6} \mathrm{O}_{6}: 1980.66344$.

(d) Preparation of 3a and 3b

i) To an ice-cooled solution of $\mathbf{9 a} / \mathbf{b}$ and $60 \% \mathrm{NaH}$ in THF was added MeOH . The mixture was stirred at room temperature for 25 min and quenched with water. After extraction with ethyl acetate, the organic layer was washed with water and brine, dried over magnesium sulfate, and then purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (dichloromethane/hexane) to give 9' (a: $128 \mathrm{mg}, 85 \%$ and $\mathbf{b}: 105 \mathrm{mg}, 99 \%$) as a yellow amorphous solid, which was immediately subjected to the next reaction.
ii) To a solution of $\mathbf{9} \mathbf{a}^{\prime} / \mathbf{9} \mathbf{b}^{\prime}$ in toluene containing a small amount of $\mathrm{Et}_{3} \mathrm{~N}$ was added terephthaloyl chloride, the mixture was stirred (a) at $100^{\circ} \mathrm{C}$
 for several hours while adding several portions of terephthaloyl chloride with an interval of 30 min or (b) at $85^{\circ} \mathrm{C}$ for 45 min . After extraction with (a) ethyl acetate or (b) dichloromethane, the organic layer was washed with aq. 0.1 M NaOH and brine, dried over magnesium sulfate, and then purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{SiO}_{2}$ (ethyl acetate/dichloromethane), followed by GPC (chloroform) to give $\mathbf{3}$ (a: $42 \mathrm{mg}, 27 \%$ and $\mathbf{b}: 30 \mathrm{mg}, 42 \%$) as a yellow solid. Each analytical sample was obtained as a yellow solid by further purification through HPLC with a standard normal-phase column (ethyl acetate/dichloromethane for 3a and tetrahydrofuran/chloroform for 3b).

	$\mathbf{9 a} / \mathbf{b}$	$60 \% \mathrm{NaH}$ in oil	MeOH	THF	terephthaloyl chloride	Et 3 3 N	Toluene
3a	200 mg $(0.0867 \mathrm{mmol})$	$420 \mathrm{mg}(10.5$ $\mathrm{mmol})$	0.5 mL	5 mL	$50 \mathrm{mg} \times 7(1.7 \mathrm{mmol})$	0.3 mL	74 mL
3b	150 mg $(0.0757 \mathrm{mmol})$	$61 \mathrm{mg}(1.5$ $\mathrm{mmol})$	0.5 mL	5 mL	$27 \mathrm{mg}(0.13 \mathrm{mmol})$	0.2 mL	40 mL

3a: $\mathrm{mp}>300^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=-596(c=0.181$, chloroform $)$; IR $(\mathrm{KBr}) v_{\max } / \mathrm{cm}^{-}$ ${ }^{1}$ 2929, 2853, 2202, 1655, 1600, 1510, 1384, 1318, 834, 757; ${ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) / \mathrm{ppm} 7.78-7.76(6 \mathrm{H}, \mathrm{m}), 7.6-7.3$ (18 H, br.m), 7.2-6.9 (6 H, br.), 6.94-6.89 (12H, br.d $\times 2$), $6.5(6 \mathrm{H}$, br.), 4.6-4.3 (6 H, br.m), 2.2-2.0 (6 H, br.m), 1.9-1.4 (30H, br.m), 1.4-0.8 (48 H, br.m); ${ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm} 170.4,141.6,138.1,137.8,132.9,132.6$, $132.3,129.2,128.4,128.0,127.5,127.2,127.1,125.2,125.1,121.3,121.2$, $99.1,97.9,93.1,90.5,89.5,88.4,30.8,30.2,29.7,26.2,26.2,26.1,26.0$, 26.0, 16.7; FD-LRMS $m / z 2119.0\left(\mathrm{M}^{+}, 49 \%\right), 2120.0\left([\mathrm{M}+1]^{+}, 93\right), 2121.0$
 $\left([\mathrm{M}+2]^{+}, 100\right), 2122.0\left([\mathrm{M}+3]^{+}, 67\right), 2123.0\left([\mathrm{M}+4]^{+}, 34\right) ;$ FD-HRMS

Found: 2119.06902, Calc. for $\mathrm{C}_{150} \mathrm{H}_{138} \mathrm{~N}_{6} \mathrm{O}_{6}: 2119.06779$; UV $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm}(\log \varepsilon) 387$ (shoulder 4.71), 364 (4.83), 316 (sh. 4.80), 294 (4.84), 270 (s. 4.76); $\mathrm{CD} \lambda\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm}(\Delta \varepsilon$ at 293 K$) 394(-6.4), 387(-5.0), 377(-6.2)$, $355(-0.8), 336(-12), 314(-100), 292(+35), 269(-39)$.

3b: $\mathrm{mp}>300^{\circ} \mathrm{C}$; IR (KBr) $v_{\max } / \mathrm{cm}^{-1} 2929,2870,2201,1656,1600,1510,1383$, $1295,1122,836,756 ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) / \mathrm{ppm} 7.76-7.73(6 \mathrm{H}$, m), 7.52-7.44 (6H, m), $7.41(6 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.36(6 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.98$ $(6 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.95(6 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.83(6 \mathrm{H}, \mathrm{br} . \mathrm{d}), 6.72(6 \mathrm{H}, \mathrm{br} . \mathrm{d}), 3.80$ $(12 \mathrm{H}$, br.s), $1.53-1.43(12 \mathrm{H}, \mathrm{m}), 1.36-1.22(12 \mathrm{H}, \mathrm{m}), 0.87(9 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.78$ $(9 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm} 169.9,169.9,143.5$, $143.0,137.5,137.2,133.0,132.9,132.6,132.6,129.2,128.6,128.4,127.9,127.5$, $127.3,127.3,125.1,125.0,121.1,99.0,97.9,92.9,90.5,89.3,88.2,49.3,49.1$,
 29.7, 20.1, 20.0, 13.8, 13.7; FD-LRMS m/z $1794.7\left(\mathrm{M}^{+}, 69 \%\right), 1795.7$ ($[\mathrm{M}+1]^{+}, 100$), $1796.7\left([\mathrm{M}+2]^{+}, 75\right), 1797.7$ $\left([\mathrm{M}+3]^{+}, 38\right), 1798.7\left([\mathrm{M}+4]^{+}\right.$, 15); FD-HRMS Found: 1794.78409, Calc. for $\mathrm{C}_{126} \mathrm{H}_{102} \mathrm{~N}_{6} \mathrm{O}_{6}: 1794.78609$; UV $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm}(\log \varepsilon) 385$ (sh. 4.78), 364 (4.88), 320 (sh. 4.84), 295 (4.88), 265 (sh. 4.76).

References and note
1 R. Katoono, Y. Tanaka, K. Kusaka, K. Fujiwara and T. Suzuki, J. Org. Chem., 2015, 80, 7613.
2 R. Katoono, S. Kawai, K. Fujiwara and T. Suzuki, Chem. Sci., 2015, 6, 6592.

4 Y. Tobe, N. Nakagawa, J. Kishi, M. Sonoda, K. Naemura, T. Wakabayashi, T. Shida and Y. Achiba, Tetrahedron, 2001, 57, 3629.
H. Kinoshita, N. Hirai and K. Miura, J. Org. Chem., 2014, 79, 8171.

6
P. Ehlers, A. Neubauer, S. Lochbrunner, A. Villinger and P. Langer, Org. Lett., 2011, 13, 1618.

LR MS spectrum (FD) of 7.

LR MS spectrum（FD）of $\mathbf{8 a}$ ．

Data：common／Mar06：a80758－
Sample： 2713 Kudo／n9b
Experiment Date／Time：2017／03／06 17：21：25
Relative Intensity

Instrument Configuration：FDフローブ，JMS－T100GCV
onization Mode：FD +
Acquired m／z Range：50．00．．3200．00
Detector Volt：2300［V］

21

21

号
$500 \quad 1000 \quad 1500 \mathrm{~m} / \mathrm{z}$

LR MS spectrum（FD）of $\mathbf{8 b}$ ．

LR MS spectrum（FD）of $\mathbf{9 a}$ ．

Data：common／Mar06：a80760－
Sample： 2713 Kudo n 10 b
Sample： 2713 Kudo／n10b
Experiment Date／Time：2017／03／06 17：29：33
Average（MS［1］Time：0．47）
Average（MS［1］Time：0．47）
Relative Intensity

Instrument Configuration：FDフローブ，JMS－T100GCV
onization Mode：FD＋
Acquired m / z Range： $50.00 . .3200 .00$
Acquired m／z Range： 50,
Detector Volt： $2300[\mathrm{~V}]$

Instrument Configuration：FDłローブ．JMS－T100GCV
Ionization Mode．FD + onization Mode：FD＋ Acquired m／z Range： $50.00 . .3200 .00$
Detector Volt： 2300 M

Sample： 2713 Kudo／n10
Experiment Date／Time：2017／03／06 17：25：45
Thage（MS［1］Time．0．44．0．

LR MS spectrum（FD）of $\mathbf{9 b}$ ．

LR MS spectrum (FD) of $\mathbf{3 a}$.

LR MS spectrum (FD) of $\mathbf{3} \mathbf{b}$.

