Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

An attempt to consider cooperativity in helical-sense preferences induced in fused macrocycles

Ryo Katoono,* Takaaki Kudo and Shunsuke Kawai Department of Chemistry, Faculty of Science, Hokkaido University

Contents

Supplementary Figures (Figures S1-S7)	S2-S11
Experimental	S12-S16
Note and references	S16
Copies of the ¹ H/ ¹³ C NMR and MS spectra of new compounds	S17-S34

Supplementary Figures

Fig. S1A Partial VT-¹H NMR spectra (400 MHz; left: aromatic protons and right: methylene protons) of 1b,¹ measured in chloroform-*d* at 223-323 K.

Fig. S1B Partial VT-¹H NMR spectra (400 MHz; left: aromatic protons and right: methylene protons) of 2b,² measured in chloroform-*d* at 213-313 K.

Fig. S1C Partial VT-¹H NMR spectra (400 MHz; left: aromatic protons and right: methylene protons) of **3b**, measured in chloroform-*d* at 223-323 K.

Fig. S2A Partial VT-¹H NMR spectra (400 MHz; left: aromatic protons and right: methine protons) of 1a,¹ measured in chloroform-*d* at 223-323 K.

Fig. S2B Partial VT-¹H NMR spectra (400 MHz; left: aromatic protons and right: methine protons) of 2a,² measured in chloroform-*d* at 223-323 K.

Fig. S2C Partial VT-¹H NMR spectra (400 MHz; left: aromatic protons and right: methine protons) of **3a**, measured in chloroform-*d* at 223-323 K.

Fig. S3 UV spectra of 1b,¹ 2b² and 3b, measured in dichloromethane at room temperature.

Fig. S4 Partial ¹H NMR spectra (aromatic region) of **3b** in the presence of $(R)_2$ -**5** ([**3b**]:[**5**] = 10:0 (**3b** only), 1:1, 1:3 and 0:10 (**5** only)), and Job plots based on changes in the chemical shift ($\Delta \delta = \delta_{3\mathbf{b}\cdot\mathbf{5}} - \delta_{3\mathbf{b}\cdot\mathbf{0}\cdot\mathbf{5}}$) on complexation, measured in 3 vol% acetonitrile- d_3 /chloroform-d at 303 K. χ denotes the molar fraction, [**3b**] or [**5**]/[**3b**]+[**5**], [**3b**]+[**5**] = 2 mM.

Fig. S5 UV spectra of (a) **1b** ([**1b**] = 2.28×10^{-4} M), (b) **2b** ([**2b**] = 1.34×10^{-4} M), and (c) **3b** ([**3b**] = 1.31×10^{-4} M) in the presence of (*R*)₂-**5** [(0 equiv., black line) and (a) 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0 and 8.0 equiv., (b) 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0 and 8.0 equiv., (c) 3.0, 6.0, 9.0 and 12 equiv. (blue lines)]. All spectra were measured in dichloromethane at room temperature. Cell length = 0.1 cm.

Fig. S6 CD spectra of (a) **1b** ([**1b**] = 2.28×10^{-4} M) and (b) **2b** ([**2b**] = 1.34×10^{-4} M) in the presence of (*R*)₂-**5** (0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0 and 8.0 equiv.). All spectra were measured in dichloromethane at 293 K.

Fig. S7A Titration curves 1:1-fitted with a program of TitrationFit software³, based on plots of complexation-induced molar CDs [$\Delta \varepsilon$ at 301 nm (circle) and 338 nm (square)] versus equivalents of (*R*)₂-**5** added to a solution of **1b** ([**1b**] = 2.28×10⁻⁴ M), measured in dichloromethane at 293 K.

Fig. S7B Titration curves 1:1-fitted with a program of TitrationFit software³, based on plots of complexation-induced molar CDs [$\Delta \varepsilon$ at 310 nm (circle) and 331 nm (square)] versus equivalents of (*R*)₂-**5** added to a solution of **2b** ([**2b**] = 1.34×10^{-4} M, [Terephthalamide] = 2.68×10^{-4} M), measured in dichloromethane at 293 K.

Fig. S7C Titration curves 1:1-fitted with a program of TitrationFit software³, based on plots of complexation-induced molar CDs [$\Delta \varepsilon$ at 313.5 nm (circle) and 334 nm (square)] versus equivalents of (*R*)₂-**5** added to a solution of **3b** ([**3b**] = 1.31×10⁻⁴ M, [Terephthalamide] = 3.92×10⁻⁴ M), measured in dichloromethane at 293 K.

Experimental

(a) Preparation of 7

To a solution of **6** (250 mg, 0.532 mmol) in THF (3 mL) and MeOH (1 mL) was added K_2CO_3 (221 mg, 1.60 mmol) at room temperature. The mixture was stirred at room temperature for 30 min and diluted with water and dichloromethane. The organic layer was separated, dried over magnesium sulfate, and then purified by column chromatography on SiO₂ (dichloromethane) to give **6'** as a pale pinkish white solid (127 mg, 94%), which was immediately subjected to the next reaction.

To a solution of **10** (5.72 g, 19.1 mmol), Pd(PPh₃)₄ (295 mg, 0.255 mmol) and CuI (98 mg, 0.51 mmol) in THF (85 mL) and ${}^{1}Pr_{2}NH$ (85 mL) was added a solution of **6'** (1.07 g, 4.23 mmol) in THF (15 mL) at 51 °C via a syringe pump over 2.5 h under an argon atmosphere and the mixture was further stirred at that temperature for 3 h. After removal of a solid by filtration through a Celite pad, the filtrate was concentrated and purified by column chromatography on SiO₂ (dichloromethane/hexane) to give 7 (1.75 g) as a white amorphous solid in 54% yield. An

ĊI

6'

analytical sample was obtained as a white amorphous solid by further purification through GPC (chloroform; JAIGEL-1H & 2H, Japan Analytical Industry Co., Ltd., Japan).

7: mp 128-129 °C; IR (KBr) v_{max}/cm⁻¹ 2958, 2216, 2159, 1479, 1441, 1387, 1371, 1249, 865, 841, 756, 644, 510; ¹H

NMR $\delta_{\rm H}(400 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})/\text{ppm}$ 7.64-7.60 (3H, m), 7.57-7.52 (3H, m), 7.36-7.31 (6H, m), 0.25 (27H, s); ¹³C NMR $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3)/\text{ppm}$ 138.4, 132.8, 132.7, 128.9, 128.2, 125.6, 124.9, 123.0, 102.9, 99.4, 99.4, 86.6, 0.0; FD-LRMS *m*/*z* 768.1 (M⁺, 80%), 769.1 ([M+1]⁺, 54), 770.1 ([M+2]⁺, 100), 771.1 ([M+3]⁺, 59), 772.1 ([M+4]⁺, 52), 773.1 ([M+5]⁺, 26); FD-HRMS Found: 768.14164, Calc. for C₄₅H₃₉Cl₃Si₃: 768.14251.

(b) Preparation of 8a and 8b

To a solution of **7**, **11a/b**, $Pd(PPh_3)_4$ and CuI in THF and Et_3N was added a solution of TBAF in THF under an argon atmosphere. The reaction mixture was diluted with ethyl acetate, which was passed through a Celite/SiO₂ pad. The filtrate was concentrated and purified by column chromatography on SiO₂ (dichloromethane/hexane) to give **8** (**a**: 482 mg, 85%) as a yellowish white amorphous solid. For **8b**, the product was dissolved in CH₂Cl₂ (90 mL) containing a small amount of Et_3N (2 mL), which was treated with trifluoroacetic anhydride (1.8 mL), washed with aq. satd. NaHCO₃, dried over magnesium sulfate, and then purified by column chromatography on SiO₂ (dichloromethane/hexane) to give **8b** as a yellow amorphous solid (2.07 g, 83%). Each analytical sample was obtained as a white amorphous solid by further purification through GPC (chloroform).

	7	11a/b	Pd(PPh ₃) ₄	Pd(PPh ₃) ₄ CuI		addition	THF/Et ₃ N
8a	301 mg	995 mg (2.34	41 mg (0.035	12 mg (0.063	1.2 mL (1.2	61 °C	18 mL/18 mL
	(0.391 mmol)	mmol)	mmol)	mmol)	mmol)	20 min	
8b	1.50 g (1.95	4.34 g (11.7	203 mg (0.176	50 mg (0.26	6.1 mL (6.1	60 °C	45 mL/45 mL
	mmol)	mmol)	mmol)	mmol)	mmol)	1 h	

8a: mp 125-127 °C; $[\alpha]_D^{26} = -29$ (c = 0.10, chloroform); IR (KBr) ν_{max}/cm^{-1} 2930, 2852, 2213, 1695, 1509, 1447, 1419, 1372, 1207, 1188, 1150, 831, 756, 560; ¹H NMR _{CF3} $\delta_{\rm H}(400 \text{ MHz}; {\rm CDCl}_3; {\rm Me}_4{\rm Si})/{\rm ppm}$ 7.64-7.59 (6H, m), 7.57-7.48 (6H, br.m), 7.43-7.35 (6H, m), 7.18-7.07 (6H, br.m), 4.35 (3H, dq, J = 6.8, 10 Hz), 1.92 (3H, br.d), 1.79-1.49 (12H, m), 1.46-1.33 (3H, m), 1.33-0.97 (12H, m), 1.03 (9H, d, J = 6.8 Hz), 0.97-0.79 (3H, m); ¹³C NMR $\delta_{\rm C}(100 \text{ MHz}; {\rm CDCl}_3)/{\rm ppm}$ 156.8 ($\underline{\rm C}(={\rm O}){\rm CF}_3$), 138.4, 136.0, 132.7, 132.3, 132.2, 132.1, 130.7, 129.3, 129.2, 128.5, 125.3, 124.6, 124.2, 123.0, 116.4 ($\underline{\rm CF}_3$),

68), 1445.3 ([M+2]⁺, 100), 1446.3 ([M+3]⁺, 75), 1447.3 ([M+4]⁺, 56), 1448.3 ([M+5]⁺, 32), 1449.3 ([M+6]⁺, 15); FD-HRMS Found: 1443.42597, Calc. for C₈₄H₆₉Cl₃F₉N₃O₃: 1443.42608.

8b: mp 95-97 °C; IR (KBr) ν_{max} /cm⁻¹ 2931, 2213, 1698, 1510, 1384, 1208, 1151, 846, 756; ¹H NMR δ_{H} (400 MHz; CDCl₃; Me₄Si)/ppm 7.64-7.59 (6H, m), 7.55 (6H, d, J =8.4 Hz), 7.43-7.35 (6H, m), 7.15 (6H, d, J = 8.4 Hz), 3.68 (6H, t, J = 7.6 Hz), 1.52-1.44 (6H, m), 1.31-1.21 (6H, m), 0.84 (9H, t, J = 7.6 Hz); ¹³C NMR δ_{C} (100 MHz; CDCl₃)/ppm 156.4 (<u>C</u>(=O)CF₃), 138.9, 138.4, 132.7, 132.7, 132.3, 129.2, 128.5, 128.3, 125.2, 124.6, 124.0, 123.0, 116.3 (<u>C</u>F₃), 99.5, 92.2, 89.5, 86.5, 51.5, 28.8, 19.7, 13.6; FD-LRMS *m*/*z* 1281.2 (M⁺, 80%), 1282.2 ([M+1]⁺, 65), 1283.2 ([M+2]⁺, 100), 1284.2

CI

([M+3]⁺, 70), 1285.2 ([M+4]⁺, 52), 1286.2 ([M+5]⁺, 28), 1287.1 ([M+6]⁺, 13); FD-HRMS Found: 1281.28474, Calc.

(c) Preparation of 9a and 9b

To a solution of **8a/b** and **12a/b** in 1,4-dioxane and ${}^{1}Pr_{2}NH$ were added PdCl₂(CH₃CN)₂, X-Phos⁶ and CuI at room temperature under an argon atmosphere. The mixture was stirred at 90 °C for 23 h for **9a** or 28 h for **9b**. After removal of a solid by filtration through a Celite pad, the filtrate was concentrated and purified by column chromatography on SiO₂ (dichloromethane-ethyl acetate/dichloromethane for **9a** or dichloromethane/hexane-ethyl acetate/dichloromethane for **9b**), followed by GPC (chloroform) to give **9** (**a**: 479 mg, 63% and **b**: 320 mg, 69%) as a brown solid. Each analytical sample was obtained as a yellow amorphous solid by further purification through HPLC with a standard normal-phase column (0.5vol% for **9a** or 1vol% for **9b** tetrahydrofuran/dichloromethane; YMC-Pack SIL, SIL-06, YMC Co., Ltd., Japan).

	8a/b	12a/b	PdCl ₂ (CH ₃ CN) ₂	X-Phos	CuI	dioxane/ ⁱ Pr ₂ NH
9a	480 mg (0.332	3.22 g (9.96	13 mg (0.050	47 mg (0.099	16 mg (0.084	6.4 mL/3.7 mL
	mmol)	mmol)	mmol)	mmol)	mmol)	
9b	300 mg (0.234	1.89 g (7.00	13 mg (0.050	45 mg (0.093	18 mg (0.095	12 mL/7.3 mL
	mmol)	mmol)	mmol)	mmol)	mmol)	

9a: mp 136-137 °C; $[\alpha]_D^{26} = -27$ (c = 0.12, chloroform); IR (KBr) ν_{max}/cm^{-1} 2931, 2853, 2204, 1698, 1509, 1449, 1415, 1207, 831, 756; ¹H NMR $\delta_{H}(400 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})/\text{ppm}$ 7.71-7.66 (6H, m), 7.48-7.37 (18H, m), 6.99 (6H, d, J = 8.8 Hz), 6.97 (6H, d, J = 8.8 Hz), 4.36-4.24 (6H, m), 1.91 (3H, br.d), 1.86 (3H, br.d), 1.78-1.50 (24H, m), 1.43-0.80 (36H, m), 1.03 (9H, d, J = 6.8 Hz), 0.97 (9H, d, J = 7.2 Hz); ¹³C NMR $\delta_{C}(100 \text{ MHz}; \text{CDCl}_3)/\text{ppm}$ 156.7 ($\underline{C}(=O)CF_3$), 136.5, 135.8, 132.6, 132.3, 132.2, 132.1, 130.4, 129.1, 129.1, 128.9, 128.5, 127.8, 127.6, 125.4, 125.3, 123.9 123.6, 116.4 ($\underline{C}F_3$), 116.3 ($\underline{C}F_3$), 98.9, 98.3, 92.9, 90.2, 89.7, 88.5, 60.0, 59.8, 40.2, 40.1, 30.6, 30.5, 29.8, 29.7, 26.1, 26.0, 25.9, 25.8, 25.8, 25.6, 16.2, 16.1; FD-LRMS m/z

2304.9 (M⁺, 65%), 2305.9 ([M+1]⁺, 100), 2306.9 ([M+2]⁺, 79), 2307.9 ([M+3]⁺, 43), 2308.9 ([M+4]⁺, 19); FD-HRMS Found: 2304.94488, Calc. for $C_{138}H_{126}F_{18}N_6O_6$: 2304.94514.

9b: mp 105-107 °C; IR (KBr) ν_{max} /cm⁻¹ 2960, 2934, 2874, 2205, 1698, 1510, 1427, 1209, 1149, 845, 756; ¹H NMR $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si)/ppm 7.71 (3H, br.d), 7.67 (3H, br.d), 7.48-7.40 (6H, m), 7.46 (6H, d, J = 8.4 Hz), 7.40 (6H, d, J = 8.4 Hz), 7.01 (6H, d, J = 8.4 Hz), 6.99 (6H, d, J = 8.4 Hz), 3.65 (6H, t, J = 7.2 Hz), 3.59 (6H, t, J = 7.2 Hz), 1.50-1.37 (12H, m), 1.34-1.17 (12H, m), 0.89 (9H, t, J = 7.2 Hz), 0.81 (9H, t, J = 7.2 Hz); ¹³C NMR $\delta_{\rm C}$ (100 MHz; CDCl₃)/ppm 156.3 (<u>C</u>(=0)CF₃), 156.3 (<u>C</u>(=0)CF₃), 139.3, 138.7, 133.0, 132.7, 132.2, 132.1, 129.2, 128.5, 128.1, 128.0, 127.8, 127.6, 125.3, 125.3, 123.7 123.4, 116.3 (<u>C</u>F₃), 116.2

BuN CF3 FO BuN CF3 BuN CF3 BuN CF3 BuN CF3 BuN CF3 BuN CF3 BuN BuN CF3 BuN BuN CF3 BuN 9b

(CF3), 98.9, 98.3, 92.8, 90.2, 89.6, 88.4, 51.5, 51.5, 28.8, 28.8, 19.7, 19.7, 13.6, 13.5; FD-LRMS m/z 1980.6 (M⁺,

78%), 1981.6 ([M+1]⁺, 100), 1982.6 ([M+2]⁺, 65), 1983.6 ([M+3]⁺, 31), 1984.6 ([M+4]⁺, 11); FD-HRMS Found: 1980.66542, Calc. for C₁₁₄H₉₀F₁₈N₆O₆: 1980.66344.

(d) Preparation of 3a and 3b

i) To an ice-cooled solution of **9a/b** and 60% NaH in THF was added MeOH. The mixture was stirred at room temperature for 25 min and quenched with water. After extraction with ethyl acetate, the organic layer was washed with water and brine, dried over magnesium sulfate, and then purified by column chromatography on Al₂O₃ (dichloromethane/hexane) to give **9'** (**a**: 128 mg, 85% and **b**: 105 mg, 99%) as a yellow amorphous solid, which was immediately subjected to the next reaction.

ii) To a solution of 9a'/9b' in toluene containing a small amount of Et₃N was added terephthaloyl chloride, the mixture was stirred (**a**) at 100 °C for several hours while adding several portions of terephthaloyl chloride with an interval of 30 min or (**b**) at 85 °C for 45 min. After extraction with (**a**) ethyl acetate or (**b**) dichloromethane, the organic layer was washed with aq. 0.1M NaOH and brine, dried over magnesium sulfate, and then purified by column chromatography on Al₂O₃/SiO₂ (ethyl acetate/dichloromethane), followed by GPC (chloroform) to give **3** (**a**: 42 mg, 27% and **b**: 30 mg, 42%) as a yellow solid. Each analytical sample was obtained as a yellow solid by further purification through HPLC with a standard normal-phase column (ethyl acetate/dichloromethane for **3a** and tetrahydrofuran/chloroform for **3b**).

	9a/b	60% NaH in oil	MeOH	THF	terephthaloyl chloride	Et ₃ N	Toluene
3 a	200 mg	420 mg (10.5	0.5 mL	5 mL	50 mg×7 (1.7 mmol)	0.3 mL	74 mL
	(0.0867 mmol)	mmol)					
3b	150 mg	61 mg (1.5	0.5 mL	5 mL	27 mg (0.13 mmol)	0.2 mL	40 mL
	(0.0757 mmol)	mmol)					

3a: mp >300 °C; $[\alpha]_D^{23} = -596$ (c = 0.181, chloroform); IR (KBr) ν_{max}/cm^- ¹ 2929, 2853, 2202, 1655, 1600, 1510, 1384, 1318, 834, 757; ¹H NMR H₃C $\delta_{\rm H}(400 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})/\text{ppm}$ 7.78-7.76 (6H, m), 7.6-7.3 (18H, br.m), 7.2-6.9 (6H, br.), 6.94-6.89 (12H, br.d×2), 6.5 (6H, br.), 4.6-4.3 (6H, br.m), 2.2-2.0 (6H, br.m), 1.9-1.4 (30H, br.m), 1.4-0.8 (48H, br.m); ¹³C NMR $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3)/\text{ppm}$ 170.4, 141.6, 138.1, 137.8, 132.9, 132.6, 132.3, 129.2, 128.4, 128.0, 127.5, 127.2, 127.1, 125.2, 125.1, 121.3, 121.2, 99.1, 97.9, 93.1, 90.5, 89.5, 88.4, 30.8, 30.2, 29.7, 26.2, 26.2, 26.1, 26.0, 26.0, 16.7; FD-LRMS m/z 2119.0 (M⁺, 49%), 2120.0 ([M+1]⁺, 93), 2121.0 ([M+2]⁺, 100), 2122.0 ([M+3]⁺, 67), 2123.0 ([M+4]⁺, 34); FD-HRMS

Found: 2119.06902, Calc. for C₁₅₀H₁₃₈N₆O₆: 2119.06779; UV λ_{max} (CH₂Cl₂)/nm (log ε) 387 (shoulder 4.71), 364 (4.83), 316 (sh. 4.80), 294 (4.84), 270 (s. 4.76); CD λ (CH₂Cl₂)/nm ($\Delta \varepsilon$ at 293 K) 394 (-6.4), 387 (-5.0), 377 (-6.2), 355 (-0.8), 336 (-12), 314 (-100), 292 (+35), 269 (-39).

3b: mp >300 °C; IR (KBr) ν_{max}/cm^{-1} 2929, 2870, 2201, 1656, 1600, 1510, 1383, 1295, 1122, 836, 756; ¹H NMR $\delta_{H}(400 \text{ MHz}; \text{CDCl}_{3}; \text{Me}_{4}\text{Si})/\text{ppm}$ 7.76-7.73 (6H, m), 7.52-7.44 (6H, m), 7.41 (6H, d, J = 8.4 Hz), 7.36 (6H, d, J = 8.8 Hz), 6.98 (6H, d, J = 8.4 Hz), 6.95 (6H, d, J = 8.4 Hz), 6.83 (6H, br.d), 6.72 (6H, br.d), 3.80 (12H, br.s), 1.53-1.43 (12H, m), 1.36-1.22 (12H, m), 0.87 (9H, t, J = 7.2 Hz), 0.78 (9H, t, J = 7.2 Hz); ¹³C NMR $\delta_{C}(100 \text{ MHz}; \text{CDCl}_{3})/\text{ppm}$ 169.9, 169.9, 143.5, 143.0, 137.5, 137.2, 133.0, 132.9, 132.6, 132.6, 129.2, 128.6, 128.4, 127.9, 127.5, 127.3, 127.3, 125.1, 125.0, 121.1, 99.0, 97.9, 92.9, 90.5, 89.3, 88.2, 49.3, 49.1,

29.7, 20.1, 20.0, 13.8, 13.7; FD-LRMS *m*/*z* 1794.7 (M⁺, 69%), 1795.7 ([M+1]⁺, 100), 1796.7 ([M+2]⁺, 75), 1797.7 ([M+3]⁺, 38), 1798.7 ([M+4]⁺, 15); FD-HRMS Found: 1794.78409, Calc. for C₁₂₆H₁₀₂N₆O₆: 1794.78609; UV λ_{max} (CH₂Cl₂)/nm (log ε) 385 (sh. 4.78), 364 (4.88), 320 (sh. 4.84), 295 (4.88), 265 (sh. 4.76).

References and note

- 1 R. Katoono, Y. Tanaka, K. Kusaka, K. Fujiwara and T. Suzuki, J. Org. Chem., 2015, 80, 7613.
- 2 R. Katoono, S. Kawai, K. Fujiwara and T. Suzuki, *Chem. Sci.*, 2015, 6, 6592.
- 3 S. Akine, TitrationFit, program for analyses of host–guest complexation, Kanazawa University, Kanazawa, Japan, 2013.
- 4 Y. Tobe, N. Nakagawa, J. Kishi, M. Sonoda, K. Naemura, T. Wakabayashi, T. Shida and Y. Achiba, *Tetrahedron*, 2001, **57**, 3629.
- 5 H. Kinoshita, N. Hirai and K. Miura, J. Org. Chem., 2014, 79, 8171.
- 6 P. Ehlers, A. Neubauer, S. Lochbrunner, A. Villinger and P. Langer, *Org. Lett.*, 2011, **13**, 1618.

¹H NMR spectrum (400 MHz) of 7, measured in chloroform-d at room temperature.

 13 C NMR spectrum (100 MHz) of 7, measured in chloroform-*d* at room temperature.

¹H NMR spectrum (400 MHz) of 8a, cont. residual hexane, measured in chloroform-d at room temperature.

S21

¹³C NMR spectrum (100 MHz) of **8b**, cont. residual hexane, measured in chloroform-*d* at room temperature.

¹³C NMR spectrum (100 MHz) of 9a, cont. residual hexane, measured in chloroform-d at room temperature.

¹H NMR spectrum (400 MHz) of **9b**, measured in chloroform-d at room temperature.

S2

S26

¹H NMR spectrum (400 MHz) of 3a, measured in chloroform-*d* at room temperature.

 13 C NMR spectrum (100 MHz) of **3a**, measured in chloroform-*d* at room temperature.

S29

S30

LR MS spectrum (FD) of 7.

LR MS spectrum (FD) of 8a.

÷

LR MS spectrum (FD) of 8b.

LR MS spectrum (FD) of 9a.

LR MS spectrum (FD) of 9b.

.

LR MS spectrum (FD) of 3a.

LR MS spectrum (FD) of **3b**.