Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Stereoselective synthesis of vinyl nitriles through Ramberg-Backlünd olefination reaction

Octavio Adrián Valle-González, Ángel Ismael Salazar-Bello and J. Armando Luján-Montelongo*

Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, México. jalujanm@cinvestav.mx

Supporting information

- 1. General experimental conditions
- 2. Initial optimization of the Ramberg-Bäcklund reaction conditions
- 3. Post-RBR isomerization trials
- 4. General thioacetate (S1) synthesis
- 5. General thioether (S2) synthesis A from thiols (S3) (alkylation 1)
- 6. General thioether (S2) synthesis B from thioacetates (S1) (alkylation 2)
- 7. General sulfone (1) synthesis A using Oxone®
- 8. General sulfone (1) synthesis B using *m*-CPBA
- 9. General Ramberg-Bäcklund reaction procedure
- 10. Spectra

Compound	Experimental and	¹ H NMR	¹³ C NMR	
	spectroscopic			
	data			
S CN	S9	S18	S18	
1a				
CI S CN	9	S19	S19	
1b				
S CN	S9	S20	S20	
1c				
MeO O O O	S9	S21	S21	
1d				
O ₂ N S CN	S10	S22	S22	
1e				
S CN	S10	S23	S23	
1f				

MeO ₂ C	S10	S24	S24
1g	0.40	005	005
	S10	S25	S25
1h	011	000	000
	511	526	526
	S11	S27	S27
1]	011	000	000
	511	528	528
	C11	<u> </u>	600
	511	529	529
	<u>\$12</u>	S 30	S 30
N O O Ms	512		330
1m			
	S12	S31	S31
1n			
	512	532	\$32
S CN	S12	S33	S33
1p			
	S13	S34	S34
Za CN	S13	S35	S35

CI	S13	S36	S36
2b			
fBu 2c	S13	S37	S37
MeO 2d	S14	S38	S38
0 ₂ N 2e	S14	S39 S40	S39 S40
2f	S14	S41	S41
MeO ₂ C 2g	S14	S42	S42
2h	S15	S43	S43
2i	S15	S44	S44
2i	S15	S45 S46	S45 S46
O CN 2k	S15	S47	S47
S CN 2l	S15	S48	S48
Ms 2m	S16	S49	S49

Et CN	S16	S50	S50	
2n				
Bn	S16	S51	S51	
20	<u><u> </u></u>	852	852	
H ₂ N S O 6	310	552	302	
H ₂ N O S CN 7	S17	S53	S53	
H ₂ N CN	S17	S54 S55	S54 S55	
3				

1. General experimental conditions

All reagents and solvents were of reagent or analytical grade and used without further purification unless otherwise stated. Qualitative thin layer chromatography (TLC) analyses and preparative runs were performed using glass or aluminum baked silica gel (F_{254}). TLC plates were visualized by exposition to UV light (254 nm), iodine and/or phosphomolybdic acid solution (20%). Purifications were performed by flash column chromatography on 230-400 mesh silica gel or using a rotary chromatography device (ChromatotronTM), using 1-, 2-, or 4-mm high purity SiO₂ rotary plates, 2-25 μ m particle size. ¹H and ¹³C NMR were acquired using Bruker Advance III HD 400 and JEOL ECA 500 spectrometers. Chemical shifts of both ¹H and ¹³C are reported in parts per million (ppm) on the δ scale, referenced with respect to residual solvent (CDCl₃) at 7.26 ppm or from internal standard tetramethylsilane (TMS) at 0.00 ppm. Data were reported as follows: chemical shift, multiplicity (*s* = singlet, *d* = doublet, *dd* = doublet of doublets, *t* = triplet, *m* = multiplet), coupling constants (Hz) and integration. ¹³C NMR data were collected with complete proton decoupling. Infrared spectra were recorded on a Varian FT-IR 600IR spectrometer equipped with an ATR sampling accessory and IR Spectrum GX. Mass spectra were acquired on an Agilent G1969A ESI-TOF. Melting points were measured on an MelTemp II.

		CN Base, Solver	CBr₄, nt, T, t ►		CN	
	1	a		2a	I	
Entry	Solvent	Base (equiv)	T (°C)	t (h)	Conv. %	Ratio E/Z
1	<i>t</i> -BuOH	KO <i>t</i> -Bu (2)	rt	72	-	-
2	<i>t</i> -BuOH	KO <i>t</i> -Bu (5)	rt	72	-	-
3	<i>t</i> -BuOH	KO <i>t</i> -Bu (10)	rt	96	-	-
4	<i>t</i> -BuOH	KO <i>t</i> -Bu (2)	90	6	22	50:50
5	THF: <i>t</i> -BuOH	KO <i>t</i> -Bu (2)	70	6	25	50:50
6	THF: <i>t</i> -BuOH	KO <i>t</i> -Bu (2.5)	70	6	18	50:50
7	THF: <i>t</i> -BuOH	KO <i>t</i> -Bu (2)	0	48	5	72:28
8	CH ₂ Cl ₂ :t-BuOH	KO <i>t</i> -Bu (2)	0	4	15	44:56
9	MeOH	DBU (2)	70	2	90	84:16
10	MeOH	DBU (3)	70	3	100	84:16
11	MeOH	DBU (5)	70	3	100	83:17
12	MeOH	DBU (5)	rt	2	100	83:17
13	MeOH	DBU (3)	rt	2.5	100	84:16
14	MeOH	DBU (3)	10	3	100	82:18
15	MeOH	DBU (3)	0	3	100	83:17
16	Et ₂ O	DBU (3)	rt	48	100	88:12

2. Initial optimization of the Ramberg-Bäcklund reaction conditions.

* 1.1 equiv of CBr₄ were used in all cases

Table S1. Evaluation of solvent, base and temperature in the RBR olefination of 1a.

We initially employed classic or traditional conditions for the RBR reaction (entries 1-3). However, we observed little to no formation of the olefinic products and mostly recovered starting materials. A modest conversion was detected at 90 °C with no stereoselectivity (entry 4), which led us to attempt increasing the conversion by adding co-solvents like THF (entries 5-7). Unfortunately, we found no improvement in either yield or stereoselectivity. Interestingly, a decrease in temperature to 0 °C improved the stereoselectivity but resulted in lower conversion (entry 7). The use of additional binary solvent mixtures like CH_2Cl_2/t -BuOH (entry 8) did not improve either stereoselectivity or conversion. However, when we switched to a protic solvent such as methanol, there was a significant improvement in both conversion (entry 10), stereoselectivity remained unchanged. A similar result was obtained even when an excess of base was used (entry 11). Interestingly, lowering the reaction temperature to room temperature resulted in virtually the same outcome (entry 12), and 3 eq of base was optimal (entry 13). Colder conditions (entries 14 and 15) did not improve stereoselectivity, and another polar but aprotic solvent like ethyl ether yielded a comparable result (entry 16), but with longer reaction times.

3. Post-RBR isomerization trials

Control experiments were necessary to exclude the possibility of E/Z equilibration on the olefinic products (2) after the Ramberg-Bäcklund olefination on sulfones (1). We first monitored the E/Z ratio by¹H-NMR over longer reaction times and observed no change. The ratio remained constant even after 12 hours of reaction exposure (Figure S1).

Figure S1. ¹H-NMR spectra of crude reaction mixtures of **1a** olefination after 4, 8 and 12 h.

A similar outcome was found when a pure, isolated mixture of 2a was exposed to DBU excess in MeOH. After 40h the E/Z ratio remained constant.

Secondly, a **Z-enriched** mixture of **2a** (*E*/*Z* ratio 14:86; obtained through a Chromatotron® "dry plate" separation method, eluent 100 μ L acetone:100 mL hexanes), was exposed to the reaction conditions for up to 24 hours, without observing any significant change in the *E*/*Z* ratio (**Figure S2**).

4. General thioacetate (S1) synthesis

To a cold solution (0 °C) of the corresponding alkyl halide (**S4**, 1.0 eq) in CH_2CI_2 (0.3 M considering **S4**), thiolacetic acid (1.1 eq) and triethylamine (1.1 eq) were added dropwise. The mixture was allowed to warm to rt and stirred for *ca*. 2 h until starting material was consumed (monitored by TLC). Water was added, and the aqueous layer extracted with ethyl acetate (x3). The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated to afford crude alkyl thioacetate (**S1**). Pure **S1** was obtained by SiO₂ chromatography using mixtures of hexanes and ethyl acetate as eluents.

5. General alkylation 1 - Thioether (S2) synthesis from thiols (S3)

To a cold slurry (0°C) of NaH (1.1 eq) in dimethylformamide(0.3 M considering **S3**), corresponding thiol (**S3**, 1.0 eq, dissolved in a minimal amount of dimethylformamide) was added dropwise and stirred at 0 °C for 30 min. Then, chloroacetonitrile (1.0 eq) was added dropwise. The mixture was allowed to warm to rt and stirred for *ca*. 1 h until starting material was consumed (monitored by TLC). Water was added, and the aqueous layer was extracted with ethyl acetate (x3). The combined organic

extracts were washed with brine, dried (Na₂SO₄), and concentrated to afford crude thioether (**S2**). Pure **S2** was obtained by SiO₂ chromatography using mixtures of hexanes and ethyl acetate as eluents.

6. General alkylation 2 - Thioether (S2) synthesis B from thios (S1)

To a cold (0°C) solution of the corresponding thioacetate (**S1**, 1.0 eq) in MeOH (0.3 M with respect to **S1**) LiOH·H₂O (1.05 eq) was added, and the mixture stirred 5 min. Then chloroacetonitrile (1.05 eq) was added dropwise to the mixture. The mixture was allowed to warm to rt and stirred for *ca.* 1 h until starting material was consumed (monitored by TLC). Water was added, and the aqueous layer was extracted with CH_2Cl_2 (x3). The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated to afford the crude thioether (**S2**). Pure **S2** was obtained by SiO₂ chromatography using mixtures of hexanes and ethyl acetate as eluents.

7. General oxidation 1 – Sulfones (1) from thioethers (S2) using Oxone®

To a solution of the corresponding thioether (**S2**, 1.0 eq) in MeOH (0.3 M with respect to **S2**), Oxone® (3.0 eq) was added portionwise and stirred at room temperature. The mixture was allowed to warm (rt) and stirred for *ca*. 12 h until starting material was consumed (monitored by TLC). The mixture was filtered and concentrated under vacuum to a quarter of the original volume, water was added, and the aqueous layer was extracted with ethyl acetate (x3). The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated to afford crude sulfone (**1**). Pure **1** was obtained by SiO₂ chromatography using mixtures of hexanes and ethyl acetate as eluents.¹

8. General oxidation 2 – Sulfones (1) from thioethers (S2) using *m*-CPBA

To a solution of corresponding thioether (**S2**, 1.0 eq) in a mixture dioaxane:buffer pH=8 (1:1, 0.3 M with respect to **S2**), *m*-CPBA (2.2 eq) was added portionwise and stirred at room temperature. The mixture was stirred and monitored by TLC chromatography until starting material was consumed (*ca.* 12 h). Solution was cooled at 0°C and solid NaHCO₃ was added, and the mixture stirred for 30 min. The mixture was diluted with water and the aqueous layer was extracted with CH₂Cl₂ (x3). The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated to afford crude sulfone (**1**). Pure **1** was obtained by SiO₂ chromatography using mixtures of hexanes and ethyl acetate as eluents.¹

¹ Initial hexanes/ethyl acetate in a 80:20 ratio was often used, usually increasing ethyl acetate towards 60:40 or 50:50 ratio (gradient) to ensure maximum product recovery.

9. General olefination procedure (Ramberg-Bäcklund reaction)

To solution of the corresponding sulfone **1** in MeOH (0.1 M with respect to **1**), CBr₄ (1.1eq) and 1,8diazabicyclo[5.4.0]undec-7-ene (DBU, 3 eq) were sequentially added and stirred until starting material was consumed (monitored by TLC). Water was added, and the aqueous layer was extracted with CH₂Cl₂ (x3). The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated to afford crude vinyl nitrile (**2**). Pure **2** was obtained flash or radial SiO₂ chromatography using mixtures of hexanes and ethyl acetate as eluents.²

CN 2-(Benzylsulfonyl)acetonitrile (1a) was prepared through a two-step alkylationoxidation sequence from the corresponding thiol (S3a, 654 mg, 5.3 mmol) Alkylation of S3a (alkylation 1) delivered the corresponding thioether product

S2a. ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 2.22 (m, 5H), 3.88 (s, 2H), 3.02 (s, 2H) ppm. Oxidation of **S2a** (oxidation 1) delivered sulfonyl nitrile 1a, which was purified by SiO₂ flash chromatography. Pure 1a was obtained as a white solid (two-step yield: 88%). ¹H and ¹³C NMR spectroscopy matched literature reported data.³ ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.46 (m, 5H), 4.52 (s, 2H), 3.72 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 130.8, 130.2, 129.8, 126.4, 110.4, 59.7, 40.0 ppm.

2-((4-Chlorobenzyl)sulfonyl)acetonitrile (1b) was prepared through a twostep alkylation-oxidation sequence from the corresponding thiol **(S3b**, 612 mg, 3.9 mmol). Alkylation of **S3b (alkylation 1)** delivered the corresponding

thioether product **S2b**. ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, *J*= 8.6 Hz, 2H), 7.28 (d, *J*= 8.5 Hz, 2H), 3.89 (s, 2H), 3.08 (s, 2H) ppm. Oxidation of **S2b (oxidation 1)** delivered sulfonyl nitrile **1b**, which was purified by SiO₂ flash chromatography. Pure **1b** was obtained as a solid (two-step yield 75%). mp 178-180 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J*= 8.6 Hz, 2H), 7.43 (d, *J*= 8.6 Hz, 2H), 4.50 (s, 2H), 3.75 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 136.2, 132.2, 129.7, 124.7, 110.5, 58.7, 40.5 ppm. MS (ESI+), m/z: Calculated for C₉H₈NO₂SCI 229.0; found 252.0 [M+Na]⁺. IR-KBr v_{max} (cm⁻¹) (2254 CN), (1306, 1134 SO₂).

2-((4-(Tert-butyl)benzyl)sulfonyl)acetonitrile (1c) was prepared through a two-step alkylation-oxidation sequence from the corresponding thiol **(S3c**, 040, mg, 5.1, mg, b). Alkylation, of **S3c**, (alkylation, 4), delivered the

^{tBu} 919 mg, 5.1 mmol). Alkylation of **S3c** (alkylation 1) delivered the corresponding thioether product **S2c**. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, *J*= 8.3 Hz, 2H), 7.27 (d, *J*= 8.3 Hz, 2H), 3.88 (s, 2H), 3.07 (s, 2H), 1.31 (s, 9H) ppm. Oxidation of **S2c** (oxidation 1) delivered sulfonyl nitrile **1c**, which was purified by SiO₂ flash chromatography. Pure **1c** was obtained as a solid (two-step yield 91%). mp 106-108 °C. ¹H NMR (400 MHz, CDCl₃) 7.48 (d, *J*= 8.5 Hz, 2H), 7.41 (d, *J*= 8.4 Hz, 2H), 4.49 (s, 2H), 3.72 (s, 2H), 1.33 (s, 9H) ppm. NMR ¹³C (100 MHz, CDCl₃) δ 153.5, 130.5, 126.8, 123.3, 110.5, 59.3, 39.9, 35.0, 31.3 ppm. MS (ESI+), m/z: Calculated for C₁₃H₁₇NO₂S 251.1; found 269.2 [M+H₂O]⁺, IR-ATR v_{max} (cm⁻¹) (2255 CN), (1330, 1128 SO₂).

2-((4-Methoxybenzyl)sulfonyl)acetonitrile (1d) was prepared through a two-step alkylation-oxidation sequence from the corresponding thioacetate **(S1d**, 469 mg, 2.4 mmol). Alkylation of **S1d (alkylation 2)** delivered the

corresponding thioether product **S2d.** ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J*= 8.6 Hz, 2H), 6.88 (d, *J*= 8.7 Hz, 2H), 3.88 (s, 2H), 3.81 (s, 3H), 3.07 (s, 2H) ppm. Oxidation of **S2d (oxidation 1)** delivered sulfonyl nitrile **1d**, which was purified by SiO₂ flash chromatography. Pure **1d** was obtained as a solid

² Vinylnitriles eluted efficiently usually by using hexanes/ethyl acetate (95:5 ratio).

³ Bostick, T. M.; Christie, S. D.; Connolly, T. J.; Copp, S.; Langler, R. F.; Reid, D. L.; Zaworotko, M. Aust. J. Chem. **1996**, 49, 243–247. Org. Lett. 2011, 13, 2, 208–211

(two-step yield 89%). mp 143-145 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J*= 8.7 Hz, 2H), 6.98 (d, *J*= 8.7 Hz, 2H), 4.47 (s, 2H), 3.84 (s, 3H), 3.71 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 132.1, 118.1, 115.2, 110.5, 59.1, 55.6, 39.7 ppm. MS (ESI+), m/z: Calculated for C₁₀H₁₁NO₃S 225.1; found 248.1 [M+Na]⁺, IR-ATR v_{max} (cm⁻¹) (2242 CN), (1301, 1174 SO₂), (1242, 1030 MeO).

2-((4-Nitrobenzyl)sulfonyl)acetonitrile (1e) was prepared through a twostep alkylation-oxidation sequence from the corresponding thioacetate **(S1e**, 652 mg, 3.1 mmol). Alkylation of **S1e (alkylation 2)** delivered the

corresponding thioether product **S2e.** ¹H NMR (500 MHz, CDCl₃ δ 8.23 (d, *J*= 8.7 Hz, 2H), 7.55 (d, *J*= 8.6 Hz, 2H), 4.02 (s, 2H), 3.14 (s, 2H) ppm. Oxidation of **S2e (oxidation 1)** delivered sulfonyl nitrile **1e**, which was purified by SiO₂ flash chromatography. Pure **1e** was obtained as a white solid (two-step yield 79%). mp 151-153 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J*= 8.4 Hz, 2H), 7.71 (d, *J*= 8.4 Hz, 2H), 4.65 (s, 2H), 3.85 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 149.1, 132.8, 132.1, 124.8, 110.1, 58.7, 41.2 ppm. MS (ESI+), m/z: Calculated for C₉H₈N₂O₄S 240.1; found 263.1 [M+Na]⁺, IR-ATR v_{max} (cm⁻¹) (2238 CN), (1508, 1344 NO₂), (1307, 1107 SO₂).

2-((4-VinyIbenzyI)sulfonyI)acetonitrile (1f) was prepared through a twostep alkylation-oxidation sequence from the corresponding thioacetate (S1f, 310 mg, 1.6 mmol). Alkylation of S1f (alkylation 2) delivered the

corresponding thioether product **S2f** ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 6.71 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.76 (d, *J* = 17.6 Hz, 1H), 5.27 (d, *J* = 10.9 Hz, 1H), 3.91 (s, 2H), 3.07 (s, 2H).Oxidation of **S2f (oxidation 2)** delivered sulfonyl nitrile **1f**, which was purified by SiO₂ flash chromatography. Pure **1f** was obtained as a white solid (two-step yield 77%). mp 130-132 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J*= 8.3 Hz, 2H), 7.44 (d, *J*= 8.5 Hz, 2H), 6.73 (dd, *J*= 17.6, 10.9 Hz, 1H), 5.83 (d, *J*= 17.6 Hz, 1H), 5.36 (d, *J*= 10.9 Hz, 1H), 4.51 (s, 2H), 3.74 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 135.8, 131.0, 127.4, 125.5, 116.1, 110.5, 59.4, 40.0 ppm. MS (ESI+), m/z: Calculated for C₁₁H₁₁NO₂S 221.1; found 222.1 [M+H]⁺, IR-ATR v_{max} (cm⁻¹) (3086 C=C-H), (2265 CN), (1334, 1133 SO₂).

CN

Methyl 4-(((cyanomethyl)sulfonyl)methyl)benzoate (1g) was prepared through a two-step alkylation-oxidation sequence from the corresponding thioacetate (S1g, 507 mg, 2.3 mmol). Alkylation of S1g (alkylation 2)

delivered the corresponding thioether product **S2g.** ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J*= 8.0 Hz, 2H), 7.44 (d, *J*= 8.0 Hz, 2H), 3.97 (s, 2H), 3.93 (s, 3H), 3.09 (s, 2H) ppm. Oxidation of **S2g (oxidation 2)** delivered sulfonyl nitrile **1g**, which was purified by SiO₂ flash chromatography. Pure **1g** was obtained as a solid (two-step yield 89%). mp 138-140°C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J*= 8.4 Hz, 2H), 7.59 (d, *J*= 8.3 Hz, 3H), 4.59 (s, 2H), 3.95 (s, 3H), 3.76 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 166.2 131.9, 131.0, 130.9, 130.8, 110.3, 59.2, 52.7, 40.5 ppm. MS (ESI+), m/z: Calculated for C₁₁H₁₁NO₄S 253.0; found 254.0 [M+H]⁺, IR-KBr v_{max} (cm⁻¹) (2266 CN), (1726 CO₂Me), (1333, 1134 SO₂).

2-((2-Methylbenzyl)sulfonyl)acetonitrile (1h) was prepared through a two-step alkylation-oxidation sequence from the corresponding thioacetate **(S1h**, 493 mg, 2.73 mmol). Alkylation of **S1h (alkylation 2)** delivered the corresponding thioether product **S2h**. Oxidation of **S2h (oxidation 1)** delivered sulfonyl nitrile **1h**, which

was purified by SiO₂ flash chromatography. Pure **1h** was obtained as a solid (two-step yield 87%). mp 126-128°C ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.34 (m, 2H), 7.32 – 7.28 (m, 2H), 4.59 (s, 2H), 3.86 (s, 2H), 2.49 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 131.8, 131.5, 130.3, 127.1, 124.6, 110.6, 57.3, 40.6, 20.0 ppm. MS (ESI+), m/z: Calculated for C₁₀H₁₁NO₂S 209.1; found 232.1 [M+Na]⁺, IR-ATR v_{max} (cm⁻¹) (2258 CN), (1316, 1131 SO₂)

2-(CinnamyIsulfonyI)acetonitrile (1i) was prepared through a two-step alkylation-oxidation sequence from the corresponding thioacetate **(S1i**, 300 mg, 1.56 mmol). Alkylation of **S1i (alkylation 2)** delivered the corresponding

thioether product **S2i.** ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J*= 7.5 Hz, 2H), 7.34 (t, *J*= 7.5 Hz, 2H), 7.29 (d, *J*= 7.4 Hz, 1H), 6.58 (d, *J*= 15.7 Hz, 1H), 6.13 (dt, *J*= 15.5, 7.6 Hz, 1H), 3.53 (d, *J*= 7.6 Hz, 2H), 3.25 (s, 2H) ppm. Oxidation of **S2i (oxidation 2)** delivered sulfonyl nitrile **1i**, which was purified by SiO₂ flash chromatography. Pure **1i** was obtained as a white solid (two-step yield 38%). mp: 101°C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.35 (m, 5H) 7.45 (d, *J*= 6.3 Hz, 2H), 7.34 (dd, *J*= 7.3, 6.2 Hz, 3H), 6.88 (d, *J*= 15.7 Hz, 1H), 6.26 (dt, *J*= 15.7, 7.7 Hz, 1H), 4.16 (d, *J*= 7.6 Hz, 2H), 3.96 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 134.9, 129.6, 129.1, 127.1, 113.5, 110.4, 57.7, 40.3 ppm. MS (ESI+), m/z: Calculated for C₁₁H₁₁NO₂S 221.1; found 244.1 [M+Na]⁺, IR-ATR v_{max} (cm⁻¹) (2257 CN) (1325, 1123 SO₂), (3054 C=C-H)

Br 0 0

(Z)-2-((2-Bromo-3-phenylallyl)sulfonyl)acetonitrile (1j) was prepared through a two-step alkylation-oxidation sequence from the corresponding thioacetate (S1j, 300 mg, 1.1 mmol). Alkylation of S1j (alkylation 2) delivered

the corresponding thioether product **S2j.** ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J*= 7.5 Hz, 2H), 7.34 (t, *J*= 7.5 Hz, 2H), 7.29 (d, *J*= 7.4 Hz, 1H), 6.58 (d, *J*= 15.7 Hz, 1H), 6.13 (dt, *J*= 15.5, 7.6 Hz, 1H), 3.53 (d, *J*= 7.6 Hz, 2H), 3.25 (s, 2H). Oxidation of **S2j (oxidation 2)** delivered sulfonyl nitrile **1j**, which was purified by SiO₂ flash chromatography. Pure **1j** was obtained as solid (two-step yield 33%). ¹H NMR (500 MHz, CDCl₃) δ 7.68 (dd, *J*= 7.8, 1.9 Hz, 2H), 7.45 – 7.39 (m, 3H), 7.27 (s, 1H), 4.53 (s, 2H), 4.15 (s, 2H) ppm.¹³C NMR (125 MHz, CDCl₃) δ 139.5, 133.9, 129.8, 129.3, 128.6, 110.2, 106.8, 66.1, 42.3 ppm. MS (ESI+), m/z: Calculated for C₁₁H₁₀BrNO₂S 301.0; found 323.9 [M+Na]⁺, IR-ATR v_{max} (cm⁻¹) 2255 (CN).

2-((Furan-2-ylmethyl)sulfonyl)acetonitrile (1k) was prepared through a two-step alkylation-oxidation sequence from the corresponding thioacetate⁴ (**S1k**, 336 mg, 2.15 mmol). Alkylation of **S1k (alkylation 2)** delivered the corresponding thioether

product **S2k.** ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, *J*= 1.9, 0.9 Hz, 1H), 6.35 (d, *J*= 1.8 Hz, 1H), 6.31 (d, *J*= 3.1 Hz, 1H), 3.95 (s, 2H), 3.22 (s, 2H). Oxidation of **S2k (oxidation 2)** delivered sulfonyl nitrile **1k**, which was purified by SiO₂ flash chromatography. Pure **1k** was obtained as a white solid (two-step yield 32%). mp 94 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J*= 1.9 Hz, 1H), 6.64 (d, *J*= 3.4 Hz, 1H), 6.49 (dd, *J*= 3.4, 1.9 Hz, 1H), 4.61 (s, 2H), 3.96 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 140.5, 113.9, 112.0, 110.1, 53.1, 41.3 ppm. MS (ESI+), m/z: Calculated for C₇H₇NO₃S 185.0; found 184.0 [M-H]⁻, IR-ATR v_{max} (cm⁻¹) (2260 CN), (1330, 1144 SO₂).

2-((Thiophen-2-ylmethyl)sulfonyl)acetonitrile (1I) was prepared through a twostep alkylation-oxidation sequence from the corresponding thioacetate **(S1I** 600 mg, 3.48 mmol). Alkylation of **S1I (alkylation 2)** delivered the corresponding

thioether product **S2I**. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (dd, *J*= 5.1, 1.3 Hz, 1H), 7.04 (dd, *J*= 3.5, 1.1 Hz, 1H), 6.95 (dd, *J*= 5.1, 3.4 Hz, 1H), 4.16 (s, 2H), 3.18 (s, 2H) ppm. Oxidation of **S2I (oxidation 2)** delivered sulfonyl nitrile **1I**, which was purified by SiO₂ flash chromatography. Pure **1I** was obtained as a white solid with (two-step yield 78%). mp 92-94°C ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dd, *J*= 5.2, 1.2 Hz, 1H), 7.30 (dd, *J*= 3.6, 1.1 Hz, 1H), 7.12 (dd, *J*= 5.2, 3.6 Hz, 1H), 4.74 (s, 2H), 3.82 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 131.5, 129.3, 128.2, 126.6, 110.2, 54.3, 39.8 ppm. MS (ESI+), m/z: Calculated for C₇H₇NO₂S₂ 201.0; found 200.0 [M-H]⁻, IR-ATR v_{max} (cm⁻¹) (2254 CN), (1319, 1145

^SO₂). ^SS1R, S1I and S1m were prepared through aldehyde reduction with NaBH₄ (D'Alessandro, S.; Alfano, G.; Di Cerbo, L.; Brogi, S.; Chemi, G.; Relitti, N.; Brindisi, M.; Lamponi, S.; Novellino, E.; Campiani, G.; et al. *Bioorg. Chem.* 2019, *89*, 103020), followed by displacement using thiolacetic acid (Mitsunobu) (Schulze, O.; Voss, J.; Adiwidjaja, G.; Olbrich, F. *Carbohydr. Res.* 2004, *339*, 1787–1802.)

2-(((1-(Methylsulfonyl)-1*H***-indol-3-yl)methyl)sulfonyl)acetonitrile (1m)** was prepared through a two-step alkylation-oxidation sequence from the corresponding thioacetate **(S1m**, 580 mg, 2.1 mmol). Alkylation of **S1m** (alkylation 2) delivered the corresponding thioether product **S2m**. ¹H NMR

(400 MHz, CDCl₃) δ 7.93 (d, *J*= 8.2 Hz, 1H), 7.73 (d, *J*= 7.7 Hz, 1H), 7.49 (s, 1H), 7.43 (t, *J*= 7.7 Hz, 1H), 7.37 (t, *J*= 7.6 Hz, 1H), 4.09 (s, 2H), 3.20 (s, 2H), 3.14 (s, 3H) ppm. Oxidation of **S2m (oxidation 2)** delivered sulfonyl nitrile **1m**, which was purified by SiO₂ flash chromatography. Pure **1m** was obtained as a solid with (two-step yield 45%). mp 178-180°C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dd, *J*= 5.2, 1.2 Hz, 1H), 7.30 (dd, *J*= 3.6, 1.1 Hz, 1H), 7.12 (dd, *J*= 5.2, 3.6 Hz, 1H), 4.74 (s, 2H), 3.83 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 131.5, 129.3, 128.2, 126.6, 110.2, 54.3, 39.8 ppm. MS (ESI+), m/z: Calculated for C₁₂H₁₂N₂O₄S₂ 312.0; found 335.0 [M+Na]⁺, IR-ATR v_{max} (cm⁻¹) 2244 (CN), (1359, 1172, 1124 SO₂).

2-(Benzylsulfonyl)butanenitrile (1n). To a cold slurry (0°C) of NaH (1.1 eq) in dimethylformamide (0.3 M with respect to **1a**) under inert atmosphere (Ar), sulfone **1a** (1 eq, dissolved in a minimal amount of dimethylformamide) was added and stirred for 1 h at 0°C. The corresponding alkyl halide (1.0 eq) was added, and the

mixture allowed to warm (rt) and stirred for *ca*. 1 h until starting material was consumed (monitored by TLC). The reaction was diluted with half-saturated NH₄Cl solution (twice the volume of the reaction mixture), and the aqueous layer extracted with ethyl acetate (x3). The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated to afford the crude sulfone **(1n)**. Pure **1n** was obtained by SiO₂ chromatography (plug) using a mixture of hexanes and ethyl acetate 80:20 as eluent. Pure **1n** was obtained as a white solid (yield 95%). mp 82-84°C. ¹H NMR (500 MHz, CDCl₃) δ 7.51 - 7.45 (m, 5H), 4.64 (d, *J*= 14.3 Hz, 1H), 4.45 (d, *J*= 14.3 Hz, 1H), 3.58 (dd, *J*= 10.0, 5.0 Hz, 1H), 2.14 - 2.01 (m, 2H), 1.19 (t, *J*= 7.5 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 131.0, 129.9, 129.6, 126.3, 114.1, 58.7, 52.9, 18.7, 11.3 ppm. MS (ESI+), m/z: Calculated for C₁₁H₁₃NO₂S 223.1; found 224.1 [M+H]⁺, IR-ATR v_{max} (cm-1) (2248 CN), (1304, 1133 SO₂).

2-((1,2-Diphenylethyl)sulfonyl)acetonitrile (10). To a cold (0°C) solution of sulfone **1a** in tetrahydrofuran (0.3 M) under inert atmosphere (Ar), lithium bis(trimethylsilyl)amide (2.5 eq) was added dropwise, and the mixture stirred for 1 h. Alkyl halide (2.5 eq) was added to the mixture and stirred for 3 h. The reaction mixture was diluted with half-saturated NH₄Cl solution (twice the volume of the

reaction mixture), and the aqueous layer extracted with ethyl acetate (x3). The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated to afford the crude sulfone **(10)**. Pure **10** was obtained by SiO₂ chromatography using a mixture of hexanes and ethyl acetate 80:20 as eluent. Pure **10** was obtained as a white solid (yield 85%). mp 102-104°C. ¹H NMR (500 MHz, CDCl₃) δ 7.48 - 7.37 (m, 5H), 7.22 - 7.16 (m, 3H), 7.03 (dd, *J*= 7.4, 1.8 Hz, 2H), 4.66 (dd, *J*= 13.8, 3.9 Hz, 1H), 3.79 (dd, *J*= 13.7, 3.9 Hz, 1H), 3.59 (d, *J*= 16.7 Hz, 1H), 3.50 (d, *J*= 16.7 Hz, 1H), 3.37 (dd, *J*= 13.7, 10.9 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 135.6, 130.8, 130.2, 129.9, 129.7, 129.3, 128.8, 127.4, 110.3, 70.8, 40.5, 33.5 ppm. MS (ESI+), m/z: Calculated for C₁₆H₁₅NO₂S 285.1; found 308.1 [M+Na]⁺, IR-ATR v_{max} (cm⁻¹) (2258 CN), (1336, 1133 SO₂).

2-(HeptyIsulfonyI)acetonitrile (1p) was prepared through a two-step alkylation-oxidation sequence from the corresponding thiol **(S3p**, 876 mg, 6.6 mmol). Alkylation of thiol **S3p (alkylation 1)** delivered the corresponding thioether product **S2p**. ¹H NMR (500 MHz, CDCl₃) δ 3.27 (s, 2H), 2.71 (t, *J*= 7.4 Hz, 2H), 1.62 (q, *J*= 7.4 Hz, 2H), 1.38 (q, *J*= 6.7 Hz, 2H), 1.32-1.21 (m, 6H), 0.86 (t, *J*= 6.9 Hz, 3H) ppm. Oxidation of **S2n (oxidation 1)** delivered sulfonyl nitrile **1p**, which was purified by SiO₂ flash chromatography. Pure **1p** was obtained as a solid with (two-step yield 80%). mp 65-67°C. ¹H NMR (500 MHz, CDCl₃) δ 3.96 (s, 2H), 3.30 - 3.25 (m,

2H), 1.92 (m, 2H), 1.49 (q, J= 7.7, 7.3 Hz, 2H), 1.39 - 1.28 (m, 6H), 0.90 (t, J= 6.9 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 110.5, 53.6, 42.2, 31.5, 28.7, 28.3, 22.6, 22.1, 14.1 ppm. MS (ESI+), m/z: Calculated for C₉H₁₇NO₂S; 203.1 found 204.1 [M+H]⁺, IR-ATR v_{max} (cm⁻¹) (2260 CN) (1330, 1133 SO_2).

2-(Cyclohexylsulfonyl)acetonitrile (1q) was prepared through a two-step alkylation-oxidation sequence from the corresponding thiol (S3q, 658 mg, 5.7 mmol). Alkylation of thiol S3q (alkylation 1) delivered the corresponding thioether product **S2q**. ¹H NMR (500 MHz, CDCl₃) δ 3.27 (s, 2H), 2.71 (t, *J*= 7.4 Hz, 2H), 1.62

(q, J= 7.4 Hz, 2H), 1.38 (q, J= 6.7 Hz, 2H), 1.32 - 1.21 (m, 6H), 0.86 (t, J= 6.9 Hz, 3H). Oxidation of **S2g** (oxidation 1) delivered sulforyl nitrile 1g, which was purified by SiO₂ flash chromatography. Pure **1r** was obtained as a solid (two-step yield 80%). mp 68-70°C. ¹H NMR (500 MHz, CDCl₃) δ 3.95 (s, 2H), 3.28 (tt, J= 12.2, 3.5 Hz, 1H), 2.27 - 2.17 (m, 2H), 1.99 (dp, J= 10.4, 3.7 Hz, 2H), 1.89 - 1.69 (m, 1H), 1.64 (ddd, J= 25.0, 12.5, 3.3 Hz, 2H), 1.38 (qt, J= 13.1, 3.4 Hz, 2H), 1.26 (qt, J= 13.1, 3.4 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 110.6, 62.4, 39.6, 25.2, 24.9, 24.9. MS (ESI+), m/z: Calculated for C₈H₁₃NO₂S; 187.1 found 147.1 [M-CH₂CN]⁺, IR-ATR v_{max} (cm⁻¹) (2261 CN), (1297, 1134 SO₂).

Vinyl nitriles

Cinnamonitrile (2a) was prepared from 1a (100 mg, 0.5 mmol) following the general , CN olefination procedure. 2a was purified by flash chromatography. Pure 2a was obtained as an oil (vield 84%), as a mixture of isomers (86:14 E:Z). ¹H and ¹³C NMR spectroscopy matched literature reported data.⁵ E-isomer ¹H NMR (400 MHz, CDCl₃) 7.47 - 7.37 (m, 6H), 5.88 (d, J= 16.7 Hz, 1H). Z-isomer ¹H NMR (400 MHz, CDCl₃) 7.82 - 7.80 (m, 2H), 7.47 - 7.38 (m, 3H), 7.13 (d, J= 12.1 Hz, 1H), 5.45 (d, J= 12.1 Hz, 1H) ppm. *E-isomer* ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 133.7, 131.3, 129.3, 127.5, 118.3, 96.5. **Z-isomer** ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 133.7, 131.1, 129.1, 129.1, 118.3, 95.2.

CN

3-(4-Chlorophenyl)acrylonitrile (2b) was prepared from 1b (150 mg, 0.65 mmol) following general olefination procedure. 2b was purified by radial chromatography. Pure **2b** was obtained as a solid (yield 76%), as a mixture of

isomers (83:17 E:Z). ¹H and ¹³C NMR spectroscopy matched literature reported data.⁵ E-isomer ¹H NMR (400 MHz, CDCl₃) δ 7.39 (s, 4H), 7.36 (d, J= 16.7 Hz, 1H), 5.86 (d, J= 16.7 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 137.5, 132.1, 130.4, 129.6, 128.7, 118.0, 97.1 ppm. Z-isomer ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J= 8.5 Hz, 2H), 7.42 (d, J= 8.6 Hz, 2H), 7.09 (d, J= 12.1 Hz, 1H), 5.48 (d, J= 12.1 Hz, 1H) ppm.¹³C NMR (100 MHz, CDCl₃) δ 147.4, 137.1, 132.1, 130.4, 129.4, 118.0, 95.8 ppm.

3-(4-(Tert-butyl)phenyl)acrylonitrile (2c) was prepared from 1c (116 mg, 0.46 mmol) following the general olefination procedure. 2c was purified by radial chromatography. Pure 2c was obtained as an oil (yield 78 %), as a mixture of

isomers (82:18 E:Z). The ¹H and ¹³C spectroscopy results were consistent with the data reported in the literature.⁶ *E*-isomer ¹H NMR (400 MHz, CDCl₃) δ 7.45 - 7.35 (m, 5H), 5.84 (d, *J*= 16.6 Hz, 1H), 1.32 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 150.5, 130.9, 127.3, 126.2, 118.6, 95.3, 35.1, 31.2 ppm. **Z-isomer** (resolved signals only) ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J= 8.4 Hz, 2H), 7.10 (d, J= 12.1 Hz, 1H), 5.38 (d, J= 12.1 Hz, 1H), 1.33 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 148.6, 131.0, 129.0, 126.0, 117.8, 94.0, 35.1, 31.2 ppm.

⁵ a) Peppe, C.; de Azevedo Mello, P.; das Chagas, R. P. J. Organomet. Chem. 2006, 691, 2335–2339. b) Zhang, Q.; Zheng, M.; Song, G.; Hou, J.; Li, B. Asian J. Org. Chem. 2019, 8, 1824-1826. ⁶ Wang, Z.; Chang, S. Org. Lett. **2013**, 15, 1990–1993.

3-(4-Methoxyphenyl)acrylonitrile (2d) was prepared **1d** (151 mg, 0.67 mmol) following the general olefination procedure. **2d** was purified by radial chromatography. Pure **2d** was obtained as an oil (yield 61%), as a mixture of

isomers (83:17 *E:Z*). ¹H and ¹³C NMR spectroscopy matched literature reported data.⁷ *E*-isomer ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J*= 8.8 Hz, 2H), 7.31 (d, *J*= 16.6 Hz, 1H), 6.91 (d, *J*= 8.8 Hz, 2H), 5.70 (d, *J*= 16.6 Hz, 1H), 3.84 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 150.1, 131.0, 129.1, 126.3, 118.8, 114.5, 93.3, 55.5 ppm. *Z*-isomer ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J*= 8.8 Hz, 2H), 7.03 (d, *J*= 12.1 Hz, 1H), 6.94 (d, *J*= 9.6 Hz, 2H), 5.28 (d, *J*= 12.1 Hz, 1H), 3.84 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 161.6, 148.1, 131.0, 126.6, 118.1, 114.3, 91.9, 55.4 ppm.

3-(4-Nitrophenyl)acrylonitrile (2e) was prepared from **1e** (152 mg, 0.63 mmol) following the general olefination procedure. **2e** was purified by radial chromatography. Pure **2e** was obtained as an oil (yield 49%), as a mixture of isomers (82:18 1 *E:Z*). ¹H and ¹³C NMR spectroscopy matched literature reported data.⁶ *E*-isomer ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 8.9 Hz, 2H), 7.66 (d, *J* = 8.8 Hz, 2H), 7.49 (d, *J* = 16.7 Hz, 1H), 6.08 (d, *J* = 16.7 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 139.3, 128.3, 124.6, 117.1, 101.2 ppm. *Z*-isomer ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 8.9 Hz, 2H), 7.96 (d, *J* = 8.8 Hz, 2H), 7.23 (d, *J* = 12.1 Hz, 1H), 5.70 (d, *J* = 12.1 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 146.2, 139.2, 129.9, 124.3, 116.4, 99.8 ppm.

following

3-(4-Vinylphenyl)acrylonitrile (2f) was prepared **1f** (162 mg, 0.73 mmol) following the general olefination procedure. **2f** was purified by radial chromatography. Pure **2f** was obtained as an oil (yield 76%), as a mixture of

isomers (85:15 *E:Z*). *E*-isomer (resolved signals only) ¹H NMR (400 MHz, CDCl₃) δ 6.72 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.86 (d, *J* = 16.6 Hz, 1H), 5.83 (d, *J* = 17.6 Hz, 1H), 5.36 (d, *J* = 10.9 Hz, 1H) pmm. ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 140.6, 136.1, 133.0, 127.8, 127.0, 118.4, 116.2, 96.0 ppm. *Z*-isomer (resolved signals only) ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.09 (d, *J* = 12.1 Hz, 1H), 5.84 (d, *J* = 17.6 Hz, 1H), 5.42 (d, *J* = 12.1 Hz, 1H), 5.36 (d, *J* = 10.9 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 140.3, 136.2, 133.1, 129.5, 126.8, 117.6, 115.5, 94.7 ppm. MS (ESI+), m/z: Calculated for C₁₁H₉N; 155.1, found 156.1 [M+H]⁺, IR-KBr v_{max} (cm⁻¹) (2217 CN)

Methyl 4-(2-cyanovinyl)benzoate (2g) was prepared 1g (163 mg, 0.64 mmol) the general olefination procedure. 2e was purified by radial chromatography. Pure 2e was obtained as an oil (yield 49%), as a mixture of isomers (83:17 *E:Z*). ¹H and ¹³C NMR spectroscopy matched literature reported data.⁷ *E*-isomer ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J*= 8.1 Hz, 2H), 7.53 (d, *J*= 8.2 Hz, 2H), 7.44 (d, *J*= 16.7 Hz, 1H), 6.00 (d, *J*= 16.7 Hz, 1H), 3.94 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 149.4, 137.5, 132.4, 130.4, 127.4, 117.7, 99.0, 52.6 ppm. *Z*-isomer ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J*= 8.2 Hz, 2H), 7.87 (d, *J*= 8.2 Hz, 2H), 7.19 (d, *J*= 12.1 Hz, 1H), 5.59 (d, *J*= 12.1 Hz, 1H), 3.95 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 147.6, 137.5, 132.1, 130.2, 129.0, 117.0, 97.7, 52.5 ppm.

CN

3-(o-Tolyl)acrylonitrile (2h) was prepared **1h** (163 mg, 0.79 mmol) the general olefination procedure. **2h** was purified by radial chromatography. Pure **2h** was obtained as an oil (yield 22%), as a mixture of isomers (73:27 *E:Z*). ¹H and ¹³C NMR spectroscopy matched literature reported data.^{7,8,9} *E*-isomer (resolved signals only)

¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 16.6 Hz, 1H), 5.78 (d, *J* = 16.6 Hz, 1H), 2.38 (s, 3H) ppm.

⁷ Mu, Y.; Nguyen, T. T.; Koh, M. J.; Schrock, R. R.; Hoveyda, A. H. Nat. Chem. 2019, 11, 478–487.

⁸ Qin, C.; Jiao, N. J. Am. Chem. Soc. **2010**, 132, 15893-15895.

⁹ Grübel, M.; Jandl, C.; Bach, T. *Synlett* **2019**, *30*, 1825-1829.

¹³C NMR (100 MHz, CDCl₃) δ 148.5, 137.3, 132.6, 131.1, 131.0, 126.6, 125.6, 118.4, 97.3, 19.6.**Z**-**isomer** (only resolved signals) ¹H NMR (400 MHz, CDCl₃) 7.91 (d, J = 7.5 Hz, 2H), 7.39 (d, J = 12.0 Hz, 1H), 5.51 (d, J = 12.0 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 137.2, 132.8, 130.62, 130.60, 127.7, 126.5, 117.2, 97.0, 19.7.

5-Phenylpenta-2,4-dienenitrile (2i) was prepared from 1i (148 mg, 0.67 mmol) following the general olefination procedure. 2i was purified by radial chromatography. Pure 2i was obtained as an oil (yield 60%), as a mixture of

isomers (58:42 *E:Z*). ¹H and ¹³C NMR spectroscopy matched literature reported data.⁷ *E*-isomer ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, *J*= 7.9, 1.7 Hz, 2H), 7.37 (tdd, *J*= 7.0, 5.3, 3.2 Hz, 3H), 7.15 (dd, *J*= 15.8, 10.0 Hz, 1H), 6.89 (d, *J*= 17.4 Hz, 1H), 6.81 (dd, *J*= 15.5, 9.9 Hz, 1H), 5.43 (d, *J*= 15.9 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 141.5, 135.3, 129.8, 129.0, 127.5, 125.5, 118.5, 98.3 ppm. *Z*-isomer ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, *J*= 7.9, 1.7 Hz, 1H), 7.37 (tdd, *J*= 7.0, 5.3, 3.2 Hz, 3H), 7.19 (d, *J*= 5.3 Hz, 1H), 6.98 (m, 1H), 5.25 (d, *J*= 10.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 141.8, 135.4, 129.8, 129.0, 127.7, 124.2, 116.8, 96.6 ppm.

5-phenylpent-2-en-4-ynenitrile (2j) was prepared from **1j** (150 mg, 0.5 mmol) the general olefination procedure. **2j** was purified by radial chromatography with a system a hexanes:ethyl acetate system (99: 1). Pure **2j** was obtained as an oil (yield 48%), as a mixture of isomers (31:69 *E:Z*). ¹H and ¹³C NMR

spectroscopy matched literature reported data.¹⁰ *E*-isomer ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.42 – 7.36 (m, 3H), 6.70 (d, *J*= 16.3 Hz, 1H), 5.80 (d, *J*= 16.3 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 132.2, 131.2, 130.1, 128.8, 121.5, 117.3, 108.2, 100.9, 85.5 ppm. *Z*-isomer ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.54 (m, 2H), 7.42 – 7.35 (m, 4H), 6.53 (d, *J*= 10.9 Hz, 1H), 5.67 (d, *J*= 10.9 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 132.5, 130.1, 129.6, 128.7, 121.5, 116.1, 107.3, 102.5, 84.8 ppm. *2j-Z* isomer was obtained as an inseparable mixture with

3-(Furan-2-yl)acrylonitrile (2k) was prepared from **1k** (145 mg, 0.79 mmol) following the general olefination procedure. **2k** was purified by radial chromatography. Pure **2k** was obtained as an oil (yield 55%), as a mixture of isomers (80:20 *E:Z*). ¹H and ¹³C NMR spectroscopy matched literature reported data.¹¹ *E-isomer* ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J*= 1.8 Hz, 1H), 7.11 (d, *J*= 16.2 Hz, 1H), 6.63 (d, *J*= 3.5 Hz, 1H), 6.50 (dd, *J*= 3.5, 1.8 Hz, 1H), 5.76 (d, *J*= 16.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 145.6, 136.2, 118.4, 115.6, 112.8, 93.5 ppm. *Z-isomer* ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J*= 1.8 Hz, 1H), 7.03 (d, *J*= 3.6 Hz, 1H), 6.95 (d, *J*= 12.0 Hz, 1H), 6.54 (dd, *J*= 3.5, 1.7 Hz, 5.23 (d, *J*= 12.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 145.1, 135.0, 117.5, 115.7, 112.6, 91.3 ppm.

3-(Thiophen-2-yl)acrylonitrile (2I) was prepared from **1I** (152 mg, 0.75 mmol) following the general olefination procedure. **2I** was purified by radial chromatography. Pure **2I** was obtained as an oil (yield 58%), as a mixture of isomers (75:25 *E:Z*). ¹H and ¹³C NMR spectroscopy matched literature reported data.⁹ *E*-isomer ¹H NMR (400 MHz, CDCl₃) δ , 7.58 (d, *J*= 16.3 Hz, 1H), 7.42 (d, *J*= 5.1 Hz, 1H), 7.24 (m, 1H), 7.08 (dd, *J*= 5.1, 3.7 Hz, 1H), 5.65 (d, *J*= 16.3 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 7.56 (d, *J*= 3.8 Hz, 1H), 7.54 (d, *J*= 5.1 Hz, 1H), 7.24 (m, 1H) 7.12 (dd, *J*= 5.1, 3.7 Hz, 1H), 5.26 (d, *J*= 11.7 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 137.8, 132.5, 130.4, 127.8, 117.7, 91.9 ppm.

¹⁰ Li, B.; Li, Z.; You, K.; Qin, A.; Tang, B. Z. *Sci. China Chem.* **2022**, *65*, 771–777.

¹¹ Wu, H.; Yang, P.; Du, Z.; Fu, Y. ChemistrySelect **2017**, *2*, 2183–2186.

3-(1-(Methylsulfonyl)-1H-indol-3-yl)acrylonitrile (2m) was prepared from **1m** (148 mg, 0.47 mmol) following the general olefination procedure. **2m** was purified by radial chromatography using hexanes:ethyl acetate (80:20) as eluent. Pure **2m** was obtained as an oil (yield 60%), as a mixture of isomers (54:46 *E:Z*). *E-isomer*

(resolved signals only) ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J*= 7.8 Hz, 1H), 7.73 (s, 1H), 7.70 (d, *J*= 7.8 Hz, 1H), 5.98 (d, *J*= 16.7 Hz, 1H), 3.22 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 134.4, 129.0, 128.1, 126.2, 124.7, 120.5, 117.4, 116.1, 113.5, 96.5, 41.5 ppm. **Z-isomer** (resolved signals only) ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.95 (dd, *J*= 8.2, 5.5 Hz, 2H), 7.38 (d, *J*= 11.6 Hz, 1H), 5.52 (d, *J*= 11.8 Hz, 1H), 3.24 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 135.5, 127.3, 126.6, 126.0, 124.2, 119.00, 118.3, 117.8, 113.3, 95.1, 41.6 ppm. IR-KBr v_{max} (cm⁻¹) (2213 CN), (1363, 1167 SO₂).

Et

2-Benzylidenebutanenitrile (2n) was prepared from **1n** (100 mg, 0.45 mmol) following the general olefination procedure. **2n** was purified by radial chromatography. Pure **2n** was obtained as an oil (yield 88%), as a mixture of isomers

(72:28 *E:Z*). ¹H and ¹³C NMR spectroscopy matched literature reported data.¹¹ *E*-isomer (resolved signals only) ¹H NMR (400 MHz, CDCl₃) δ 7.31 - 7.27 (m, 2H), 7.19 (s, 1H), 2.50 (qd, *J*= 7.5 Hz, 1.3 Hz, 2H), 1.25 (t, *J*= 7.5 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 134.2, 129.3, 129.2, 128.8, 120.3, 117.3, 23.1, 12.9 ppm. *Z*-isomer (resolved signals only) ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, *J*= 7.6, 1.6 Hz, 2H), 6.94 (s, 1H), 2.44 (qd, *J*= 7.5, 1.2 Hz, 2H), 1.26 (t, *J*= 7.5 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 134.2, 129.9, 128.9, 128.6, 118.8, 113.1, 29.7, 13.1 ppm.

3,4-Diphenylbut-2-enenitrile (20) was prepared from **1o** (100 mg, 0.35 mmol) following the general olefination procedure. **2o** was purified by radial chromatography. Pure **2o** was obtained as an oil (yield 70%), as a mixture of isomers (72:28 *E:Z*). ¹H and ¹³C NMR spectroscopy matched literature reported data for the

E-isomer.¹² *Z*-isomer spectroscopic data was not found in the literature; however, we were able to assign *Z*-isomer related signals from the pure mixture of isomers. *E*-isomer ¹H NMR (500 MHz, CDCl₃) δ 7.41 - 7.38 (m, 2H), 7.37 - 7.31 (m, 3H), 7.23 (d, *J*= 6.3 Hz, 2H), 7.19 (d, *J*= 6.9 Hz, 3H), 5.71 (s, 1H), 4.22 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 137.5, 136.9, 130.3, 129.0, 128.9, 128.8, 127.0, 126.8, 117.7, 97.27, 39.9. *Z*-isomer (resolved signals only) ¹H NMR (400 MHz, CDCl₃) δ 5.19 (t, *J* = 1.6 Hz, 1H), 3.85 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 137.6, 136.4, 129.9, 129.4, 129.0, 128.8, 127.5, 127.3, 126.3, 117.6, 97.31, 44.1.

S-(4-Amino-3,5-dimethylbenzyl) ethanethioate (6) was prepared from (4-amino-3,5-*d*imethylphenyl)methanol **(5)**¹³ (750 mg, 0.36 mmol) and thioacetic acid (0.713 mg, 0.94 mmol) dissolved in dry tetrahydrofuran at 0°C, this solution was added slowly to a stirred solution of triphenylphosphine (PPh₃, 2.66 g, 1.01 mmol) and diisopropyl azodicarboxylate (DIAD, 1.89 g, 0.94 mmol) in dry

tetrahydrofuran at 0°C, and stirred overnight at room temperature. The reaction was monitored by TLC until starting material was consumed. The mixture was poured in cooled NaHCO₃ saturated solution and stirred until 10 pH was reached. The aqueous layer was extracted with ethyl acetate (x3). The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated to afford crude thioacetate **(6)** Pure **6** was obtained by SiO₂ chromatography using a mixture of hexanes and ethyl acetate 70:30 as eluent (53% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.86 (s, 2H), 4.01 (s, 2H),

 ¹² Yu, X. Y.; Wang, P. Z.; Yan, D. M.; Lu, B.; Chen, J. R.; Xiao, W. J. Adv. Synth. Catal. **2018**, 360, 3601–3606.
¹³ Kimiyuki, S.; Katsumi, K.; Yukihiro, S.; Toru, M.; Chiyoka, O.; Toshiyuki, E.; Mitsuteru, H.; Taddaki, O. Novel Cyclic Diamine Compounds and Medicine Containing the Same. US2004038987A1, 2004.

3.55 (bs, 1H), 2.32 (s, 3H), 2.13 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 195.8, 142.1, 128.8, 126.4, 122.0, 33.4, 30.5, 17.7. MS (ESI+), m/z: Calculated for C₁₁H₁₅NOS 209.1; found 210.1 [M+H]⁺, IR-KBr v_{max} (cm-1) 3472, 3389 (NH), 1683 (NH).

2-((4-Amino-3,5-dimethylbenzyl)sulfonyl)acetonitrile (7) was prepared from 2-((4-amino-3,5-*d*imethylbenzyl)thio)acetonitrile **(S7)**, (139.0 mg, 0.89 mmol) ¹H NMR (400 MHz, CDCl₃) δ 6.91 (s, 2H), 3.80 (s, 2H), 3.62 (s, 2H), 3.07 (s, 2H), 2.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 129.2, 129.1,

124.4, 122.1, 116.8, 36.0, 17.7, 15.9. Oxidation of **S7 (oxidation 1)**, delivered sulfonyl nitrile **7**, which was purified by SiO₂ flash chromatography using hexanes:ethyl acetate (60:40) as eluent. Pure **7** was obtained as a solid with (two-step yield 75%), mp: 68-70°C. ¹H NMR (400 MHz, CDCl₃) δ 7.03 (s, 2H), 4.37 (s, 2H), 3.78 (bs, 2H), 3.70 (s, 2H), 2.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 130.6, 122.6, 114.6, 110.7, 59.6, 39.4, 17.7. MS (ESI+), m/z: Calculated for C₁₁H₁₄N₂O₂S; 238.1 found 239.1 [M+H]⁺, IR-KBrv_{max} (cm⁻¹) 1304, 1131 (SO₂) 2254 (CN), 2854, 2934, 2990 (NH).

3-(4-Amino-3,5-dimethylphenyl)acrylonitrile (3) was prepared from **7** (163.0 mg, 1.2 mmol) following the general olefination procedure. **3** was purified by radial chromatography using hexanes:ethyl acetate (80:20). Pure **3** was obtained as a solid (yield 68%), as a mixture of isomers (84:16 *E:Z*). ¹H and ¹³C

NMR spectroscopy matched literature reported data.¹⁴ *E*-isomer ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 16.5 Hz, 1H), 7.05 (s, 2H), 5.59 (d, *J* = 16.5 Hz, 1H), 3.96 (bs, 2H), 2.18 (s, 6H).¹³C NMR (100 MHz, CDCl₃) δ 151.0, 146.3, 128.1, 123.3z, 121.6, 119.7, 90.3, 17.6 *Z*-isomer ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 2H), 6.90 (d, *J* = 12.0 Hz, 1H), 5.11 (d, *J* = 12.0 Hz, 1H), 3.96 (s, 6H), 2.19 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 146.0, 129.9, 123.7, 121.3, 118.9, 88.8, 17.6

¹⁴ Schils, D.; Stappers, F.; Solberghe, G.; Van Heck, R.; Coppens, M.; Van Den Heuvel, D.; Van Der Donck, P.; Callewaert, T.; Meeussen, F.; De Bie, E.; et al. *Org. Process Res. Dev.* **2008**, *12*, 530–536.

Figure 2. ¹³C NMR spectra of compound 1a

Figure 4. ¹³C NMR spectra of compound 1b

Figure 6. $^{\rm 13}{\rm C}$ NMR spectra of compound ${\rm 1c}$

Figure 8. ¹³C NMR spectra of compound 1d

Figure 10. ¹³C NMR spectra of compound 1e

5.85 5.80 5.80 5.37 5.35 5.35 5.35 5.35 5.35 7.51 7.49 7.46 7.43 6.76 6.76 6.72 6.72 `CN 0.99 1.99 2.04 ∕¥ E---66.0 0.95---1.95-.98 0 10 8 9 7 6 5 2 4 3 1 ppm Figure 11. ¹H NMR spectra of compound 1f ----- 116.1 ---- 110.5 139.4 135.8 131.0 131.0 127.4 125.5 ---- 59.4 ---- 40.0 CN >s 0 0 140 130 120 110 100 ppm 200 190 180 170 160 150 80 1 70 30 1 90 1 60 1 50 1 40 1 20 10 1 0

Figure 18. ¹³C NMR spectra of compound 1i

Figure 20. ¹³C NMR spectra of compound 1j

Figure 22. ¹³C NMR spectra of compound 1k

Figure 26. ¹³C NMR spectra of compound 1m

Figure 34. ¹³C NMR spectra of compound 1q

Figure 36. ¹³C NMR spectra of compound 2a

Figure 40. ¹³C NMR spectra of compound 2c

Figure 46. ¹³C NMR spectra of compound Z-2e (major) and E-2e.

Figure 50. ¹³C NMR spectra of compound 2g

Figure 52. ¹³C NMR spectra of compound 2h

Figure 54. ¹³C NMR spectra of compound 2i

00

Figure 58. ¹³C NMR spectra of compound Z-2j and (2E,4E)-4-methoxy-5-phenylpenta-2,4-dienenitrile

10

(

Figure 62. ¹³C NMR spectra of compound 2I

Figure 64. ¹³C NMR spectra of compound 2m

Figure 66. ¹³C NMR spectra of compound 2n

Figure 68. ¹³C NMR spectra of compound 20

Figure 70. ¹H NMR spectra of compound 6

Figure 72. ¹³C NMR spectra of compound 7

Figure 74. ¹³C NMR spectra of compound 3

