Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Photocatalytic synthesis of azaheterocycle-fused piperidines and pyrrolidines via tandem difunctionalization of unactivated alkenes

Qun-Huai Zhou, ‡ª Jia-Ying Dai, ‡ª Wen-Jing Zhao, ª Xi-Ya Zhong, ª Chun-Yang Liu, ª Wei-Wei Luo, ª Zhi-Wei Li,

^a Jiang-Sheng Li *^a and Wei-Dong Liu ^b

^a Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China

^b National Engineering Research Center for Agrochemicals, Hunan Research Institute of Chemical Industry, Changsha 410007, China

‡ Both of these authors have equal contributions.

Contents

1. General information	2
2. General procedure	3
3. Screening parameters	4
4. Preparation of azaheterocycle-anchored alkenes	6
5. Control experiments regarding TEMPO, BHT and 1,1-diphenylethylene	8
6. On/off blue light irradiation experiments	9
7. Fluorescence quenching experiments	10
8. Characterization data of all compounds	11
9. Copies of NMR spectra of all compounds	29

1. General information

All solvents and reagents were purchased from the suppliers and used without further purification unless otherwise noted. ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker Avance 400 NMR spectrometers. The chemical-shift scale is based on internal TMS. High-solution mass spectra were acquired on Agilent 6230 TOF LC/MS. The melting points were recorded on an X-4 microscope melting point apparatus and are uncorrected. The model used for the infrared spectrometer is Nicolet iS20. Conversion was monitored by thin layer chromatography (TLC). Flash column chromatography was performed over silica gel (100 - 200 mesh). LEDs (25 W) used for light irradiation were purchased from Xuzhou Ai Jia Electronic Technology, Co. LTD. The wavelength of peak intensity (λ_p) for the selected LED source 460-470 nm is 465.4 nm with the half-intensity width ($\Delta\lambda$) of 18.6 nm. Fans were used to maintain the reaction temperature at room temperature. Borosilicate vessels were used for LED irradiation without filters, approximately 2 cm away from the light source.

2. General procedure

2.1 A 0.2 mmol-scale synthesis

1-(pent-4-en-1-yl)-1*H*-benzo[*d*]imidazole (1a) (0.2 mmol, 0.0372g), CF₃SO₂Na (0.6mmol, 0.0936g) (2a), Eosin Y-Na₂ (5 mol%), CH₃CN (2 mL) were placed in a 10 mL silica borate glass tube. The reaction system was stirred rapidly under the irradiation with 25 W blue LED lamp (about 2 cm away from the light source) at 62°C (no fan). TLC monitored the reaction process until the reaction was completed (6 h). After completion, ethyl acetate and water were added and extracted for three times. Organic phase was combined and dried over anhydrous sodium sulfate. The crude product underwent purification by column chromatography (petroleum ether: ethyl acetate = 3:1, v/v) to give product **3aa~3ua**.

If CF_3SO_2Na was replaced by CHF_2SO_2Na , the product **3cb** was obtained. If 1- (pent-4-en-1-yl)-1*H*-benzo[*d*]imidazole (**1a**) was replaced by 1-allyl-2-phenyl -1*H* benzo[*d*]imidazole (**4**), the product **5** was obtained.

2.2 A 1 mmol-scale synthesis

To a 25 mL borosilicate glass vial was added **1a** (1.0 mmol, 186.1 mg), **2a** (468 mg, 3.0 mmol), Eosin Y-Na₂ (5 mol%), and 10 mL of CH₃CN. The reaction mixture was sealed with a rubber stopper and then stirred rapidly under irradiation with a 25 W blue LED (approximately 2 cm away from the light source) without fan (62 °C) for 12 h. Work-up as described in 0.2-mmol scale synthesis gave product **3aa** in 80 % yield (203.2 mg).

3. Screening parameters

N	+ CF ₃ SO ₂ Naphotocata 460~470nm,	Iyst DCM
1a	2a	3aa
Entry	Photocatalyst	Isolated yield (%)
1	Eosin Y-H ₂	32
2	Eosin Y-Na ₂	57
3	[Ir(dtbbpy)(ppy) ₂]PF ₆	49
4	[Ir(dFppy) ₂ (dtbbpy)]PF ₆	43
5	fac-Ir(ppy) ₃	23
6	Ru(BPY) ₃ ·6H ₂ O	36
7	Rhodamine 6G	14
8	4CzIPN	Trace
9	Methylene blue	31
10	Riboflavin	24
11	Phenothiazine	27
12	Rhodamine B	12

13 ^b	Eosin Y-Na ₂	52
14°	Eosin Y-Na ₂	56

a) Reaction condition: 1a (0.2 mmol), 2a (0.6 mmol), photocatalyst (5 mol%), solvents (2 mL), rt, 4 h.

b) Photocatalyst (3 mol%).

c) Photocatalyst (10 mol%).

Table S2 Screening of Solvent^a

N	+ CF ₃ SO ₂ Na solven ⁻	Y-Na ₂ t, 460~470nm
1a	2a	3aa
Entry	Solvents	Isolated yield (%)
1	DCM	57
2	DCE	50
3	CH ₃ CN	55
4	Dioxane	Trace
5	EtOH	15
6	EtOAc	21
7	DMF	Trace
8 ^b	DCM	54
<u>9</u> °	DCM	48

a) Reaction condition: 1a (0.2 mmol), 2a (0.6 mmol), Eosin Y-Na₂ (5 mol%), solvent (2 mL), rt, 4 h.

b) 1 mL of DCM

c) 4 mL of DCM

Table S3 Screening of light source ^a

	N	+ CF ₃ SO ₂ Na	Eosin Y-Na ₂	tion R F ₃ C
	1a	2a		3aa
•	Entry	Light source		Isolated yield (%)
	1	Nati	ıral light	15
	2	420 -	– 430 nm	33
	3	440 -	– 450 nm	44
	4	450 -	– 460 nm	51
	5	460 -	– 470 nm	57
	6	510 -	– 520 nm	23

a) Reaction condition: 1a (0.2 mmol), 2a (0.6 mmol), Eosin Y-Na₂(5 mol%), DCM (2 mL), rt, 4 h.

	N N 1a	+ CF ₃ SO ₂ Na 2a	Eosin Y-N DCM, 460~47	70nm N 3aa	F ₃ C
•	Entry	Т	Time (h)	Isolated yield (%)	
-	1		4	57	
	2		5	58	
	3		6	67	
	4		7	67	

Table S4 Screening of reaction time ^a

a) Reaction condition: 1a (0.2 mmol), 2a (0.6 mmol), Eosin Y-Na₂ (5 mol%), DCM (2 mL), 460–470 nm, rt.

Table S5 Control experiments

N N 1a	+ CF ₃ SO ₂ Na <u>Condition</u>	F ₃ C N 3aa
Entry	Condition Control	Isolated yield (%)
1	standard condition ^a	67
2	in dark	N.R.
3	w/o photocatalyst	N.R.
4	N_2	N.R.
5	no fan (ca. 62 °C)	88

a) Standard condition: 1a (0.2 mmol), 2a (0.6 mmol), Eosin Y-Na₂ (5 mol%), DCM (2 mL), 460–470 nm, rt, 6h.

4. Preparation of azaheterocycle-anchored alkenes

Synthesis of N-(but-3-en-1-yl)imidazoles and N-(pent-4-en-1-yl)imidazoles

Imidazole (5 mmol), 5-bromo-1-pentene or 4-bromo-butene (7.5 mmol), anhydrous potassium carbonate (7.5 mmol) and dry DMF solvent were successively added to a 50 mL round-bottom flask for 4-6 h of reaction at 40°C (TLC monitoring the reaction until completion). At the end of the reaction, ethyl acetate and deionized water were added to extract the mixture three times, and the organic phase was combined. Anhydrous sodium sulfate was used to dry the mixture, and the concentration was performed under reduced pressure. Silica gel column was loaded with solid samples, and the of eluent petroleum ether: ethyl acetate = 10:1 (V/V) was used to separate and purify the products $1a\sim11$. If 5-bromopent-1-ene was replaced with 4-bromobut-1-ene (7.5 mmol), the products $1p\sim1v$ were obtained. Precursor 4 was synthesized according to this method. *Synthesis of N-(pent-4-en-1-yl)indoles*

The indole (3 mmol) and 20 mL dry DMF solvent were added into a 50 mL dry round-bottom flask and stirred in an ice bath at 0°C. Afterwards, NaH (2 equiv, 60%) was quickly weighed and added into the flask in batches, and the bottle was sealed with balloon for about 30 min of reaction. After no bubbles were generated, 5-bromo-1-pentene (4.5 mmol) was added to the flask, and the reaction was continued for 4 h at room temperature (TLC monitoring the reaction until completion). At the end of the reaction, ethyl acetate and deionized water were added to extract the mixture three times, and the organic phase was combined. Anhydrous sodium sulfate was used to dry the mixture, and the concentration was performed under reduced pressure. Silica gel column chromatography using petroleum ether as eluent delivered products **1m**,**1n** and **10**. Precursor **1w** was synthesized according to this method.

5. Control experiments regarding TEMPO, BHT and 1,1-diphenylethylene

Figure S-1 Radical trapping experiment

Free radical capture reagent 2,2,6,6-tetramethylpiperidinyl-1-oxide (TEMPO, 3 equiv.) and free radical inhibitor 2,6-bis-(tert-butyl)-4-methylphenol (BHT, 3 equiv.) were added under standard reaction conditions for **3aa**, respectively. The reaction mixture was for TLC and GC-MS monitoring. No product **3aa** was observed.

Three equivalents of 1,1-stilbene (DPE) were added under standard reaction conditions for **3aa**. A small amount of the trifluoromethyl-DPE adduct was detected by GC-MS (Figure S-2). This suggest that the photoreaction may be a radical reaction.

Figure S-2 The GC-MS spectra using 1,1-diphenylethylene as radical trapper

6. On/off blue light irradiation experiments

Eight standard reactions were run under 25 W blue LED irradiation at 62°C (no fan). After 1.5 hours, the blue LED was turned off and a reaction tube was removed from the light source for GC-MS analysis. The remaining 7 tubes were stirred for 1.5 hours with the blue LED light off. Another tube was then removed for analysis. The remaining 6 tubes continued to be irradiated under the blue LED for 1.5 hours. The above experimental operations were cycled, and the reaction yields were analyzed and detected in GC-MS, respectively. The results were drawn as Figure S-3.

Figure S-3 ON-OFF experiments

7. Fluorescence quenching experiments

Fluorescence F7000 was used to record the fluorescence quenching curve of photosensitizer Eosin Y-Na₂ (CH₃CN, 0.3 μ M) titrated with CF₃SO₂Na (CH₃CN, 5 μ M), and the Stern-Volmer equation was calculated, as shown in Figure S-4.

Figure S-4 Fluorescence quenching experiments (left) and Stern-Volmer equation

(right)

8. Characterization data of all compounds

1-(Pent-4-en-1-yl)-1H-benzo[d]imidazole (1a)

735.7 mg, yield 79%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.87 – 7.81 (m, 1H), 7.44 – 7.38 (m, 1H), 7.36 – 7.28 (m, 2H), 5.88 – 5.74 (m, 1H), 5.13 – 5.04 (m, 2H), 4.20 (t, *J* = 7.0 Hz, 2H), 2.17 – 2.06 (m, 2H), 2.06 – 1.95 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 143.0, 136.7, 133.8, 122.8, 122.1, 120.4, 116.3, 109.6, 44.2, 30.6, 28.7. HRMS (ESI): Calcd. for C₁₂H₁₄N₂Na ([M+Na]⁺): 209.1049; Found 209.1057. FTIR (CHCl₃) v_{max}/cm⁻¹ 3064, 3021, 2983, 2973, 2923, 2854, 1701, 1635, 1540, 1532, 1483, 1472, 1301, 891, 743, 710.

4-Methyl-1-(pent-4-en-1-yl)-1*H*-benzo[*d*]imidazole (1b)

556.5 mg, yield 67%, brown oil.

¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.25 – 7.17 (m, 2H), 7.13 – 7.05 (m, 1H), 5.86 – 5.71 (m, 1H), 5.12 – 4.99 (m, 2H), 4.16 (t, *J* = 6.9 Hz, 2H), 2.68 (s, 3H), 2.14 – 2.04 (m, 2H), 2.04 – 1.92 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 142.1, 136.7, 133.4, 130.3, 122.8, 122.4, 116.2, 107.2, 44.3, 30.6, 28.7, 16.7. HRMS (ESI): Calcd. for C₁₃H₁₆N₂Na ([M+Na]⁺): 223.1206; Found 223.1213. FTIR (CHCl₃) v_{max}/cm⁻¹ 3067, 3017, 2973, 2887, 2850, 1696, 1631, 1547, 1532, 1480, 1471, 1317, 893, 792, 713.

5,6-Dimethyl-1-(pent-4-en-1-yl)-1*H*-benzo[*d*]imidazole (1c)

674.0 mg, yield 74%, colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.56 (s, 1H), 7.15 (s, 1H), 5.86 – 5.71 (m, 1H), 5.07 (d, J = 5.8 Hz, 1H), 5.04 (s, 1H), 4.11 (t, J = 6.9 Hz, 2H), 2.39 (s, 3H), 2.37 (s, 3H), 2.12 – 2.04 (m, 2H), 2.02 – 1.89 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.5,

142.2, 136.8, 132.3, 131.9, 130.9, 120.4, 116.1, 109.8, 44.2, 30.6, 28.7, 20.6, 20.2. HRMS (ESI): Calcd. for C₁₄H₁₈N₂Na ([M+Na]⁺): 237.1362; Found 237.1372. FTIR (CHCl₃) v_{max}/cm⁻¹ 3063, 3017, 2970, 2884, 2855, 1692, 1632, 1544, 1530, 1487, 1463, 1308, 883, 719.

5,6-Dichloro-1-(pent-4-en-1-yl)-1*H*-benzo[*d*]imidazole (1d)

762.4 mg, yield 72%, colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 2H), 7.48 (s, 1H), 5.84 – 5.71 (m, 1H), 5.09 (s, 1H), 5.06 (d, *J* = 7.0 Hz, 1H), 4.13 (t, *J* = 7.0 Hz, 2H), 2.13 – 2.05 (m, 2H), 2.02 –1.93 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 143.2, 136.3, 133.0, 127.0, 126.3, 121.6, 116.6, 111.1, 44.5, 30.5, 28.5. HRMS (ESI): Calcd. for C₁₂H₁₂Cl₂N₂Na ([M+Na]⁺): 277.0270; Found 277.0287. FTIR (CHCl₃) v_{max} /cm⁻¹ 3032, 3010, 2983, 2852, 1692, 1632, 1544, 1530, 1487, 1463, 1308, 897, 717, 670.

1-(Pent-4-en-1-yl)-4,5-diphenyl-1*H*-imidazole (1e)

614.3 mg, yield 71%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.48 (d, J = 7.6 Hz, 2H), 7.45 – 7.37 (m, 3H), 7.36 – 7.28 (m, 2H), 7.22 – 7.15 (m, 2H), 7.15 – 7.05 (m, 1H), 5.67 – 5.54 (m, 1H), 4.98 – 4.87 (m, 2H), 3.77 (t, J = 7.3 Hz, 2H), 1.99 – 1.87 (m, 2H), 1.69 – 1.54 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 138.2, 136.7 (2C), 134.7, 130.9, 130.8 (2C), 129.1 (2C), 128.7, 128.4, 128.1 (2C), 126.5 (2C), 126.2, 115.8, 44.5, 30.3, 29.7. HRMS (ESI): Calcd. for C₂₀H₂₀N₂Na ([M+Na]⁺): 289.1699; Found 289.1713. FTIR (CHCl₃) v_{max} /cm⁻ ¹3036, 3017, 2981, 2858, 1697, 1637, 1540, 1530, 1477, 1461, 1302, 899, 752, 717.

1-(Pent-4-en-1-yl)-1H-imidazole-4,5-dicarbonitrile (1f)

413.4 mg, yield 74%, colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 5.84 – 5.70 (m, 1H), 5.15 – 5.06 (m, 2H), 4.17 (t, *J* = 7.2 Hz, 2H), 2.20 – 2.09 (m, 2H), 2.08 – 1.98 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 135.3, 123.1, 117.3, 112.1, 111.5, 107.9, 47.3, 30.1, 29.1. HRMS (ESI): Calcd. for C₁₀H₁₀N₄Na ([M+Na]⁺): 209.0798; Found 209.0807. FTIR (CHCl₃) v_{max}/cm^{-1} 3036, 3017, 2981, 2237, 1697, 1637, 1477, 1461, 1302, 891, 717.

Diethyl 1-(pent-4-en-1-yl)-1*H*-imidazole-4,5-dicarboxylate (1g)

487.8 mg, yield 58%, yellow oil

¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 5.83 – 5.70 (m, 1H), 5.12 – 5.00 (m, 2H), 4.38 (q, *J* = 7.1 Hz, 4H), 4.20 (t, *J* = 7.2 Hz, 2H), 2.13 – 2.03 (m, 2H), 1.94 – 1.83 (m, 2H), 1.43 – 1.39 (m, 3H), 1.39 – 1.33 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.6, 160.1, 139.4, 137.5, 136.5, 124.6, 116.2, 61.7, 61.3, 46.4, 30.3, 29.9, 14.2, 14.0. HRMS (ESI): Calcd. for C₁₄H₂₀N₂O₄Na ([M+Na]⁺): 303.1315; Found 303.1327. FTIR (CHCl₃) v_{max} /cm⁻¹ 3042, 3021, 2961, 2230, 1722, 1687, 1623, 1477, 1460, 1382, 1297, 1277, 1110, 894, 710.

5-Methyl-1-(pent-4-en-1-yl)-1*H*-imidazole-4-carbaldehyde (1h)

326.2 mg, yield 61%, colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 7.53 (s, 1H), 5.85 – 5.72 (m, 1H), 5.10 – 5.00 (m, 2H), 4.24 (t, *J* = 7.1 Hz, 2H), 2.51 (s, 3H), 2.07 (q, *J* = 6.9 Hz, 2H), 1.91 – 1.82 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 178.4, 153.6, 142.0, 136.9, 126.3, 115.9, 46.5, 30.3, 29.6, 13.3. HRMS (ESI): Calcd. for C₁₀H₁₄N₂ONa ([M+Na]⁺): 201.0998;

Found 201.1010. FTIR (CHCl₃) v_{max}/cm⁻¹ 3040, 3018, 2960, 2823, 2727, 2233, 1721, 1687, 1620, 1477, 1462, 1382, 1297, 897, 715.

Ethyl 5-methyl-1-(pent-4-en-1-yl)-1H-imidazole-4-carboxylate (1i)

420.1 mg, yield 63%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 5.85 – 5.72 (m, 1H), 5.10 – 4.98 (m, 2H), 4.33 (q, *J* = 7.1 Hz, 2H), 4.24 (t, *J* = 7.1 Hz, 2H), 2.48 (s, 3H), 2.06 (q, *J* = 7.0 Hz, 2H), 1.92 – 1.80 (m, 2H), 1.39 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 148.6, 140.2, 137.0, 118.3, 115.7, 60.2, 46.8, 30.4, 30.0, 16.0, 14.3. HRMS (ESI): Calcd. for C₁₂H₁₈N₂O₂Na ([M+Na]⁺): 245.1260; Found 245.1276. FTIR (CHCl₃) v_{max}/cm^{-1} 3040, 3023, 2960, 2225, 1723, 1680, 1620, 1480, 1453, 1385, 1305, 1270, 1115, 895, 712.

9-(Pent-4-en-1-yl)-9H-purine (1j)

265.4 mg, yield 47%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 9.15 (s, 1H), 9.00 (s, 1H), 8.10 (s, 1H), 5.87 – 5.72 (m, 1H), 5.12 – 5.00 (m, 2H), 4.32 (t, *J* = 6.9 Hz, 2H), 2.18 – 2.03 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 151.4, 148.6, 145.2, 136.4, 134.1, 116.3, 43.2, 30.5, 28.7. HRMS (ESI): Calcd. for C₁₀H₁₂N₄H ([M+H]⁺): 189.1135; Found 189.1143. FTIR (CHCl₃) v_{max} /cm⁻¹ 3032, 3017, 2973, 1697, 1637, 1477, 1461, 1302, 892, 717.

6-(Benzyloxy)-9-(pent-4-en-1-yl)-9H-purine (1k)

Ph

370.9 mg, yield 42%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.90 (s, 1H), 7.54 (d, J = 7.2 Hz, 2H), 7.40 – 7.29 (m, 3H), 5.85 – 5.72 (m, 1H), 5.68 (s, 2H), 5.10 – 4.98 (m, 2H), 4.24 (t, J = 7.0 Hz, 2H), 2.15 – 2.06 (m, 2H), 2.06 – 1.96 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 152.3, 151.9, 142.1, 136.5, 136.2, 128.4 (2C), 128.3 (2C),128.1, 121.6, 116.2, 68.3, 43.4, 30.5, 28.9. HRMS (ESI): Calcd. for C₁₇H₁₈N₄ONa ([M+Na]⁺): 317.1373; Found 317.1390. FTIR (CHCl₃) v_{max} /cm⁻¹ 3027, 3012, 2970, 1697, 1637, 1477, 1462, 1307, 1273, 892, 715.

1,3-Dimethyl-7-(pent-4-en-1-yl)-3,7-dihydro-1*H*-purine-2,6-dione (11)

610.8 mg, yield 82%, white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 5.86 – 5.71 (m, 1H), 5.12 – 5.00 (m, 2H), 4.29 (t, *J* = 7.0 Hz, 2H), 3.59 (s, 3H), 3.42 (s, 3H), 2.16 – 2.05 (m, 2H), 2.06 – 1.90 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 151.7, 149.0, 140.9, 136.6, 116.1, 106.9, 46.5, 30.2, 29.8, 29.7, 28.0. HRMS (ESI): Calcd. for C₁₂H₁₆N₄O₂Na ([M+Na]⁺): 271.1165; Found 271.1178. FTIR (CHCl₃) v_{max}/cm⁻¹ 3054, 2989, 2883, 2360, 1710, 1675, 1655, 1379, 1324, 890, 743.

1-(Pent-4-en-1-yl)-1*H*-indole (1m)

416.8 mg, yield 75%, yellow oil

¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 7.9 Hz, 1H), 7.31 (d, J = 8.2, 1H), 7.22 – 7.16 (m, 1H), 7.12 – 7.03 (m, 2H), 6.50 – 6.44 (m, 1H), 5.85 – 5.71 (m, 1H), 5.07 – 4.96 (m, 2H), 4.08 (t, J = 7.0 Hz, 2H), 2.09 – 1.98 (m, 2H), 1.95 – 1.85 (m, 2H). HRMS (ESI): Calcd. for C₁₃H₁₆N ([M+H]⁺): 186.1278; Found 186.1293. FTIR (CHCl₃) v_{max} /cm⁻¹ 3060, 3017, 2981, 2971, 2920, 2850, 1634, 1541, 1531, 1480, 1471, 1301, 890, 740, 712.

3-Methyl-1-(pent-4-en-1-yl)-1*H*-indole (1n)

430.5 mg, yield 72%, yellow oil

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.8 Hz, 1H), 7.28 (d, *J* = 8.2 Hz, 1H, overlap with CDCl3), 7.24 – 7.14 (m, 1H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.85 (s, 1H), 5.86 – 5.72 (m, 1H), 5.09 – 4.95 (m, 2H), 4.05 (t, *J* = 7.0 Hz, 2H), 2.32 (s, 3H), 2.12 – 2.00 (m, 2H), 1.96 – 1.83 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 136.3, 128.7, 125.4, 121.3, 119.0, 118.5, 115.5, 110.2, 109.2, 45.3, 30.9, 29.4, 9.6. HRMS (ESI): Calcd. for C₁₄H₁₇NNa ([M+Na]⁺): 222.1254; Found 222.1264. FTIR (CHCl₃) ν_{max} /cm⁻¹ 3037, 3012, 2977, 2971, 2920, 2862, 1630, 1543, 1530, 1482, 1470, 1297, 897, 743, 722.

5-Methoxy-1-(pent-4-en-1-yl)-1*H*-indole (10)

438.9 mg, yield 68%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 1H, overlap with CDCl3), 7.19 – 7.09 (m, 2H), 6.93 (d, *J* = 8.8 Hz, 1H), 6.46 (d, *J* = 2.6 Hz, 1H), 5.92 – 5.79 (m, 1H), 5.16 – 5.04 (m, 2H), 4.14 (t, *J* = 7.0 Hz, 2H), 3.91 (s, 3H), 2.17–2.05 (m, 2H), 2.03–1.90 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 137.4, 131.3, 128.9, 128.3, 115.7, 111.8, 110.1, 102.6, 100.5, 55.9, 45.8, 30.9, 29.3. HRMS (ESI): Calcd. for C₁₄H₁₇NONa ([M+Na]⁺): 238.1203; Found 238.1207. FTIR (CHCl₃) ν_{max} /cm⁻¹ 3060, 3017, 2981, 2971, 2920, 2850, 1634, 1541, 1531, 1480, 1471, 1301, 1234, 1042, 890,850, 740, 712.

1-(But-3-en-1-yl)-1*H*-benzo[*d*]imidazole (1p)

382.3 mg, yield 74%, yellow oil

¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.85 - 7.78 (m, 1H), 7.41 (d, *J* = 7.1 Hz, 1H), 7.34 - 7.27 (m, 2H), 5.84 - 5.70 (m, 1H), 5.14 - 5.00 (m, 2H), 4.23 (t, *J* = 7.0 Hz, 2H), 2.62 (q, *J* = 7.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 142.9, 133.7,

133.5, 122.8, 122.1, 120.4, 118.4, 109.6, 44.6, 34.0. HRMS (ESI): Calcd. for $C_{11}H_{12}N_2Na$ ([M+Na]⁺): 195.0893; Found 195.0904. FTIR (CHCl₃) v_{max}/cm^{-1} 3062, 3021, 2980, 2969, 2922, 2855, 1707, 1634, 1546, 1533, 1480, 1470, 1301, 897, 746, 712.

1-(But-3-en-1-yl)-5,6-dimethyl-1*H*-benzo[*d*]imidazole (1q)

372.8 mg, yield 73%, colorless oil

¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.58 (s, 1H), 7.18 (s, 1H), 5.84 – 5.70 (m, 1H), 5.13 – 5.03 (m, 2H), 4.19 (t, *J* = 7.1 Hz, 2H), 2.62 (q, *J* = 7.0 Hz, 2H), 2.42 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 142.2, 133.7, 132.2, 131.9, 130. 9, 120.4, 118.2, 109.8, 44.5, 34.0, 20.6, 20.2. HRMS (ESI): Calcd. for C₁₃H₁₆N₂Na ([M+Na]⁺): 223.1206; Found 223.1218. FTIR (CHCl₃) ν_{max} /cm⁻¹ 3064, 3012, 2977, 2885, 2855, 1695, 1631, 1545, 1537, 1485, 1460, 1302, 880, 719.

1-(But-3-en-1-yl)-5,6-dichloro-1*H*-benzo[*d*]imidazole (1r)

467.3 mg, yield 76%, colorless oil

¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 2H), 7.51 (s, 1H), 5.81 – 5.67 (m, 1H), 5.14 – 5.00 (m, 2H), 4.19 (t, *J* = 7.0 Hz, 2H), 2.61 (q, *J* = 6.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7 (2C), 143.2, 133.0, 127.1, 126.4, 121.6, 119.0, 111.1, 44.8, 33.9. HRMS (ESI): Calcd. for C₁₁H₁₀Cl₂N₂Na ([M+Na]⁺): 263.0113; Found 263.0127. FTIR (CHCl₃) ν_{max} /cm⁻¹ 3032, 3007, 2927, 2855, 1690, 1630, 1550, 1541, 1477, 1460, 1303, 895, 717, 676.

1-(But-3-en-1-yl)-4,5-diphenyl-1*H*-imidazole (1s)

543.2 mg, yield 66%, yellow oil

¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.49 – 7.43 (m, 5H), 7.51 – 7.42 (m, 2H), 7.23 – 7.16 (m, 2H), 7.16 – 7.10 (m, 1H), 5.70 – 5.55 (m, 1H), 5.07 – 4.93 (m, 2H), 3.86 (t, *J* = 7.2 Hz, 2H), 2.30 (q, *J* = 7.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 138.2, 136.7 (2C), 134.6, 133.5, 130.9 (2C), 129.1 (2C), 128.7, 128.3, 128.1 (2C), 126.5 (2C), 126.3, 118.1, 44.7, 35.0. HRMS (ESI): Calcd. for C₁₉H₁₈N₂Na ([M+Na]⁺): 297.1362; Found 297.1381. FTIR (CHCl₃) ν_{max} /cm⁻¹ 3030, 3015, 2982, 2850, 1695, 1640, 1540, 1520, 1472, 1460, 1302, 900, 750, 710.

Diethyl 1-(but-3-en-1-yl)-1H-imidazole-4,5-dicarboxylate (1t)

519.3 mg, yield 65%, yellow oil

¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 5.70 – 5.53 (m, 1H), 5.04 – 4.88 (m, 2H), 4.35 – 4.23 (m, 4H), 4.19 (t, *J* = 7.0 Hz, 2H), 2.42 (q, *J* = 6.9 Hz, 2H), 1.29 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 160.0, 139.4, 137.3, 132.8, 124.4, 118.6, 61.5, 61.1, 46.4, 35.0, 14.1, 13.9. HRMS (ESI): Calcd. for C₁₃H₁₈N₂O₄Na ([M+Na]⁺): 289.1159; Found 289.1178. FTIR (CHCl₃) v_{max} /cm⁻¹ 3041 3020, 2959, 2233, 1720, 1680, 1620, 1470, 1466, 1380, 1292, 1277, 1111, 890, 715.

Ethyl 1-(but-3-en-1-yl)-5-methyl-1*H*-imidazole-4-carboxylate (1u)

449.8 mg, yield 72%, yellow oil

¹H NMR (400 MHz, CDCl3) δ 7.33 (s, 1H), 5.69 – 5.52 (m, 1H), 5.00 – 4.84 (m, 2H), 4.31 – 4.08 (m, 4H), 2.44 – 2.30 (m, 5H), 1.35 – 1.20 (m, 3H). ¹³C NMR (100 MHz, CDCl3) δ 160.9, 148.4, 140.2, 133.6, 118.1, 117.8, 60.1, 46.8, 35.2, 15.9, 14.2. HRMS (ESI): Calcd. for $C_{11}H_{16}N_2O_2Na$ ([M+Na]⁺): 231.1104; Found 231.1118. FTIR (CHCl₃) v_{max}/cm⁻¹ 3044, 3020, 2963, 2222, 1720, 1683, 1626, 1488, 1450, 1380, 1306, 1271, 1117, 896, 716.

7-(But-3-en-1-yl)-1,3-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione (1v)

548.2 mg, yield 78%, white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 5.85 – 5.64 (m, 1H), 5.16 – 4.97 (m, 2H), 4.36 (t, *J* = 5.8 Hz, 2H), 3.59 (s, 3H), 3.42 (s, 3H), 2.71 – 2.55 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 151.7, 148.9, 141.0, 133.1, 118.7, 106.8, 46.6, 35.0, 29.8, 28.0. HRMS (ESI): Calcd. for C₁₁H₁₄N₄O₂Na ([M+Na]⁺): 257.1009; Found 257.1024. FTIR (CHCl₃) v_{max}/cm⁻¹ 3050, 2999, 2873, 2357, 1721, 1669, 1651, 1380, 1330, 889, 730.

Allyl 1*H*-benzo[*d*]imidazole-1-carboxylate(1w)

388.2 mg, yield 64%, white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 8.06–8.00 (m, 1H), 7.83–7.77 (m, 1H), 7.44–7.34 (m, 2H), 6.15–6.02 (m, 1H), 5.55–5.47 (m, 1H), 5.44–5.39 (m, 1H), 4.98 (dt, J = 6.0, 1.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 144.0, 141.6, 131.3, 130.6, 125.5, 124.6, 120.7, 120.5, 114.4, 68.4. HRMS (ESI): Calcd. for C₁₁H₁₀N₂O₂Na ([M+Na]⁺): 225.0635; Found 225.0649. FTIR (CHCl₃) ν_{max} /cm⁻¹ 3052, 3025, 2980, 2970, 2922, 2854, 1744, 1692, 1652, 1630, 1540, 1527, 1480, 1471, 1298,1162, 891, 740, 712.

4-(2,2,2-Trifluoroethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine(3aa)

44.8 mg, yield 88%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.70 (m, 1H), 7.34 – 7.24 (m, 3H), 4.28 – 4.19 (m, 1H), 3.98 (td, J = 11.5, 5.0 Hz, 1H), 3.57 – 3.35 (m, 2H), 2.55 – 2.41 (m, 1H), 2.41 – 2.24 (m, 2H), 2.2 – 2.1 (m, 1H), 1.74 (td, J = 13.1, 2.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 152.2, 142.4, 134.8, 126.8 (q, ${}^{1}J_{C-F(CF3)} = 275$ Hz), 122.5, 122.4, 119.1, 109.1, 42.4, 37.2 (q, ${}^{2}J_{C-F(CF3)} = 28.1$ Hz), 31.5 (q, ${}^{3}J_{C-F(CF3)} = 2.8$ Hz), 26.7, 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4. HRMS (ESI): Calcd. for C₁₃H₁₃F₃N₂Na ([M+Na]⁺): 277.0923; Found 277.0928. FTIR (CHCl₃) ν_{max}/cm⁻¹ 3020, 2998, 2923, 2850, 1701, 1540, 1532, 1483, 1472, 1301, 891, 743, 710.

6-Methyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2*a*]pyridine (3ba)

46.1 mg, yield 86%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.19–7.10 (m, 2H), 7.09–7.02 (m, 1H), 4.23–4.14 (m, 1H), 3.94 (td, J = 11.4, 5.1 Hz, 1H), 3.61–3.38 (m, 2H), 2.65 (s, 3H), 2.50–2.39 (m, 1H), 2.38–2.22 (m, 2H), 2.13–2.00 (m, 1H), 1.73 (td, J = 13.1, 2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 141.9, 134.5, 129.3, 126.9(q, ${}^{I}J_{C-F(CF3)} = 276$ Hz), 122.8, 122.2, 106.5, 42.5, 37.3 (q, ${}^{2}J_{C-F(CF3)} = 27.9$ Hz), 31.5 (q, ${}^{3}J_{C-F(CF3)} = 2.7$ Hz), 26.6, 21.5, 16.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2. HRMS (ESI): Calcd. for C₁₄H₁₅F₃N₂Na ([M+Na]⁺): 291.1080; Found 291.1087. FTIR (CHCl₃) v_{max}/cm⁻¹ 3018, 2892, 2862, 1670, 1555, 1534, 1484, 1463, 1310, 890, 792, 707.

7,8-Dimethyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2*a*]pyridine(3ca)

40.0 mg, yield 71%, colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.05 (s, 1H), 4.21 – 4.11 (m, 1H), 3.90 (td, J = 11.5, 5.0 Hz, 1H), 3.53 – 3.31 (m, 2H), 2.47 – 2.40 (m, 1H), 2.38 (s, 3H), 2.36 (s,

3H), 2.34 – 2.21 (m, 2H), 2.12 – 1.97 (m, 1H), 1.69 (td, J = 13.2, 2.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 141.1, 133.4, 131.3, 131.1, 126.9(q, ^{*1*} $J_{C-F(CF3)} = 276$ Hz), 119.3, 109.3, 42.3, 37.2 (q, ² $J_{C-F(CF3)} = 27.9$ Hz), 31.4 (q, ³ $J_{C-F(CF3)} = 2.8$ Hz), 26.7, 21.7, 20.5, 20.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4. HRMS (ESI): Calcd. for C₁₅H₁₇F₃N₂Na ([M+Na]⁺): 305.1236; Found 305.1242. FTIRv_{max}(CHCl₃)/cm⁻¹ 3010, 2884, 2852, 1694, 1540, 1560, 1469, 1463, 1317, 875, 709.

7,8-Dichloro-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2*a*]pyridine (3da)

54.2 mg, yield 84%, yellow oil

¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.31 (s, 1H), 4.16–4.08 (m, 1H), 3.91 (td, J = 11.6, 5.1 Hz, 1H), 3.49–3.31 (m, 2H), 2.51–2.40 (m, 1H), 2.39–2.25 (m, 2H), 2.16–2.01 (m, 1H), 1.73 (td, J = 13.2, 2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 141.8, 134.1, 126.6 (q, ${}^{I}J_{C-F(CF3)} = 275$ Hz), 126.2, 126.1, 120.3, 110.4, 42.6, 36.9 (q, ${}^{2}J_{C-F(CF3)} = 28.3$ Hz), 31.5 (q, ${}^{3}J_{C-F(CF3)} = 2.8$ Hz), 26.4, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5. HRMS (ESI): Calcd. for C₁₃H₁₁Cl₂F₃N₂Na ([M+Na]⁺): 345.0144; Found 345.0148. FTIR (CHCl₃) ν_{max}/cm⁻¹ 3010, 2884, 2852, 1694, 1540, 1560, 1469, 1464, 1317, 875, 709.

2,3-Diphenyl-8-(2,2,2-trifluoroethyl)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine (3ea)

45.6 mg, yield 64%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.44–7.40 (m, 5H), 7.35–7.31 (m, 2H), 7.22–7.17 (m, 2H), 7.15–7.10 (m, 1H), 3.77–3.72 (m, 1H), 3.70–3.62 (m, 1H), 3.56–3.42 (m, 1H), 3.39–3.31 (m, 1H), 2.44–2.28 (m, 2H), 2.13–2.00 (m, 1H), 1.98–1.87 (m, 1H), 1.73–1.64 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 136.9, 134.5, 130.8, 130.6 (2C),

128.9 (2C), 128.4, 128.1 (2C), 127.9, 127.0 (q, ${}^{1}J_{C-F(CF3)} = 276$ Hz), 126.8 (2C), 126.3, 43.8, 37.6 (q, ${}^{2}J_{C-F(CF3)} = 27.5$ Hz), 30.9 (q, ${}^{3}J_{C-F(CF3)} = 2.7$ Hz), 26.7, 22.0. 19 F NMR (376 MHz, CDCl₃) δ -63.3. HRMS (ESI): Calcd. for C₂₁H₂₀F₃N₂ ([M+H]⁺): 357.1573; Found 357.1586. FTIR (CHCl₃) ν_{max} /cm⁻¹ 3035, 3014, 2987, 2850, 1692, 1541, 1532, 1477, 1459, 1297, 892, 750, 710.

8-(2,2,2-Trifluoroethyl)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine-2,3dicarbonitrile (3fa)

40.6 mg, yield 80%, colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 4.25 (ddd, J = 12.9, 5.6, 2.6 Hz, 1H), 4.03 (td, J = 11.9, 5.0 Hz, 1H), 3.30-3.13 (m, 2H), 2.52 – 2.39 (m, 1H), 2.35 – 2.23 (m, 2H), 2.07 (dtdd, J = 14.3, 11.4, 5.7, 2.7 Hz, 1H), 1.71 (td, J = 13.4, 2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 127.6, 126.2 (q, ${}^{1}J_{C-F(CF3)}$ =277.2 Hz), 122.0, 111.7, 111.6, 45.3, 36.6 (q, $J^{2}J_{C-F(CF3)}$ = 29.0 Hz), 31.2 (q, J = 2.9 Hz), 25.7, 21.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5. HRMS (ESI): Calcd. for C₁₁H₉F₃N₄Na ([M+Na]⁺): 277.0672; Found 277.0691. FTIR (CHCl₃) ν_{max}/cm⁻¹ 3032, 3017, 2992, 2232, 1690, 1635, 1475, 1460, 1307, 890, 712.

Diethyl 8-(2,2,2-trifluoroethyl)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine-2,3dicarboxylate (3ga)

44.6 mg, yield 64%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 4.43 – 4.32 (m, 5H), 4.08 – 3.97 (m, 1H), 3.45 – 3.31 (m, 1H), 3.31 – 3.18 (m, 1H), 2.42 – 2.30 (m, 1H), 2.29 – 2.12 (m, 2H), 2.01 – 1.88 (m, 1H), 1.65 (td, *J* = 13.0, 2.5 Hz, 1H), 1.37 (q, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 159.9, 148.3, 136.7, 126.5(q, ^{*I*}*J*_{C-F(CF3)} = 276 Hz), 123.9, 61.42, 61.40,

45.4, 37.1 (q, ${}^{2}J_{C-F(CF3)} = 28.1$ Hz), 31.0 (q, ${}^{3}J_{C-F(CF3)} = 2.9$ Hz), 25.7, 21.6, 14.2, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4. HRMS (ESI): Calcd. for C₁₅H₁₉F₃N₂O₄Na ([M+Na]⁺): 371.1189; Found 371.1199. FTIR (CHCl₃) v_{max}/cm⁻¹ 3031, 3017, 2952, 2237, 1728, 1688, 1624, 1470, 1460, 1373, 1291, 1275, 1117, 898, 714.

3-Methyl-8-(2,2,2-trifluoroethyl)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine-2carbaldehyde (3ha)

36.9 mg, yield 75%, colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 9.76 (s, 1H), 4.58 – 4.47 (m, 1H), 4.13 – 4.01 (m, 1H), 3.34 – 3.16 (m, 2H), 2.46 (s, 3H), 2.38 – 2.27 (m, 1H), 2.28 – 2.09 (m, 2H), 2.00 – 1.86 (m, 1H), 1.65 (td, J = 12.6, 2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.1, 152.2, 150.7, 127.0, 126.6(q, ¹*J*_{C-*F*(*CF3*)} = 275 Hz), 45.2, 37.0 (q, ²*J*_{C-*F*(*CF3*)} = 28.2 Hz), 30.8 (q, ³*J*_{C-*F*(*CF3*)} = 2.8 Hz), 25.6, 21.5, 13.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -63. 6. HRMS (ESI): Calcd. for C₁₁H₁₄F₃N₂ ([M+H]⁺): 247.1053; Found 247.1052. FTIR (CHCl₃) v_{max} /cm⁻¹ 3038, 3012, 2960, 2820, 2717, 2234, 1723, 1680, 1623, 1470, 1461, 1380, 1295, 899, 720.

Ethyl 3-methyl -8- (2,2,2-trifluoroethyl) -5,6,7,8- tetrahydroimidazo [1,2-*a*] pyridine-2-carboxylate (3ia)

44.7 mg, yield 77%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 4.53 – 4.42 (m, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 4.08 – 3.96 (m, 1H), 3.36 – 3.15 (m, 2H), 2.46 (s, 3H), 2.37 – 2.26 (m, 1H), 2.25 – 2.08 (m, 2H), 1.98 – 1.83 (m, *J* = 8.6, 5.5, 2.4 Hz, 1H), 1.68 – 1.55 (m, 1H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 148.4, 147.0, 126.7 (q, ^{*I*}*J*_{*C*-*F*(*CF3*)} = 276 Hz), 118.7, 60.0, 45.5, 37.2 (q, ^{*2*}*J*_{*C*-*F*(*CF3*)} = 27.9 Hz), 31.0 (q, ^{*3*}*J*_{*C*-*F*(*CF3*)} = 2.8 Hz), 25.8, 21.8, 15.6, 14.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5. HRMS (ESI): Calcd. for

 $C_{13}H_{18}F_3N_2O_2 ([M+H]^+): 291.1315; Found 291.1322. FTIR (CHCl_3) v_{max}/cm^{-1} 3049, 3021, 2964, 2227, 1722, 1683, 1622, 1480, 1455, 1380, 1301, 1273, 1112, 895, 731.$

6-(2,2,2-Trifluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-*e*]purine (3ja)

33.3 mg, yield 65%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.98 (s, 1H), 8.89 (s, 1H), 4.50 – 4.39 (m, 1H), 3.98 (td, J = 12.1, 5.0 Hz, 1H), 3.43–3.30 (m, 2H), 2.47–2.40 (m, 1H), 2.38 – 2.25 (m, 2H), 2.08–1.97 (m, 1H), 1.77–1.67 (m, 1H).¹³C NMR (100 MHz, CDCl₃) δ 155.2, 152.2, 152.1, 147.0, 133.4, 126.5 (q, ${}^{1}J_{C-F(CF3)} = 275.4$ Hz), 41.7, 36.7 (q, ${}^{2}J_{C-F(CF3)} = 28.6$ Hz), 31.93 (q, ${}^{3}J_{C-F(CF3)} = 2.7$ Hz), 26.5, 21.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5. HRMS (ESI): Calcd. for C₁₁H₁₂F₃N₄ ([M+H]⁺): 257.1009; Found 257.1026. FTIR (CHCl₃) ν_{max}/cm⁻¹ 3031, 3015, 2970, 1712, 1634, 1470, 1462, 1300, 895, 711.

4-(Benzyloxy)-6-(2,2,2-trifluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-*e*]purine (3ka) Ph

44.9 mg, yield 62%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.56 – 7.51 (m, 2H), 7.38 – 7.29 (m, 3H), 5.69 (q, J = 12.2 Hz, 2H), 4.46 – 4.37 (m, 1H), 4.03 – 3.93 (m, 1H), 3.59 – 3.44 (m, 1H), 3.44 – 3.33 (m, 1H), 2.54 – 2.44 (m, 1H), 2.37 – 2.26 (m, 2H), 2.10 – 1.98 (m, 1H), 1.74 (td, J = 13.3, 2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 152.9, 152.0, 151.3, 136.3, 128.5, 128.4, 128.1, 126.6 (q, ${}^{1}J_{C-F(CF3)} = 275$ Hz), 120.7, 68.4, 42.0, 36.9 (q, ${}^{2}J_{C-F(CF3)} = 28.4$ Hz), 31.7 (q, ${}^{3}J_{C-F(CF3)} = 2.9$ Hz), 26.5, 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4. HRMS (ESI): Calcd. for C₁₈H₁₇F₃N₄ONa ([M+Na]⁺): 385.1247; Found 385.1264. FTIR (CHCl₃) ν_{max} /cm⁻¹ 3042, 3013, 2972, 1690, 1630, 1474, 1466, 1306, 1274, 891, 710.

1,3-Dimethyl-9-(2,2,2-trifluoroethyl)-6,7,8,9-tetrahydropyrido[2,1-f]purine-

2,4(1*H*,3*H*)-dione (3la)

51.9 mg, yield 82%, colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 4.56 – 4.53 (m, 1H), 4.15 – 4.08 (m, 1H), 3.53 (s, 3H), 3.36 (s, 3H), 3.30 – 3.18 (m, 2H), 2.40 – 2.34 (m, 1H), 2.31 – 2.18 (m, 2H), 2.05 – 1.95 (m, 1H), 1.69 (td, J = 12.6, 2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 151.7, 150.6, 148.1, 126.5 (q, ¹ $J_{C-F(CF3)}$ = 277.3 Hz), 107.1, 44.7, 36.9 (q, ² $J_{C-F(CF3)}$ = 28.5 Hz), 31.0 (q, ³ $J_{C-F(CF3)}$ = 2.6 Hz), 29.7, 27.8, 25.9, 21.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4. HRMS (ESI): Calcd. for C₁₃H₁₅F₃N₄O₂Na ([M+Na]⁺): 277.0923; Found 277.0928. FTIR (CHCl₃) v_{max}/cm⁻¹ 3057, 2980, 2880, 2363, 1710, 1675, 1655, 1377, 1325, 893, 741.

9-(2,2,2-Trifluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-*a*]indole (3ma)

23.8 mg, yield 47%, green oil.

¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.8 Hz, 1H), 7.28 (s, 1H), 7.17 (t, J = 7.6 Hz, 1H), 7.13 – 7.07 (m, 1H), 6.29 (s, 1H), 4.25 – 4.16 (m, 1H), 3.89 (td, J = 11.2, 5.0 Hz, 1H), 3.43 – 3.31 (m, 1H), 2.92 – 2.75 (m, 1H), 2.41 – 2.17 (m, 3H), 2.10 – 1.97 (m, 1H), 1.62 (td, J = 12.7, 2.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 136.4, 127.8, 126.7(q, ${}^{I}J_{C-F(CF3)} = 276$ Hz), 121.0, 120.01, 119.98, 108.8, 97.5, 42.1, 39.1 (q, ${}^{2}J_{C-F(CF3)} = 27.5$ Hz), 29.91 (q, ${}^{3}J_{C-F(CF3)} = 2.7$ Hz), 27.2, 22.0. ¹⁹F NMR (376 MHz, CDCl₃) δ - 63.4. HRMS (ESI): Calcd. for C₁₄H₁₅F₃N ([M+H]⁺): 254.1152; Found 254.1151. FTIR (CHCl₃) ν_{max}/cm⁻¹ 3023, 2981, 2923, 2854, 1541, 1531, 1483, 1472, 1290, 893, 741, 717.

3-Methyl-1-(pent-4-en-1-yl)-2-(trifluoromethyl)-1*H*-indole (3na)

14.4 mg, yield 27%, grass green oil

¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.0 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.19 – 7.13 (m, 1H), 5.90 – 5.74 (m, 1H), 5.12 – 5.00 (m, 2H), 4.24 – 4.11 (m, 2H), 2.45 (q, J = 2.6 Hz, 3H), 2.19 – 2.08 (m, 2H), 1.95 – 1.81 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 137.0, 127.2, 124.5, 122.8(q, ${}^{1}J_{C-F(CF3)} = 268$ Hz), 122.2 (q, ${}^{2}J_{C-F(CF3)} = 34.8$ Hz), 120.3, 119.8, 115.6, 114.40 (q, ${}^{3}J_{C-F(CF3)} = 2.8$ Hz), 109.9, 44.4 (q, ${}^{4}J_{C-F(CF3)} = 2.1$ Hz), 31.0, 29.0, 8.9 (q, ${}^{4}J_{C-F(CF3)} = 2.3$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -55.4. HRMS (ESI): Calcd. for C₁₅H₁₇F₃N ([M+H]⁺): 268.1308; Found 268.1307. FTIR (CHCl₃) ν_{max}/cm⁻¹ 3032, 3017, 2970, 2973, 2923, 2862, 1627, 1553, 1537, 1477, 1472, 1288, 1136, 877, 763, 721.

2-Methoxy-9-(2,2,2-trifluoroethyl)-6,7,8,9-tetrahydropyrido[1,2-a]indole (30a)

27.8 mg, yield 49%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 8.8 Hz, 1H), 7.02 (d, J = 2.3 Hz, 1H), 6.83 (dd, J = 8.8, 2.3 Hz, 1H), 6.21 (s, 1H), 4.19 – 4.08 (m, 1H), 3.94 – 3.79 (m, 4H), 3.40 – 3.28 (m, 1H), 2.90 – 2.73 (m, 1H), 2.42 – 2.14 (m, 3H), 2.08 – 1.94 (m, 1H), 1.63 – 1.51 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 139.0, 131.8, 128.2, 126.7 (q, ${}^{I}J_{C-F(CF3)} = 275.8$ Hz), 111.1, 109.5, 102.1, 97.2, 55.9, 42.2, 39.0 (q, ${}^{2}J_{C-F(CF3)} = 28.0$ Hz), 29.9 (q, ${}^{3}J_{C-F(CF3)} = 2.8$ Hz), 27.1, 22.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4. HRMS (ESI): Calcd. for C₁₅H₁₆F₃NO ([M+H]⁺): 284.1257; Found 284.1271. FTIR (CHCl₃) ν_{max} /cm⁻¹ 3015, 2983, 2923, 2854, 1543, 1537, 1484, 1471, 1321, 1237, 1040, 893, 854, 742, 714.

3-(2,2,2-Trifluoroethyl)-2,3-dihydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazole (3pa)

23.1 mg, yield 48%, yellow oil

¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.67 (m, 1H), 7.33 – 7.28 (m, 1H), 7.27 – 7.21 (m, 2H), 4.21 – 4.13 (m, 1H), 4.07 – 3.97 (m, 1H), 3.63 – 3.51 (m, 1H), 3.23 – 3.06 (m, 1H), 3.05 – 2.94 (m, 1H), 2.58 – 2.42 (m, 1H), 2.37 – 2.21 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 148.4, 132.4, 126.4(q, ^{*1*}*J*_{*C*-*F*(*CF3*)} = 275 Hz), 122.4, 122.1, 119.9, 109.7, 42.0, 36.8 (q, ²*J*_{*C*-*F*(*CF3*)} = 28.6 Hz), 33. 7, 30.8 (q, ³*J*_{*C*-*F*(*CF3*)} = 3.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.0. HRMS (ESI): Calcd. for C₁₂H₁₁F₃N₂Na ([M+Na]⁺): 263.0767; Found 263.0777. FTIR (CHCl₃) v_{max}/cm⁻¹ 3032, 2994, 2923, 2855, 1711, 1544, 1533, 1480, 1477, 1297, 892, 741, 714. **6,7-Dimethyl-3-(2,2,2-trifluoroethyl)-2,3-dihydro-1***H***-benzo[***d***]pyrrolo[1,2-**

6,7-Dimethyl-3-(2,2,2-trifluoroethyl)-2,3-dihydro-1*H*-benzo[*d*]pyrrol *a*]imidazole (3qa)

22.0 mg, yield 41%, colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.10 (s, 1H), 4.18 – 4.09 (m, 1H), 4.04 – 3.94 (m, 1H), 3.62 – 3.50 (m, 1H), 3.22 – 3.05 (m, 1H), 3.05 – 2.93 (m, 1H), 2.57 – 2.42 (m, 1H), 2.36 (d, J = 2.3 Hz, 6H), 2.30 – 2.18 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 147.0, 131.4, 130.9, 130.8, 126.5 (q, ${}^{I}J_{C-F(CF3)} = 277.0$ Hz), 119.9, 110.0, 41.9, 36.9 (q, ${}^{2}J_{C-F(CF3)} = 28.7$ Hz), 33.7, 30.8 (q, ${}^{3}J_{C-F(CF3)} = 2.9$ Hz), 20.4, 20.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -65.0. HRMS (ESI): Calcd. for C₁₄H₁₅F₃N₂Na ([M+Na]⁺): 291.1080; Found 291.1091. FTIR (CHCl₃) ν_{max}/cm⁻¹ 3023, 2886, 2850, 1698, 1540, 1560, 1470, 1464, 1315, 870, 708.

6,7-Dichloro-3-(2,2,2-trifluoroethyl)-2,3-dihydro-1*H*-benzo[*d*]pyrrolo[1,2*a*]imidazole (3ra)

35.7 mg, yield 58%, colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.43 (s, 1H), 4.23 – 4.14 (m, 1H), 4.10 – 4.00 (m, 1H), 3.66 – 3.55 (m, 1H), 3.20 – 2.99 (m, 2H), 2.62 – 2.49 (m, 1H), 2.38 – 2.27 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 147.7, 131.5, 126.5, 126.3, 126.2 (q, ¹*J*_{*C*-*F*(*CF3*)} = 275.2 Hz), 121.1, 111.1, 42.3, 36.6 (q, ²*J*_{*C*-*F*(*CF3*)} = 29.1 Hz), 33.6, 30.9 (q, ³*J*_{*C*-*F*(*CF3*)} = 3.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.9. HRMS (ESI): Calcd. for C₁₂H₁₀Cl₂F₃N₂ ([M+H]⁺): 309.0168; Found 309.0180. FTIR (CHCl₃) v_{max}/cm⁻¹ 3023, 2890, 2850, 1691, 1543, 1563, 1470, 1460, 1316, 860, 710.

2,3-Diphenyl-7-(2,2,2-trifluoroethyl)-6,7-dihydro-5*H*-pyrrolo[1,2-*a*]imidazole (3sa)

37.7 mg, yield 55%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.2 Hz, 2H), 7.42 – 7.30 (m, 5H), 7.28 – 7.21 (m, 2H, overlap with CDCl₃), 7.21 – 7.14 (m, 1H), 4.05 – 3.96 (m, 1H), 3.96 – 3.86 (m, 1H), 3.59 – 3.48 (m, 1H), 3.22 – 3.07 (m, 1H), 2.98 – 2.84 (m, 1H), 2.50 – 2.35 (m, 1H), 2.36 – 2.23 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 142.2, 135.0, 130.7, 128.9 (2C), 128.8 (2C), 128.2 (2C), 127.9, 127.3 (2C), 126.64, 126.58 (q, ${}^{1}J_{C-F(CF3)} = 275$ Hz), 125.7, 43.5, 37.2 (q, ${}^{2}J_{C-F(CF3)} = 28.1$ Hz), 33.5, 31.0 (q, ${}^{3}J_{C-F(CF3)} = 3.1$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.9. HRMS (ESI): Calcd. for C₂₀H₁₇F₃N₂Na ([M+Na]⁺): 365.1237; Found 365.1251. FTIR (CHCl₃) ν_{max}/cm⁻¹ 3032, 3012, 2993, 2853, 1683, 1531, 1470, 1453, 1290, 892, 753, 710.

Diethyl 7-(2,2,2-trifluoroethyl)-6,7-dihydro-5*H*-pyrrolo [1,2-*a*]imidazole-2,3dicarboxylate (3ta)

32.1 mg, yield 48%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 4.44 – 4.33 (m, 5H), 4.20 – 4.10 (m, 1H), 3.53 – 3.42 (m, 1H), 3.17 – 3.01 (m, 1H), 2.99 – 2.87 (m, 1H), 2.51 – 2.40 (m, 1H), 2.30 – 2.14 (m, 1H), 1.39 (q, J = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 159.1, 155.7, 141.0, 126.2 (q, ¹ $J_{C-F(CF3)}$ = 275.4 Hz), 122.6, 61.45, 61.42, 45.9, 36.7 (q, ² $J_{C-F(CF3)}$ = 28.5 Hz), 33.3, 30.8 (q, ³ $J_{C-F(CF3)}$ = 3.1 Hz), 14.2, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -65.07. HRMS (ESI): Calcd. for C₁₄H₁₇F₃N₂O₄Na ([M+Na]⁺): 357.1033; Found 357.1059. FTIR (CHCl₃) ν_{max} /cm⁻¹ 3037 3017, 2957, 2214, 1730, 1620, 1630, 1454, 1441, 1364, 1280, 1270, 1117, 887, 710.

Ethyl 3-methyl-7-(2,2,2-trifluoroethyl)-6,7-dihydro-5*H*-pyrrolo [1,2-*a*]imidazole-2-carboxylate (3ua)

32.0 mg, yield 58%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 4.38 – 4.28 (m, 3H), 4.14 – 4.02 (m, 1H), 3.48 – 3.35 (m, 1H), 3.07 – 2.83 (m, 2H), 2.49 (s, 3H), 2.44 – 2.33 (m, 1H), 2.29 – 2.13 (m, 1H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 155.6, 151.7, 126.3(q, ^{*I*}J_{*C*-*F*(*CF3*)} = 275.4 Hz), 117.4, 60.2, 45.7, 36.8 (q, ²J_{*C*-*F*(*CF3*)} = 28.4 Hz), 33.1, 30.96 (q, ³J_{*C*-*F*(*CF3*)} = 3.1 Hz), 15.5, 14.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -65.07. HRMS (ESI): Calcd. for C₁₂H₁₅F₃N₃O₂Na ([M+Na]⁺): 299.0978; Found 299.0978. FTIR (CHCl₃) v_{max} /cm⁻¹ 3049, 3021, 2964, 2227, 1722, 1683, 1622, 1480, 1455, 1380, 1301, 1273, 1112, 895, 731.

4-(2,2-Difluoroethyl)-7,8-dimethyl-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2*a*]pyridine (3cb)

27.0 mg, yield 51%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.04 (s, 1H), 6.36 (tdd, J = 56.9, 5.2, 4.1 Hz, 1H), 4.16–4.06 (m, 1H), 3.31–3.20 (m, 1H), 2.81–2.62 (m, 1H), 2.85–2.63 (m, 1H), 2.37 (s, 3H), 2.36 (s, 3H), 2.29–1.99 (m, 4H), 1.77–1.65 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 141.2, 133.2, 131.1, 131.0, 119.3 116.9 (t, ${}^{I}J_{C-F}$ (*CF2*) = 237.5 Hz, overlap withδ119.3), 109.3, 42.3, 38.1 (t, ${}^{2}J_{C-F}$ (*CF2*) = 21.2 Hz), 31.3 (t, ${}^{3}J_{C-F(CF2)}$ = 4.8 Hz), 27.6, 21.8, 20.4, 20.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.0–118.1. HRMS (ESI): Calcd. for C₁₄H₁₆F₂N₂Na ([M+Na]⁺): 273.1174; Found 273.1189. FTIR (CHCl₃) v_{max} /cm⁻¹ 3012, 2876, 2854, 1692, 1546, 1563, 1460, 1464, 1316, 875, 684.

5-(2,2,2-Trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline (5)

22.9 mg, yield 76%, colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.36 – 8.34 (m, 1H), 7.89 – 7.87 (m, 1H), 7.54 – 7.47 (m, 2H), 7.43 – 7.38 (m, 2H), 7.37 – 7.34 (m, 2H), 4.59 (dd, J = 13.0, 2.2 Hz, 1H), 4.30 (dd, J = 13.0, 4.1 Hz, 1H), 3.68 – 3.65 (m, 1H), 2.47 – 2.33 (m, 2H).¹³C NMR (100 MHz, CDCl₃) δ 148.2, 143.9, 136.3, 134.8, 130.8, 128.8, 127.7, 126.2, 126.1 (q, ^{*1*} J_{C} . *F*(*CF3*) = 276 Hz), 125.8, 123.2, 122.9, 119.9, 109.1, 43.7, 37.5 (q, ² J_{C} -*F*(*CF3*) = 28 Hz), 33.3 (q, ³ J_{C} -*F*(*CF3*) = 2 Hz), 29.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5. HRMS (ESI): Calcd. for C₁₇H₁₃F₃N₂ ([M + Na]⁺):325.0923; Found 325.0925. FTIR (CHCl₃) v_{max}/cm⁻¹ 3027, 2987, 2920, 2851, 1700, 1543, 1537, 1480, 1475, 1301, 893, 749, 712.

Figure S-6¹³C NMR spectrum of 1a

Figure S-8 ¹³C NMR spectrum of **1b**

Figure S-10 ¹³C NMR spectrum of **1c**

Figure S-12 ¹³C NMR spectrum of 1d

Figure S-14 ¹³C NMR spectrum of 1e

Figure S-16¹³C NMR spectrum of **1f**

Figure S-18 ¹³C NMR spectrum of **1g**

Figure S-24 ¹³C NMR spectrum of **1**j

Figure S-26 ¹³C NMR spectrum of 1k

Figure S-31 ¹³C NMR spectrum of 1n

Figure S-33 ¹³C NMR spectrum of **10**

Figure S-35 ¹³C NMR spectrum of **1p**

Figure S-37 ¹³C NMR spectrum of 1q

Figure S-39 ¹³C NMR spectrum of **1r**

Figure S-41 ¹³C NMR spectrum of 1s

Figure S-45 ¹³C NMR spectrum of **1u**

Figure S-47 13 C NMR spectrum of 1v

Figure S-49 ¹³C NMR spectrum of **1w**

Figure S-51 ¹³C NMR spectrum of **3aa**

Figure S-52 ¹⁹F NMR spectrum of **3aa**

Figure S-54 ¹³C NMR spectrum of **3ba**

Figure S-55 ¹⁹F NMR spectrum of **3ba**

Figure S-58 ¹⁹F NMR spectrum of **3ca**

Figure S-61 ¹⁹F NMR spectrum of **3da**

Figure S-63 ¹³C NMR spectrum of **3ea**

Figure S-64 ¹⁹F NMR spectrum of **3ea**

Figure S-66 ¹³C NMR spectrum of **3fa**

Figure S-67 ¹⁹F NMR spectrum of **3fa**

Figure S-70¹⁹F NMR spectrum of **3ga**

Figure S-73 ¹⁹F NMR spectrum of **3ha**

Figure S-75 ¹³C NMR spectrum of **3ia**

Figure S-76¹⁹F NMR spectrum of **3ia**

Figure S-78 ¹³C NMR spectrum of **3ja**

Figure S-79¹⁹F NMR spectrum of **3ja**

Figure S-82 ¹⁹F NMR spectrum of **3ka**

Figure S-85 ¹⁹F NMR spectrum of **3la**

Figure S-87 ¹³C NMR spectrum of **3ma**

Figure S-88 ¹⁹F NMR spectrum of **3ma**

Figure S-90 ¹³C NMR spectrum of **3na**

Figure S-91 ¹⁹F NMR spectrum of **3na**

Figure S-94 ¹⁹F NMR spectrum of **30a**

Figure S-97¹⁹F NMR spectrum of **3pa**

Figure S-100 ¹⁹F NMR spectrum of **3qa**

Figure S-102 ¹³C NMR spectrum of **3ra**

Figure S-103 ¹⁹F NMR spectrum of **3ra**

Figure S-105 ¹³C NMR spectrum of **3sa**

Figure S-106¹⁹F NMR spectrum of **3sa**

Figure S-108 ¹³C NMR spectrum of **3ta**

Figure S-109¹⁹F NMR spectrum of **3ta**

Figure S-112 ¹⁹F NMR spectrum of **3ua**

113.01 113.05 113.05 113.20 112.20 11

Figure S-116 ¹H NMR spectrum of 5

Figure S-118 $^{19}\mathrm{F}$ NMR spectrum of $\mathbf{5}$