Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Photochemical Synthesis and Ring-Chain-Ring Tautomerism of Benzo[4,5]imidazo[1,2*a*]cyclopenta[*e*]pyridines

Andrey N. Komogortsev*, Boris V. Lichitskii, Constantine V. Milyutin and Valeriya G. Melekhina

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation

Table of content

1. ¹ H NMR spectra of mixture of compounds 4b and 5b at various conditions	S3
2. UV-Vis absorption spectrum of compound 3b	S4
3. 2D NMR data of mixture of compounds 4a and 5a	S5
4. Copies of ¹ H and ¹³ C NMR spectra	S8
4.1. Starting compounds 3	S8
4.2. Mixture of photoproducts 4 and 5	S13
4.3. Derivatization products 10-13	S18
5. Copies of HRMS for all compounds	S26
6. X-ray crystallographic data and refinement details	S44
6.1. Compound 4b (1)	S44
6.2. Compound 4b (2)	\$56
6.3. Compound 4c	S68
6.4. Compound 10b	S79
6.5. Compound 11a	S87
6.6. Compound 12b	
6.7. Compound 13a	S104
7. References	S111

1. ¹H NMR spectra of mixture of compounds **4b** and **5b** at various conditions

Figure S1. ¹H NMR spectra of mixture of compounds 4b and 5b at r.t. and 100 °C in DMSO-*d*₆ solution

Figure S2. ¹H NMR spectra of mixture of compounds 4b and 5b at various T °C in DMSO-d₆ solution

Figure S3. ¹H NMR spectra of mixture of compounds 4b and 5b at r.t. in Acetic acid-d₄ solution

2. UV-Vis absorption spectrum of compound 3b

Fig. S4. UV-Vis absorption spectrum of **3b** in acetonitrile ($c = 1.1 \times 10^{-5}$)

3. 2D NMR data of mixture of compounds 4a and 5a

Table S1. Assignment of NMR signals and 2D NMR (HMBC) correlations for compound 4a

N⁰	$^{1}\mathrm{H}$	¹³ C	HMBC
1	-	38.5	19, 2, 10, 11
2	3.23 (d, <i>J</i> = 16.5 Hz, 1H);	35.0	10, 11
	2.62 (d, $J = 16.5$ Hz, 1H);		
3	-	150.8	2, 11
4	-	87.8	6
5	-	197.1	6, 9
6	6.35 (d, <i>J</i> = 1.5 Hz, 1H)	129.5	9
7	-	175.6	6, 9
8	-	83.1	2, 6, 9, 10, 11
9	2.21 (d, <i>J</i> = 1.5 Hz, 3H)	16.8	6
10	0.66 (s, 3H)	24.0	2, 11
11	1.29 (s, 3H)	25.0	10
12	-	143.0	13, 14
13	7.91 – 7.81 (m, 1H)	115.5	14, 15
14	7.17 – 7.09 (m, 1H)	121.6	13
15	7.17 – 7.09 (m, 1H)	120.9	16
16	7.51 – 7.44 (m, 2H)	117.9	14, 15
17	-	133.8	15, 16
18	7.48 (s, 1H)	-	-
19	6.08 (s, 1H)	-	-

Table S2. Assignment of NMR signals and 2D NMR (HMBC) correlations for compound 5a

N⁰	¹ H	¹³ C	HMBC
1	-	38.4	2, 10, 11, 12
2	3.11 (d, <i>J</i> = 16 Hz, 1H)	34.3	11, 12
	2.56 (d, $J = 17.1$ Hz, 1H)		
3	-	150.6	2
4	-	63.7	5, 10, 13
5	7.17 – 7.09 (m, 1H)	127.4	13
6	-	152.8	-
7	-	202.0	5, 10
8	-	81.4	2, 5, 10, 11, 12, 13
9	10.3 (br.s, 1H)	-	-
10	6.23 (s, 1H)	-	-
11	1.22 (s, 3H)	22.6	12
12	0.56 (s, 3H)	25.0	11
13	1.62 (s, 3H)	26.7	5
14	-	143.2	2, 15, 16
15	7.91 – 7.81 (m, 1H)	112.0	16, 18
16	7.26 – 7.19 (m, 1H)	121.5	15, 17, 18
17	7.17 – 7.09 (m, 1H)	121.4	15, 18
18	7.59 – 7.54 (m, 1H)	118.8	16
19	-	132.1	18, 16

Figure S5. 2D NMR spectrum (HMBC) of mixture of 4a and 5a in DMSO-d₆

Figure S6. 2D NMR spectrum (HSQC) of mixture of 4a and 5a in DMSO-d₆

4. Copies of ¹H and ¹³C NMR spectra

4.1. Starting compounds **3**

¹H NMR spectrum (300 MHz) of **3a** in DMSO- d_6

 ^{13}C {¹H} NMR spectrum (75 MHz) of **3a** in DMSO- d_6

 ^{13}C {¹H} NMR spectrum (126 MHz) of **3b** in DMSO- d_6

¹H NMR spectrum (300 MHz) of 3c in DMSO- d_6

¹³C {¹H} NMR spectrum (126 MHz) of 3c in DMSO- d_6

¹H NMR spectrum (300 MHz) of **3d** in DMSO- d_6

¹³C {¹H} NMR spectrum (126 MHz) of **3d** in DMSO- d_6

¹³C {¹H} NMR spectrum (126 MHz) of **3e** in DMSO- d_6

4.2. Mixture of photoproducts **4** and **5**

¹H NMR spectrum (400 MHz) of mixture of **4a** and **5a** in DMSO- d_6

 ^{13}C { ^{1}H } NMR spectrum (126 MHz) of mixture of **4b** and **5b** in DMSO- d_6

¹H NMR spectrum (300 MHz) of mixture of 4c and 5c in DMSO- d_6

¹H NMR spectrum (300 MHz) of mixture of **4d** and **5d** in DMSO- d_6

 ^{13}C {¹H} NMR spectrum (126 MHz) of mixture of **4d** and **5d** in DMSO-*d*₆

 ^{13}C { ^{1}H } NMR spectrum (75 MHz) of mixture of **4e** and **5e** in DMSO- d_6

4.3. Derivatization products **10-13**

¹H NMR spectrum (300 MHz) of **10a** in DMSO-*d*₆

¹H NMR spectrum (300 MHz) of **10b** in DMSO- d_6

 13 C {¹H} NMR spectrum (151 MHz) of **10b** in DMSO- d_6

¹H NMR spectrum (300 MHz) of **11a** in DMSO- d_6

13 C {¹H} NMR spectrum (75 MHz) of **11a** in DMSO-*d*₆

 13 C {¹H} NMR spectrum (151 MHz) of **11b** in DMSO- d_6

 13 C {¹H} NMR spectrum (151 MHz) of **12a** in DMSO- d_6

 13 C {¹H} NMR spectrum (151 MHz) of **12b** in DMSO- d_6

 ^{13}C {¹H} NMR spectrum (151 MHz) of **13a** in DMSO-*d*₆

5. Copies of HRMS for all compounds

HRMS for compound 3a

HRMS for compound 3b

HRMS for compound 3c

HRMS for compound 3d

HRMS for compound 3e

HRMS for mixture of isomers 4a and 5a

HRMS for mixture of isomers 4b and 5b

HRMS for mixture of isomers 4c and 5c

HRMS for mixture of isomers 4d and 5d

HRMS for mixture of isomers 4e and 5e

HRMS for compound 10a

HRMS for compound 11a

HRMS for compound 11b

HRMS for compound 12a

HRMS for compound 12b

HRMS for compound 13a

HRMS for compound 13b

6. X-ray crystallographic data and refinement details

6.1. Compound **4b** (1)

X-ray diffraction data were collected at 100K on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix600HE area-detector (kappa geometry, shutterless ω -scan technique), using monochromatized Cu K α radiation. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.¹ The structure was solved by direct methods using SHELXT² and refined on F^2 using SHELXL-2018³ in the OLEX2 program.⁴ All non-hydrogen atoms were refined with individual anisotropic displacement parameters. Locations of hydroxy H-atoms (H1A, H1B, H2A and H2B) were found from the electron density-difference map; these hydrogen atoms were refined with individual isotropic displacement parameters. All other hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters.

Identification code	4b (1)	
Empirical formula	C21.50 H25 N2 O3.50	
Formula weight	367.43	
Temperature	100.00(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 22.38682(16) Å	a= 90°.
	b = 12.13681(9) Å	b= 93.0248(6)°.
	c = 13.54889(7) Å	$g = 90^{\circ}$.
Volume	3676.17(4) Å ³	
Z	8	
Density (calculated)	1.328 g/cm ³	
Absorption coefficient	0.731 mm ⁻¹	
F(000)	1568	
Crystal size	0.21 x 0.13 x 0.08 mm ³	
Theta range for data collection	3.266 to 78.500°.	
Index ranges	-28<=h<=28, -15<=k<=1	5, -12<=l<=16
Reflections collected	103526	
Independent reflections	7887 [R(int) = 0.0528]	
Observed reflections	7522	
Completeness to theta = 67.684°	99.9 %	
Absorption correction	Semi-empirical from equi	ivalents
Max. and min. transmission	1.00000 and 0.86655	
Refinement method	Full-matrix least-squares	on F ²

Table S3. Crystal data and structure refinement for 4b (1).

CCDC	2233462
Largest diff. peak and hole	0.470 and -0.335 e.Å ⁻³
R indices (all data)	R1 = 0.0749, wR2 = 0.2380
Final R indices [I>2sigma(I)]	R1 = 0.0718, wR2 = 0.2347
Goodness-of-fit on F ²	1.187
Data / restraints / parameters	7887 / 0 / 504

Table S4. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **4b** (1). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

y (1) 7124(2) (1) 7104(2)	z) 1535(2)	U(eq)
(1) 7124(2) (1) 7104(2)) 1535(2)	21(1)
(1) 7104(2)		· · /
) 2010(2)	22(1)
(1) 9445(2)) 1908(2)	28(1)
(1) 7630(2)) 3157(2)	17(1)
(1) 7199(2)) 4760(2)	18(1)
(1) 7468(2)) 4017(2)	17(1)
(1) 7157(2)) 4366(2)	18(1)
(1) 6888(3)) 4822(2)	23(1)
(1) 6882(3)) 4245(3)	26(1)
(2) 7122(3)) 3230(3)	28(1)
(1) 7389(3)) 2763(2)	25(1)
(1) 7417(2)) 3358(2)	19(1)
(1) 7954(2)) 2223(2)	17(1)
(1) 8101(2)) 2274(2)	18(1)
(1) 8979(2)) 1477(2)	21(1)
(1) 9533(3)) 1275(2)	22(1)
(1) 9083(2)) 1819(2)	20(1)
(2) 9142(3)) 979(2)	28(1)
(1) 8445(2)) 3324(2)	17(1)
(1) 7549(2)) 4033(2)	18(1)
(1) 8464(3)) 3346(2)	22(1)
(1) 8856(3)) 4345(2)	26(1)
(2) 9981(3)) 4629(3)	28(1)
(1) 9968(3)) 4628(2)	24(1)
(1) 9590(2)) 3624(2)	19(1)
	(1) $7104(2)$ (1) $9445(2)$ (1) $7630(2)$ (1) $7199(2)$ (1) $7199(2)$ (1) $7468(2)$ (1) $7157(2)$ (1) $6888(3)$ (1) $6882(3)$ (1) $6882(3)$ (1) $6882(3)$ (1) $6882(3)$ (1) $7122(3)$ (1) $7389(3)$ (1) $7417(2)$ (1) $7954(2)$ (1) $8979(2)$ (1) $9533(3)$ (1) $9083(2)$ (1) $8445(2)$ (1) $8445(2)$ (1) $8464(3)$ (1) $8856(3)$ (1) $9981(3)$ (1) $9968(3)$ (1) $9590(2)$	(1) $7104(2)$ $2010(2)$ (1) $9445(2)$ $1908(2)$ (1) $7630(2)$ $3157(2)$ (1) $7199(2)$ $4760(2)$ (1) $7468(2)$ $4017(2)$ (1) $7468(2)$ $4017(2)$ (1) $7457(2)$ $4366(2)$ (1) $6888(3)$ $4822(2)$ (1) $6882(3)$ $4245(3)$ (2) $7122(3)$ $3230(3)$ (1) $7389(3)$ $2763(2)$ (1) $7417(2)$ $3358(2)$ (1) $7954(2)$ $2223(2)$ (1) $8979(2)$ $1477(2)$ (1) $9533(3)$ $1275(2)$ (1) $9983(2)$ $1819(2)$ (1) $8445(2)$ $3324(2)$ (1) $8464(3)$ $3346(2)$ (1) $8856(3)$ $4345(2)$ (2) $9981(3)$ $4629(3)$ (1) $9968(3)$ $4628(2)$ (1) $9590(2)$ $3624(2)$

O(1B)	93(1)	7121(2)	8307(2)	23(1)
O(2B)	-1024(1)	7126(2)	7644(2)	23(1)
O(3B)	692(1)	9464(2)	7985(2)	32(1)
N(1B)	271(1)	7622(2)	6713(2)	18(1)
N(2B)	353(1)	7167(2)	5126(2)	20(1)
C(1B)	-15(1)	7451(2)	5807(2)	18(1)
C(2B)	921(1)	7129(3)	5614(2)	21(1)
C(3B)	1475(1)	6874(3)	5238(2)	25(1)
C(4B)	1971(2)	6897(3)	5888(3)	28(1)
C(5B)	1923(2)	7152(3)	6889(3)	30(1)
C(6B)	1377(1)	7408(3)	7275(3)	26(1)
C(7B)	880(1)	7402(2)	6608(2)	20(1)
C(8B)	-20(1)	7950(2)	7600(2)	19(1)
C(9B)	-717(1)	8116(2)	7431(2)	20(1)
C(10B)	-824(1)	8990(3)	8214(2)	23(1)
C(11B)	-322(2)	9533(3)	8507(2)	24(1)
C(12B)	193(1)	9083(3)	8030(2)	23(1)
C(13B)	-1428(2)	9178(3)	8611(3)	30(1)
C(14B)	-911(1)	8474(2)	6350(2)	19(1)
C(15B)	-674(1)	7561(3)	5680(2)	20(1)
C(16B)	-650(1)	9606(3)	6102(2)	21(1)
C(17B)	-842(1)	9989(3)	5056(2)	25(1)
C(18B)	-1523(2)	10040(3)	4914(3)	31(1)
C(19B)	-1803(1)	8927(3)	5153(3)	28(1)
C(20B)	-1600(1)	8531(3)	6196(2)	23(1)
O(4)	2675(2)	6127(3)	3815(2)	65(1)
C(21)	2572(2)	5420(3)	3204(3)	28(1)
C(22)	2127(2)	4538(4)	3385(4)	44(1)
C(23)	2876(2)	5381(3)	2246(3)	32(1)

Table S5. Bond lengths [Å] and angles [°] for **4b** (1)

Table S5. Bond length	s [A] and angles $[\circ]$ for 4b (1)		
O(1A)-H(1A)	0.84(5)	C(16A)-C(17A)	1.538(4)
O(1A)-C(8A)	1.405(3)	C(17A)-H(17A)	0.9900
O(2A)-H(2A)	0.85(5)	C(17A)-H(17B)	0.9900
O(2A)-C(9A)	1.416(3)	C(17A)-C(18A)	1.524(5)
O(3A)-C(12A)	1.214(4)	C(18A)-H(18A)	0.9900
N(1A)-C(1A)	1.367(4)	C(18A)-H(18B)	0.9900
N(1A)-C(7A)	1.398(4)	C(18A)-C(19A)	1.532(4)
N(1A)-C(8A)	1.451(3)	C(19A)-H(19A)	0.9900
N(2A)-C(1A)	1.316(4)	C(19A)-H(19B)	0.9900
N(2A)-C(2A)	1.401(4)	C(19A)-C(20A)	1.533(4)
C(1A)-C(15A)	1.483(4)	C(20A)-H(20A)	0.9900
C(2A)-C(3A)	1.396(4)	C(20A)-H(20B)	0.9900
C(2A)-C(7A)	1.400(4)	O(1B)-H(1B)	0.91(5)
C(3A)-H(3A)	0.9500	O(1B)-C(8B)	1.402(4)
C(3A)-C(4A)	1.383(5)	O(2B)-H(2B)	0.86(5)
C(4A)-H(4A)	0.9500	O(2B)-C(9B)	1.421(4)
C(4A)-C(5A)	1.405(5)	O(3B)-C(12B)	1.213(4)
C(5A)-H(5A)	0.9500	N(1B)-C(1B)	1.370(4)
C(5A)-C(6A)	1.382(5)	N(1B)-C(7B)	1.402(4)
C(6A)-H(6A)	0.9500	N(1B)-C(8B)	1.452(4)
C(6A)-C(7A)	1.399(4)	N(2B)-C(1B)	1.314(4)
C(8A)-C(9A)	1.574(4)	N(2B)-C(2B)	1.402(4)
C(8A)-C(12A)	1.553(4)	C(1B)-C(15B)	1.482(4)
C(9A)-C(10A)	1.530(4)	C(2B)-C(3B)	1.400(4)
C(9A)-C(14A)	1.571(4)	C(2B)-C(7B)	1.395(4)
C(10A)-C(11A)	1.343(4)	C(3B)-H(3B)	0.9500
C(10A)-C(13A)	1.491(4)	C(3B)-C(4B)	1.381(5)
C(11A)-H(11A)	0.9500	C(4B)-H(4B)	0.9500
C(11A)-C(12A)	1.452(4)	C(4B)-C(5B)	1.400(5)
C(13A)-H(13A)	0.9800	C(5B)-H(5B)	0.9500
C(13A)-H(13B)	0.9800	C(5B)-C(6B)	1.390(5)
C(13A)-H(13C)	0.9800	C(6B)-H(6B)	0.9500
C(14A)-C(15A)	1.536(4)	C(6B)-C(7B)	1.396(4)
C(14A)-C(16A)	1.544(4)	C(8B)-C(9B)	1.579(4)
C(14A)-C(20A)	1.541(4)	C(8B)-C(12B)	1.559(4)
C(15A)-H(15A)	0.9900	C(9B)-C(10B)	1.528(4)
C(15A)-H(15B)	0.9900	C(9B)-C(14B)	1.567(4)
C(16A)-H(16A)	0.9900	C(10B)-C(11B)	1.345(5)
C(16A)-H(16B)	0.9900	C(10B)-C(13B)	1.498(4)

C(11B)-H(11B)	0.9500	N(2A)-C(1A)-N(1A)	112.6(3)
C(11B)-C(12B)	1.455(4)	N(2A)-C(1A)-C(15A)	126.8(3)
C(13B)-H(13D)	0.9800	C(3A)-C(2A)-N(2A)	129.8(3)
C(13B)-H(13E)	0.9800	C(3A)-C(2A)-C(7A)	120.5(3)
C(13B)-H(13F)	0.9800	C(7A)-C(2A)-N(2A)	109.7(3)
C(14B)-C(15B)	1.544(4)	C(2A)-C(3A)-H(3A)	121.1
C(14B)-C(16B)	1.538(4)	C(4A)-C(3A)-C(2A)	117.8(3)
C(14B)-C(20B)	1.547(4)	C(4A)-C(3A)-H(3A)	121.1
C(15B)-H(15C)	0.9900	C(3A)-C(4A)-H(4A)	119.5
C(15B)-H(15D)	0.9900	C(3A)-C(4A)-C(5A)	121.0(3)
C(16B)-H(16C)	0.9900	C(5A)-C(4A)-H(4A)	119.5
C(16B)-H(16D)	0.9900	C(4A)-C(5A)-H(5A)	118.9
C(16B)-C(17B)	1.531(4)	C(6A)-C(5A)-C(4A)	122.2(3)
C(17B)-H(17C)	0.9900	C(6A)-C(5A)-H(5A)	118.9
C(17B)-H(17D)	0.9900	C(5A)-C(6A)-H(6A)	121.8
C(17B)-C(18B)	1.529(4)	C(5A)-C(6A)-C(7A)	116.3(3)
C(18B)-H(18C)	0.9900	C(7A)-C(6A)-H(6A)	121.8
C(18B)-H(18D)	0.9900	N(1A)-C(7A)-C(2A)	105.0(2)
C(18B)-C(19B)	1.530(5)	N(1A)-C(7A)-C(6A)	132.8(3)
C(19B)-H(19C)	0.9900	C(6A)-C(7A)-C(2A)	122.2(3)
C(19B)-H(19D)	0.9900	O(1A)-C(8A)-N(1A)	107.1(2)
C(19B)-C(20B)	1.538(5)	O(1A)-C(8A)-C(9A)	109.1(2)
C(20B)-H(20C)	0.9900	O(1A)-C(8A)-C(12A)	109.4(2)
C(20B)-H(20D)	0.9900	N(1A)-C(8A)-C(9A)	113.4(2)
O(4)-C(21)	1.206(5)	N(1A)-C(8A)-C(12A)	114.7(2)
C(21)-C(22)	1.490(5)	C(12A)-C(8A)-C(9A)	103.0(2)
C(21)-C(23)	1.498(5)	O(2A)-C(9A)-C(8A)	110.0(2)
C(22)-H(22A)	0.9800	O(2A)-C(9A)-C(10A)	110.9(2)
C(22)-H(22B)	0.9800	O(2A)-C(9A)-C(14A)	107.7(2)
C(22)-H(22C)	0.9800	C(10A)-C(9A)-C(8A)	100.5(2)
C(23)-H(23A)	0.9800	C(10A)-C(9A)-C(14A)	114.1(2)
C(23)-H(23B)	0.9800	C(14A)-C(9A)-C(8A)	113.6(2)
C(23)-H(23C)	0.9800	C(11A)-C(10A)-C(9A)	112.2(3)
C(8A)-O(1A)-H(1A)	109(3)	C(11A)-C(10A)-C(13A)	125.8(3)
C(9A)-O(2A)-H(2A)	107(3)	C(13A)-C(10A)-C(9A)	122.0(3)
C(1A)-N(1A)-C(7A)	107.1(2)	C(10A)-C(11A)-H(11A)	124.4
C(1A)-N(1A)-C(8A)	125.1(2)	C(10A)-C(11A)-C(12A)	111.2(3)
C(7A)-N(1A)-C(8A)	127.8(2)	C(12A)-C(11A)-H(11A)	124.4
C(1A)-N(2A)-C(2A)	105.6(2)	O(3A)-C(12A)-C(8A)	125.1(3)
N(1A)-C(1A)-C(15A)	120.5(2)	O(3A)-C(12A)-C(11A)	129.3(3)
			S48

C(11A)-C(12A)-C(8A)	105.5(2)	H(19A)-C(19A)-H(19B)	108.0
C(10A)-C(13A)-H(13A)	109.5	C(20A)-C(19A)-H(19A)	109.4
C(10A)-C(13A)-H(13B)	109.5	C(20A)-C(19A)-H(19B)	109.4
C(10A)-C(13A)-H(13C)	109.5	C(14A)-C(20A)-H(20A)	109.1
H(13A)-C(13A)-H(13B)	109.5	C(14A)-C(20A)-H(20B)	109.1
H(13A)-C(13A)-H(13C)	109.5	C(19A)-C(20A)-C(14A)	112.4(2)
H(13B)-C(13A)-H(13C)	109.5	C(19A)-C(20A)-H(20A)	109.1
C(15A)-C(14A)-C(9A)	105.5(2)	C(19A)-C(20A)-H(20B)	109.1
C(15A)-C(14A)-C(16A)	109.1(2)	H(20A)-C(20A)-H(20B)	107.9
C(15A)-C(14A)-C(20A)	111.2(2)	C(8B)-O(1B)-H(1B)	107(3)
C(16A)-C(14A)-C(9A)	110.7(2)	C(9B)-O(2B)-H(2B)	108(3)
C(20A)-C(14A)-C(9A)	111.3(2)	C(1B)-N(1B)-C(7B)	106.9(2)
C(20A)-C(14A)-C(16A)	108.9(2)	C(1B)-N(1B)-C(8B)	125.0(2)
C(1A)-C(15A)-C(14A)	111.5(2)	C(7B)-N(1B)-C(8B)	128.1(2)
C(1A)-C(15A)-H(15A)	109.3	C(1B)-N(2B)-C(2B)	105.3(2)
C(1A)-C(15A)-H(15B)	109.3	N(1B)-C(1B)-C(15B)	120.4(3)
C(14A)-C(15A)-H(15A)	109.3	N(2B)-C(1B)-N(1B)	112.9(3)
C(14A)-C(15A)-H(15B)	109.3	N(2B)-C(1B)-C(15B)	126.7(3)
H(15A)-C(15A)-H(15B)	108.0	C(3B)-C(2B)-N(2B)	129.4(3)
C(14A)-C(16A)-H(16A)	109.0	C(7B)-C(2B)-N(2B)	110.0(3)
C(14A)-C(16A)-H(16B)	109.0	C(7B)-C(2B)-C(3B)	120.6(3)
H(16A)-C(16A)-H(16B)	107.8	C(2B)-C(3B)-H(3B)	121.3
C(17A)-C(16A)-C(14A)	112.7(2)	C(4B)-C(3B)-C(2B)	117.5(3)
C(17A)-C(16A)-H(16A)	109.0	C(4B)-C(3B)-H(3B)	121.3
C(17A)-C(16A)-H(16B)	109.0	C(3B)-C(4B)-H(4B)	119.3
C(16A)-C(17A)-H(17A)	109.3	C(3B)-C(4B)-C(5B)	121.4(3)
C(16A)-C(17A)-H(17B)	109.3	C(5B)-C(4B)-H(4B)	119.3
H(17A)-C(17A)-H(17B)	108.0	C(4B)-C(5B)-H(5B)	119.1
C(18A)-C(17A)-C(16A)	111.4(3)	C(6B)-C(5B)-C(4B)	121.9(3)
C(18A)-C(17A)-H(17A)	109.3	C(6B)-C(5B)-H(5B)	119.1
C(18A)-C(17A)-H(17B)	109.3	C(5B)-C(6B)-H(6B)	121.9
C(17A)-C(18A)-H(18A)	109.5	C(5B)-C(6B)-C(7B)	116.3(3)
C(17A)-C(18A)-H(18B)	109.5	C(7B)-C(6B)-H(6B)	121.9
C(17A)-C(18A)-C(19A)	110.9(3)	C(2B)-C(7B)-N(1B)	104.9(3)
H(18A)-C(18A)-H(18B)	108.0	C(2B)-C(7B)-C(6B)	122.3(3)
C(19A)-C(18A)-H(18A)	109.5	C(6B)-C(7B)-N(1B)	132.7(3)
C(19A)-C(18A)-H(18B)	109.5	O(1B)-C(8B)-N(1B)	107.3(2)
C(18A)-C(19A)-H(19A)	109.4	O(1B)-C(8B)-C(9B)	109.4(2)
C(18A)-C(19A)-H(19B)	109.4	O(1B)-C(8B)-C(12B)	109.7(2)
C(18A)-C(19A)-C(20A)	111.0(3)	N(1B)-C(8B)-C(9B)	113.5(2)
			S49

N(1B)-C(8B)-C(12B)	114.2(2)	C(17B)-C(16B)-H(16D)	109.1
C(12B)-C(8B)-C(9B)	102.8(2)	C(16B)-C(17B)-H(17C)	109.4
O(2B)-C(9B)-C(8B)	110.3(2)	C(16B)-C(17B)-H(17D)	109.4
O(2B)-C(9B)-C(10B)	110.5(2)	H(17C)-C(17B)-H(17D)	108.0
O(2B)-C(9B)-C(14B)	108.1(2)	C(18B)-C(17B)-C(16B)	111.0(3)
C(10B)-C(9B)-C(8B)	100.3(2)	C(18B)-C(17B)-H(17C)	109.4
C(10B)-C(9B)-C(14B)	114.2(2)	C(18B)-C(17B)-H(17D)	109.4
C(14B)-C(9B)-C(8B)	113.2(2)	C(17B)-C(18B)-H(18C)	109.5
C(11B)-C(10B)-C(9B)	112.6(3)	C(17B)-C(18B)-H(18D)	109.5
C(11B)-C(10B)-C(13B)	125.2(3)	C(17B)-C(18B)-C(19B)	110.7(3)
C(13B)-C(10B)-C(9B)	122.2(3)	H(18C)-C(18B)-H(18D)	108.1
C(10B)-C(11B)-H(11B)	124.6	C(19B)-C(18B)-H(18C)	109.5
C(10B)-C(11B)-C(12B)	110.8(3)	C(19B)-C(18B)-H(18D)	109.5
C(12B)-C(11B)-H(11B)	124.6	C(18B)-C(19B)-H(19C)	109.3
O(3B)-C(12B)-C(8B)	125.5(3)	C(18B)-C(19B)-H(19D)	109.3
O(3B)-C(12B)-C(11B)	129.1(3)	C(18B)-C(19B)-C(20B)	111.5(3)
C(11B)-C(12B)-C(8B)	105.3(3)	H(19C)-C(19B)-H(19D)	108.0
C(10B)-C(13B)-H(13D)	109.5	C(20B)-C(19B)-H(19C)	109.3
C(10B)-C(13B)-H(13E)	109.5	C(20B)-C(19B)-H(19D)	109.3
C(10B)-C(13B)-H(13F)	109.5	C(14B)-C(20B)-H(20C)	109.1
H(13D)-C(13B)-H(13E)	109.5	C(14B)-C(20B)-H(20D)	109.1
H(13D)-C(13B)-H(13F)	109.5	C(19B)-C(20B)-C(14B)	112.4(3)
H(13E)-C(13B)-H(13F)	109.5	C(19B)-C(20B)-H(20C)	109.1
C(15B)-C(14B)-C(9B)	105.3(2)	C(19B)-C(20B)-H(20D)	109.1
C(15B)-C(14B)-C(20B)	108.9(2)	H(20C)-C(20B)-H(20D)	107.8
C(16B)-C(14B)-C(9B)	111.3(2)	O(4)-C(21)-C(22)	120.2(4)
C(16B)-C(14B)-C(15B)	111.5(2)	O(4)-C(21)-C(23)	122.5(3)
C(16B)-C(14B)-C(20B)	108.5(2)	C(22)-C(21)-C(23)	117.3(3)
C(20B)-C(14B)-C(9B)	111.3(2)	C(21)-C(22)-H(22A)	109.5
C(1B)-C(15B)-C(14B)	111.5(2)	C(21)-C(22)-H(22B)	109.5
C(1B)-C(15B)-H(15C)	109.3	C(21)-C(22)-H(22C)	109.5
C(1B)-C(15B)-H(15D)	109.3	H(22A)-C(22)-H(22B)	109.5
C(14B)-C(15B)-H(15C)	109.3	H(22A)-C(22)-H(22C)	109.5
C(14B)-C(15B)-H(15D)	109.3	H(22B)-C(22)-H(22C)	109.5
H(15C)-C(15B)-H(15D)	108.0	C(21)-C(23)-H(23A)	109.5
C(14B)-C(16B)-H(16C)	109.1	C(21)-C(23)-H(23B)	109.5
C(14B)-C(16B)-H(16D)	109.1	C(21)-C(23)-H(23C)	109.5
H(16C)-C(16B)-H(16D)	107.8	H(23A)-C(23)-H(23B)	109.5
C(17B)-C(16B)-C(14B)	112.5(3)	H(23A)-C(23)-H(23C)	109.5
C(17B)-C(16B)-H(16C)	109.1	H(23B)-C(23)-H(23C)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1A)	32(1)	20(1)	11(1)	-1(1)	2(1)	4(1)
O(2A)	26(1)	18(1)	21(1)	-4(1)	-1(1)	-3(1)
O(3A)	27(1)	28(1)	29(1)	4(1)	0(1)	-6(1)
N(1A)	19(1)	23(1)	9(1)	1(1)	0(1)	1(1)
N(2A)	22(1)	21(1)	12(1)	0(1)	0(1)	0(1)
C(1A)	22(1)	17(1)	12(1)	0(1)	2(1)	1(1)
C(2A)	22(1)	17(1)	16(1)	-2(1)	0(1)	0(1)
C(3A)	27(2)	24(2)	19(1)	-2(1)	-2(1)	2(1)
C(4A)	21(1)	28(2)	29(2)	1(1)	-2(1)	1(1)
C(5A)	22(2)	32(2)	30(2)	4(1)	8(1)	2(1)
C(6A)	25(2)	31(2)	20(1)	4(1)	6(1)	1(1)
C(7A)	19(1)	19(1)	19(1)	0(1)	2(1)	1(1)
C(8A)	23(1)	18(1)	10(1)	0(1)	0(1)	0(1)
C(9A)	21(1)	17(1)	15(1)	-2(1)	-1(1)	-1(1)
C(10A)	27(2)	20(1)	15(1)	-4(1)	0(1)	4(1)
C(11A)	30(2)	19(1)	16(1)	2(1)	1(1)	3(1)
C(12A)	27(2)	19(1)	14(1)	-1(1)	3(1)	-1(1)
C(13A)	30(2)	31(2)	24(2)	2(1)	-6(1)	6(1)
C(14A)	19(1)	17(1)	16(1)	-1(1)	0(1)	-1(1)
C(15A)	20(1)	20(1)	14(1)	0(1)	2(1)	-1(1)
C(16A)	20(1)	23(1)	23(2)	0(1)	0(1)	-1(1)
C(17A)	23(1)	30(2)	27(2)	3(1)	7(1)	2(1)
C(18A)	31(2)	27(2)	27(2)	-1(1)	9(1)	5(1)
C(19A)	29(2)	22(2)	20(1)	-4(1)	4(1)	-1(1)
C(20A)	23(1)	16(1)	16(1)	-3(1)	1(1)	-1(1)
O(1B)	33(1)	23(1)	13(1)	2(1)	-2(1)	4(1)
O(2B)	25(1)	20(1)	24(1)	4(1)	4(1)	-2(1)
O(3B)	27(1)	29(1)	40(1)	-6(1)	1(1)	-5(1)
N(1B)	19(1)	24(1)	12(1)	-1(1)	-1(1)	2(1)
N(2B)	21(1)	25(1)	14(1)	0(1)	1(1)	1(1)
C(1B)	21(1)	21(1)	14(1)	2(1)	-1(1)	1(1)
C(2B)	21(1)	22(1)	20(1)	4(1)	1(1)	2(1)
C(3B)	26(2)	28(2)	22(2)	4(1)	6(1)	3(1)
C(4B)	21(1)	28(2)	37(2)	5(1)	4(1)	3(1)
C(5B)	20(2)	30(2)	38(2)	0(1)	-5(1)	2(1)

Table S6. Anisotropic displacement parameters (Å²x 10³) for **4b** (1). The anisotropic displacement factorexponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}]$

C(6B)	25(2)	28(2)	26(2)	-1(1)	-4(1)	1(1)
C(7B)	19(1)	20(1)	21(1)	1(1)	0(1)	1(1)
C(8B)	24(1)	19(1)	14(1)	0(1)	2(1)	0(1)
C(9B)	22(1)	18(1)	18(1)	2(1)	3(1)	-3(1)
C(10B)	29(2)	22(1)	18(1)	2(1)	4(1)	3(1)
C(11B)	32(2)	19(1)	21(1)	-4(1)	2(1)	1(1)
C(12B)	26(2)	23(2)	21(1)	-2(1)	-1(1)	-2(1)
C(13B)	30(2)	32(2)	29(2)	-4(1)	10(1)	3(1)
C(14B)	18(1)	21(1)	18(1)	2(1)	1(1)	0(1)
C(15B)	20(1)	24(1)	17(1)	-1(1)	0(1)	-1(1)
C(16B)	21(1)	21(1)	23(2)	3(1)	1(1)	-1(1)
C(17B)	24(2)	25(2)	26(2)	8(1)	1(1)	0(1)
C(18B)	27(2)	32(2)	34(2)	10(1)	-5(1)	2(1)
C(19B)	20(1)	30(2)	32(2)	3(1)	-2(1)	1(1)
C(20B)	20(1)	22(1)	28(2)	1(1)	2(1)	-1(1)
O(4)	90(3)	66(2)	40(2)	-23(2)	26(2)	-42(2)
C(21)	31(2)	25(2)	28(2)	2(1)	-1(1)	-3(1)
C(22)	42(2)	36(2)	58(3)	-4(2)	14(2)	-11(2)
C(23)	32(2)	32(2)	32(2)	-3(1)	3(1)	-3(1)

Table S7. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **4b** (1)

X	у	Z	U(eq)
5235(19)	7410(40)	990(40)	31
4290(20)	6720(40)	1680(30)	33
6590	6714	5506	28
7427	6714	4539	31
7329	7099	2852	34
6401	7545	2075	30
4739	10140	833	26
3670	9383	297	43
3408	9703	1335	43
3405	8445	979	43
4285	7721	4713	22
4217	6830	3842	22
3297	8959	2818	26
3303	7714	3207	26
	x 5235(19) 4290(20) 6590 7427 7329 6401 4739 3670 3408 3405 4285 4217 3297 3303	xy5235(19)7410(40)4290(20)6720(40)6590671474276714732970996401754547391014036709383340897033405844542857721421768303297895933037714	xyZ5235(19)7410(40)990(40)4290(20)6720(40)1680(30)6590671455067427671445397329709928526401754520754739101408333670938329734089703133534058445979428577214713421768303842329789592818330377143207

H(17A)	2799	8900	4304	32
H(17B)	3361	8314	4863	32
H(18A)	3375	10185	5295	34
H(18B)	3340	10542	4155	34
H(19A)	4345	9464	5151	28
H(19B)	4340	10716	4776	28
H(20A)	4837	9568	3652	22
H(20B)	4262	10134	3112	22
H(1B)	90(20)	7440(40)	8910(40)	35
H(2B)	-770(20)	6680(40)	7930(30)	34
H(3B)	1509	6693	4561	30
H(4B)	2354	6737	5652	34
H(5B)	2273	7149	7316	35
H(6B)	1344	7578	7954	32
H(11B)	-305	10128	8962	29
H(13D)	-1380	9450	9291	45
H(13E)	-1651	8483	8601	45
H(13F)	-1648	9723	8200	45
H(15C)	-863	6851	5841	24
H(15D)	-786	7737	4981	24
H(16C)	-782	10156	6584	26
H(16D)	-208	9567	6166	26
H(17C)	-672	10727	4937	30
H(17D)	-683	9472	4568	30
H(18C)	-1637	10244	4222	37
H(18D)	-1679	10614	5352	37
H(19C)	-1687	8374	4662	33
H(19D)	-2244	8995	5106	33
H(20C)	-1770	7792	6309	28
H(20D)	-1758	9040	6691	28
H(22A)	2315	3815	3314	67
H(22B)	1787	4607	2905	67
H(22C)	1988	4613	4056	67
H(23A)	2576	5432	1695	48
H(23B)	3096	4686	2202	48
H(23C)	3156	6000	2216	48

O(1A)-C(8A)-C(9A)-O(2A)	26.8(3)	C(7A)-N(1A)-C(8A)-O(1A)	58.6(4)
O(1A)-C(8A)-C(9A)-C(10A)	-90.2(3)	C(7A)-N(1A)-C(8A)-C(9A)	179.0(3)
O(1A)-C(8A)-C(9A)-C(14A)	147.6(2)	C(7A)-N(1A)-C(8A)-C(12A)	-63.0(4)
O(1A)-C(8A)-C(12A)-O(3A)	-85.0(4)	C(7A)-C(2A)-C(3A)-C(4A)	-0.3(5)
O(1A)-C(8A)-C(12A)-C(11A)	90.8(3)	C(8A)-N(1A)-C(1A)-N(2A)	-178.7(3)
O(2A)-C(9A)-C(10A)-C(11A)	-136.1(3)	C(8A)-N(1A)-C(1A)-C(15A)	4.1(4)
O(2A)-C(9A)-C(10A)-C(13A)	41.9(4)	C(8A)-N(1A)-C(7A)-C(2A)	179.1(3)
O(2A)-C(9A)-C(14A)-C(15A)	65.5(3)	C(8A)-N(1A)-C(7A)-C(6A)	-3.7(5)
O(2A)-C(9A)-C(14A)-C(16A)	-52.4(3)	C(8A)-C(9A)-C(10A)-C(11A)	-19.8(3)
O(2A)-C(9A)-C(14A)-C(20A)	-173.7(2)	C(8A)-C(9A)-C(10A)-C(13A)	158.2(3)
N(1A)-C(1A)-C(15A)-C(14A)	-35.5(4)	C(8A)-C(9A)-C(14A)-C(15A)	-56.6(3)
N(1A)-C(8A)-C(9A)-O(2A)	-92.5(3)	C(8A)-C(9A)-C(14A)-C(16A)	-174.5(2)
N(1A)-C(8A)-C(9A)-C(10A)	150.6(2)	C(8A)-C(9A)-C(14A)-C(20A)	64.2(3)
N(1A)-C(8A)-C(9A)-C(14A)	28.4(3)	C(9A)-C(8A)-C(12A)-O(3A)	159.1(3)
N(1A)-C(8A)-C(12A)-O(3A)	35.4(4)	C(9A)-C(8A)-C(12A)-C(11A)	-25.1(3)
N(1A)-C(8A)-C(12A)-C(11A)	-148.8(2)	C(9A)-C(10A)-C(11A)-C(12A)	4.3(4)
N(2A)-C(1A)-C(15A)-C(14A)	147.7(3)	C(9A)-C(14A)-C(15A)-C(1A)	59.1(3)
N(2A)-C(2A)-C(3A)-C(4A)	178.2(3)	C(9A)-C(14A)-C(16A)-C(17A)	-177.0(2)
N(2A)-C(2A)-C(7A)-N(1A)	0.7(3)	C(9A)-C(14A)-C(20A)-C(19A)	177.6(2)
N(2A)-C(2A)-C(7A)-C(6A)	-176.9(3)	C(10A)-C(9A)-C(14A)-C(15A)	-170.9(2)
C(1A)-N(1A)-C(7A)-C(2A)	-1.4(3)	C(10A)-C(9A)-C(14A)-C(16A)	71.1(3)
C(1A)-N(1A)-C(7A)-C(6A)	175.9(3)	C(10A)-C(9A)-C(14A)-C(20A)	-50.2(3)
C(1A)-N(1A)-C(8A)-O(1A)	-120.9(3)	C(10A)-C(11A)-C(12A)-O(3A)	-170.7(3)
C(1A)-N(1A)-C(8A)-C(9A)	-0.5(4)	C(10A)-C(11A)-C(12A)-C(8A)	13.7(3)
C(1A)-N(1A)-C(8A)-C(12A)	117.5(3)	C(12A)-C(8A)-C(9A)-O(2A)	142.9(2)
C(1A)-N(2A)-C(2A)-C(3A)	-178.4(3)	C(12A)-C(8A)-C(9A)-C(10A)	26.0(3)
C(1A)-N(2A)-C(2A)-C(7A)	0.3(3)	C(12A)-C(8A)-C(9A)-C(14A)	-96.2(3)
C(2A)-N(2A)-C(1A)-N(1A)	-1.2(3)	C(13A)-C(10A)-C(11A)-C(12A)	-173.6(3)
C(2A)-N(2A)-C(1A)-C(15A)	175.8(3)	C(14A)-C(9A)-C(10A)-C(11A)	102.1(3)
C(2A)-C(3A)-C(4A)-C(5A)	-1.0(5)	C(14A)-C(9A)-C(10A)-C(13A)	-79.9(3)
C(3A)-C(2A)-C(7A)-N(1A)	179.5(3)	C(14A)-C(16A)-C(17A)-C(18A)	55.3(3)
C(3A)-C(2A)-C(7A)-C(6A)	1.9(5)	C(15A)-C(14A)-C(16A)-C(17A)	67.3(3)
C(3A)-C(4A)-C(5A)-C(6A)	1.0(5)	C(15A)-C(14A)-C(20A)-C(19A)	-65.1(3)
C(4A)-C(5A)-C(6A)-C(7A)	0.5(5)	C(16A)-C(14A)-C(15A)-C(1A)	178.1(2)
C(5A)-C(6A)-C(7A)-N(1A)	-178.8(3)	C(16A)-C(14A)-C(20A)-C(19A)	55.2(3)
C(5A)-C(6A)-C(7A)-C(2A)	-1.9(5)	C(16A)-C(17A)-C(18A)-C(19A)	-55.0(4)
C(7A)-N(1A)-C(1A)-N(2A)	1.7(3)	C(17A)-C(18A)-C(19A)-C(20A)	55.8(4)
C(7A)-N(1A)-C(1A)-C(15A)	-175.5(3)	C(18A)-C(19A)-C(20A)-C(14A)	-57.0(3)

C(20A)-C(14A)-C(15A)-C(1A)	-61.7(3)	C(7B)-N(1B)-C(8B)-O(1B)	-58.7(4)
C(20A)-C(14A)-C(16A)-C(17A)	-54.2(3)	C(7B)-N(1B)-C(8B)-C(9B)	-179.6(3)
O(1B)-C(8B)-C(9B)-O(2B)	-27.0(3)	C(7B)-N(1B)-C(8B)-C(12B)	63.1(4)
O(1B)-C(8B)-C(9B)-C(10B)	89.6(3)	C(7B)-C(2B)-C(3B)-C(4B)	0.5(5)
O(1B)-C(8B)-C(9B)-C(14B)	-148.3(2)	C(8B)-N(1B)-C(1B)-N(2B)	179.6(3)
O(1B)-C(8B)-C(12B)-O(3B)	88.4(4)	C(8B)-N(1B)-C(1B)-C(15B)	-2.1(4)
O(1B)-C(8B)-C(12B)-C(11B)	-89.7(3)	C(8B)-N(1B)-C(7B)-C(2B)	-179.8(3)
O(2B)-C(9B)-C(10B)-C(11B)	136.3(3)	C(8B)-N(1B)-C(7B)-C(6B)	0.9(6)
O(2B)-C(9B)-C(10B)-C(13B)	-42.3(4)	C(8B)-C(9B)-C(10B)-C(11B)	19.8(3)
O(2B)-C(9B)-C(14B)-C(15B)	-65.2(3)	C(8B)-C(9B)-C(10B)-C(13B)	-158.7(3)
O(2B)-C(9B)-C(14B)-C(16B)	173.9(2)	C(8B)-C(9B)-C(14B)-C(15B)	57.3(3)
O(2B)-C(9B)-C(14B)-C(20B)	52.7(3)	C(8B)-C(9B)-C(14B)-C(16B)	-63.6(3)
N(1B)-C(1B)-C(15B)-C(14B)	34.4(4)	C(8B)-C(9B)-C(14B)-C(20B)	175.2(2)
N(1B)-C(8B)-C(9B)-O(2B)	92.7(3)	C(9B)-C(8B)-C(12B)-O(3B)	-155.3(3)
N(1B)-C(8B)-C(9B)-C(10B)	-150.7(2)	C(9B)-C(8B)-C(12B)-C(11B)	26.6(3)
N(1B)-C(8B)-C(9B)-C(14B)	-28.6(3)	C(9B)-C(10B)-C(11B)-C(12B)	-3.3(4)
N(1B)-C(8B)-C(12B)-O(3B)	-32.0(4)	C(9B)-C(14B)-C(15B)-C(1B)	-59.5(3)
N(1B)-C(8B)-C(12B)-C(11B)	149.9(3)	C(9B)-C(14B)-C(16B)-C(17B)	-178.9(2)
N(2B)-C(1B)-C(15B)-C(14B)	-147.6(3)	C(9B)-C(14B)-C(20B)-C(19B)	177.6(3)
N(2B)-C(2B)-C(3B)-C(4B)	-179.9(3)	C(10B)-C(9B)-C(14B)-C(15B)	171.3(2)
N(2B)-C(2B)-C(7B)-N(1B)	-0.7(3)	C(10B)-C(9B)-C(14B)-C(16B)	50.4(3)
N(2B)-C(2B)-C(7B)-C(6B)	178.7(3)	C(10B)-C(9B)-C(14B)-C(20B)	-70.8(3)
C(1B)-N(1B)-C(7B)-C(2B)	1.2(3)	C(10B)-C(11B)-C(12B)-O(3B)	166.7(3)
C(1B)-N(1B)-C(7B)-C(6B)	-178.0(3)	C(10B)-C(11B)-C(12B)-C(8B)	-15.3(4)
C(1B)-N(1B)-C(8B)-O(1B)	120.1(3)	C(12B)-C(8B)-C(9B)-O(2B)	-143.5(2)
C(1B)-N(1B)-C(8B)-C(9B)	-0.8(4)	C(12B)-C(8B)-C(9B)-C(10B)	-26.9(3)
C(1B)-N(1B)-C(8B)-C(12B)	-118.1(3)	C(12B)-C(8B)-C(9B)-C(14B)	95.3(3)
C(1B)-N(2B)-C(2B)-C(3B)	-179.7(3)	C(13B)-C(10B)-C(11B)-C(12B)	175.2(3)
C(1B)-N(2B)-C(2B)-C(7B)	-0.1(3)	C(14B)-C(9B)-C(10B)-C(11B)	-101.6(3)
C(2B)-N(2B)-C(1B)-N(1B)	0.9(3)	C(14B)-C(9B)-C(10B)-C(13B)	79.9(4)
C(2B)-N(2B)-C(1B)-C(15B)	-177.3(3)	C(14B)-C(16B)-C(17B)-C(18B)	57.7(4)
C(2B)-C(3B)-C(4B)-C(5B)	0.8(5)	C(15B)-C(14B)-C(16B)-C(17B)	63.9(3)
C(3B)-C(2B)-C(7B)-N(1B)	178.9(3)	C(15B)-C(14B)-C(20B)-C(19B)	-66.7(3)
C(3B)-C(2B)-C(7B)-C(6B)	-1.7(5)	C(16B)-C(14B)-C(15B)-C(1B)	61.3(3)
C(3B)-C(4B)-C(5B)-C(6B)	-0.9(5)	C(16B)-C(14B)-C(20B)-C(19B)	54.8(3)
C(4B)-C(5B)-C(6B)-C(7B)	-0.2(5)	C(16B)-C(17B)-C(18B)-C(19B)	-55.7(4)
C(5B)-C(6B)-C(7B)-N(1B)	-179.3(3)	C(17B)-C(18B)-C(19B)-C(20B)	54.8(4)
C(5B)-C(6B)-C(7B)-C(2B)	1.5(5)	C(18B)-C(19B)-C(20B)-C(14B)	-55.5(4)
C(7B)-N(1B)-C(1B)-N(2B)	-1.4(4)	C(20B)-C(14B)-C(15B)-C(1B)	-179.0(2)
C(7B)-N(1B)-C(1B)-C(15B)	176.9(3)	C(20B)-C(14B)-C(16B)-C(17B)	-56.0(3) \$55

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1A)-H(1A)N(2A)#1	0.84(5)	1.81(5)	2.643(3)	170(4)
O(2A)-H(2A)O(1A)	0.85(5)	2.02(4)	2.591(3)	124(4)
O(1B)-H(1B)N(2B)#2	0.91(5)	1.79(5)	2.648(3)	158(4)
O(2B)-H(2B)O(1B)	0.86(5)	2.05(4)	2.612(3)	122(4)

Table S9. Hydrogen bonds for 4b (1) [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+3/2,z-1/2 #2 x,-y+3/2,z+1/2

6.2. Compound **4b** (2)

X-ray diffraction data were collected at 100K on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix600HE area-detector (kappa geometry, shutterless ω -scan technique), using monochromatized Cu K_aradiation. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.¹ The structure was solved by direct methods using SHELXT² and refined on F^2 using SHELXL-2018³ in the OLEX2 program.⁴ All non-hydrogen atoms were refined with individual anisotropic displacement parameters. Locations of hydroxy H-atoms were found from the electron density-difference map; these hydrogen atoms were refined with individual isotropic displacement parameters. All other hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters.

Table S10. Crystal data and structure refinement for 4b (2).

Identification code	4b (2)	
Empirical formula	C20 H22 N2 O3	
Formula weight	338.39	
Temperature	100.0(1) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P21	
Unit cell dimensions	a = 11.68226(12) Å	a= 90°.
	b = 9.54123(6) Å	b= 110.8694(11)°.
	c = 15.99352(16) Å	g = 90°.
Volume	1665.73(3) Å ³	
Z	4	

Density (calculated)	1.349 g/cm ³
Absorption coefficient	0.737 mm ⁻¹
F(000)	720
Crystal size	0.33 x 0.24 x 0.07 mm ³
Theta range for data collection	2.957 to 79.481°.
Index ranges	-14<=h<=14, -11<=k<=9, -20<=l<=20
Reflections collected	6684
Independent reflections	6684 [R(int) = 0]
Observed reflections	6666
Completeness to theta = 67.684°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.41618
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6684 / 7 / 467
Goodness-of-fit on F ²	1.067
Final R indices [I>2sigma(I)]	R1 = 0.0548, $wR2 = 0.1411$
R indices (all data)	R1 = 0.0548, $wR2 = 0.1412$
Absolute structure parameter	0.01(13)
Extinction coefficient	0.0095(13)
Largest diff. peak and hole	0.533 and -0.349 e.Å ⁻³
CCDC	2233466

Table S11. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **4b** (2). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
O(1A)	4324(2)	5090(2)	659(1)	14(1)
O(2A)	6646(2)	4987(2)	1749(1)	14(1)
O(3A)	3820(2)	7643(2)	-604(1)	17(1)
N(1A)	4352(2)	7304(2)	1286(1)	13(1)
N(2A)	4225(2)	8663(3)	2393(1)	16(1)
C(1A)	4957(2)	7955(3)	2083(2)	13(1)
C(2A)	3054(2)	8435(3)	1770(2)	15(1)
C(3A)	1915(2)	8903(3)	1773(2)	20(1)
C(4A)	876(2)	8454(4)	1082(2)	22(1)
C(5A)	942(2)	7573(3)	399(2)	18(1)
C(6A)	2063(2)	7119(3)	377(2)	16(1)

C(7A)	3104(2)	7571(3)	1072(2)	13(1)
C(8A)	4898(2)	6399(3)	797(2)	12(1)
C(9A)	6340(2)	6238(3)	1245(2)	12(1)
C(10A)	6692(2)	6153(3)	403(2)	13(1)
C(11A)	5792(2)	6591(3)	-338(2)	16(1)
C(12A)	4714(2)	6990(3)	-143(2)	13(1)
C(13A)	7906(2)	5624(3)	437(2)	19(1)
C(14A)	6988(2)	7464(3)	1898(2)	12(1)
C(15A)	6288(2)	7687(3)	2542(2)	14(1)
C(16A)	8323(2)	7040(3)	2464(2)	15(1)
C(17A)	9017(2)	8214(3)	3097(2)	18(1)
C(18A)	9021(2)	9567(3)	2592(2)	21(1)
C(19A)	7715(2)	9993(3)	2015(2)	19(1)
C(20A)	7018(2)	8824(3)	1385(2)	15(1)
O(1B)	4304(2)	105(2)	3961(1)	14(1)
O(2B)	6642(2)	-1(2)	4097(1)	14(1)
O(3B)	3805(2)	2707(2)	4945(1)	17(1)
N(1B)	4367(2)	2313(2)	3346(1)	13(1)
N(2B)	4294(2)	3697(3)	2199(1)	15(1)
C(1B)	4997(2)	2965(3)	2886(2)	12(1)
C(2B)	3105(2)	3492(3)	2193(2)	15(1)
C(3B)	1999(2)	4032(3)	1600(2)	20(1)
C(4B)	936(2)	3639(3)	1742(2)	20(1)
C(5B)	964(2)	2735(3)	2442(2)	19(1)
C(6B)	2056(2)	2202(3)	3036(2)	17(1)
C(7B)	3121(2)	2620(3)	2901(2)	14(1)
C(8B)	4884(2)	1413(3)	4120(2)	11(1)
C(9B)	6337(2)	1246(3)	4452(1)	12(1)
C(10B)	6652(2)	1139(3)	5466(2)	14(1)
C(11B)	5742(2)	1581(3)	5729(2)	16(1)
C(12B)	4689(2)	2016(3)	4960(2)	14(1)
C(13B)	7857(2)	605(3)	6088(2)	18(1)
C(14B)	6988(2)	2486(3)	4161(2)	12(1)
C(15B)	6334(2)	2703(3)	3144(1)	13(1)
C(16B)	6957(2)	3840(3)	4680(2)	13(1)
C(17B)	7667(2)	5032(3)	4449(2)	17(1)
C(18B)	9002(2)	4639(3)	4621(2)	19(1)
C(19B)	9067(2)	3289(3)	4118(2)	18(1)
C(20B)	8340(2)	2100(3)	4338(2)	15(1)

O(1A)-H(1A)	0.88(3)	C(16A)-H(16B)	0.9900
O(1A)-C(8A)	1.397(3)	C(16A)-C(17A)	1.534(4)
O(2A)-H(2A)	0.88(3)	C(17A)-H(17A)	0.9900
O(2A)-C(9A)	1.413(3)	C(17A)-H(17B)	0.9900
O(3A)-C(12A)	1.214(3)	C(17A)-C(18A)	1.524(4)
N(1A)-C(1A)	1.367(3)	C(18A)-H(18A)	0.9900
N(1A)-C(7A)	1.398(3)	C(18A)-H(18B)	0.9900
N(1A)-C(8A)	1.456(3)	C(18A)-C(19A)	1.530(4)
N(2A)-C(1A)	1.317(3)	C(19A)-H(19A)	0.9900
N(2A)-C(2A)	1.393(3)	C(19A)-H(19B)	0.9900
C(1A)-C(15A)	1.487(3)	C(19A)-C(20A)	1.528(4)
C(2A)-C(3A)	1.406(3)	C(20A)-H(20A)	0.9900
C(2A)-C(7A)	1.404(3)	C(20A)-H(20B)	0.9900
C(3A)-H(3A)	0.9500	O(1B)-H(1B)	0.89(3)
C(3A)-C(4A)	1.388(4)	O(1B)-C(8B)	1.399(3)
C(4A)-H(4A)	0.9500	O(2B)-H(2B)	0.88(3)
C(4A)-C(5A)	1.401(4)	O(2B)-C(9B)	1.417(3)
C(5A)-H(5A)	0.9500	O(3B)-C(12B)	1.219(3)
C(5A)-C(6A)	1.391(3)	N(1B)-C(1B)	1.362(3)
C(6A)-H(6A)	0.9500	N(1B)-C(7B)	1.404(3)
C(6A)-C(7A)	1.392(3)	N(1B)-C(8B)	1.449(3)
C(8A)-C(9A)	1.585(3)	N(2B)-C(1B)	1.314(3)
C(8A)-C(12A)	1.547(3)	N(2B)-C(2B)	1.399(3)
C(9A)-C(10A)	1.542(3)	C(1B)-C(15B)	1.488(3)
C(9A)-C(14A)	1.572(3)	C(2B)-C(3B)	1.401(3)
C(10A)-C(11A)	1.341(3)	C(2B)-C(7B)	1.401(4)
C(10A)-C(13A)	1.489(3)	C(3B)-H(3B)	0.9500
C(11A)-H(11A)	0.9500	C(3B)-C(4B)	1.391(4)
C(11A)-C(12A)	1.452(3)	C(4B)-H(4B)	0.9500
C(13A)-H(13A)	0.9800	C(4B)-C(5B)	1.404(4)
C(13A)-H(13B)	0.9800	C(5B)-H(5B)	0.9500
C(13A)-H(13C)	0.9800	C(5B)-C(6B)	1.388(4)
C(14A)-C(15A)	1.541(3)	C(6B)-H(6B)	0.9500
C(14A)-C(16A)	1.552(3)	C(6B)-C(7B)	1.394(3)
C(14A)-C(20A)	1.542(4)	C(8B)-C(9B)	1.596(3)
C(15A)-H(15A)	0.9900	C(8B)-C(12B)	1.552(3)
C(15A)-H(15B)	0.9900	C(9B)-C(10B)	1.533(3)
C(16A)-H(16A)	0.9900	C(9B)-C(14B)	1.564(3)

Table S12. Bond lengths	[Å]	and angles	[°]	for 4b (2).	
-------------------------	-----	------------	-----	--------------------	--

C(10B)-C(11B)	1.342(3)	C(4A)-C(3A)-H(3A)	121.3
C(10B)-C(13B)	1.495(3)	C(3A)-C(4A)-H(4A)	119.0
C(11B)-H(11B)	0.9500	C(3A)-C(4A)-C(5A)	122.1(2)
C(11B)-C(12B)	1.456(3)	C(5A)-C(4A)-H(4A)	119.0
C(13B)-H(13D)	0.9800	C(4A)-C(5A)-H(5A)	119.4
C(13B)-H(13E)	0.9800	C(6A)-C(5A)-C(4A)	121.3(2)
C(13B)-H(13F)	0.9800	C(6A)-C(5A)-H(5A)	119.4
C(14B)-C(15B)	1.544(3)	C(5A)-C(6A)-H(6A)	121.8
C(14B)-C(16B)	1.543(4)	C(5A)-C(6A)-C(7A)	116.5(2)
C(14B)-C(20B)	1.547(3)	C(7A)-C(6A)-H(6A)	121.8
C(15B)-H(15C)	0.9900	N(1A)-C(7A)-C(2A)	104.3(2)
C(15B)-H(15D)	0.9900	C(6A)-C(7A)-N(1A)	132.7(2)
C(16B)-H(16C)	0.9900	C(6A)-C(7A)-C(2A)	123.0(2)
C(16B)-H(16D)	0.9900	O(1A)-C(8A)-N(1A)	109.75(19)
C(16B)-C(17B)	1.528(3)	O(1A)-C(8A)-C(9A)	111.0(2)
C(17B)-H(17C)	0.9900	O(1A)-C(8A)-C(12A)	106.20(19)
C(17B)-H(17D)	0.9900	N(1A)-C(8A)-C(9A)	114.41(19)
C(17B)-C(18B)	1.530(3)	N(1A)-C(8A)-C(12A)	111.7(2)
C(18B)-H(18C)	0.9900	C(12A)-C(8A)-C(9A)	103.36(18)
C(18B)-H(18D)	0.9900	O(2A)-C(9A)-C(8A)	110.6(2)
C(18B)-C(19B)	1.534(4)	O(2A)-C(9A)-C(10A)	111.2(2)
C(19B)-H(19C)	0.9900	O(2A)-C(9A)-C(14A)	106.55(18)
C(19B)-H(19D)	0.9900	C(10A)-C(9A)-C(8A)	100.48(18)
C(19B)-C(20B)	1.531(4)	C(10A)-C(9A)-C(14A)	113.83(19)
C(20B)-H(20C)	0.9900	C(14A)-C(9A)-C(8A)	114.2(2)
C(20B)-H(20D)	0.9900	C(11A)-C(10A)-C(9A)	112.8(2)
C(8A)-O(1A)-H(1A)	111(2)	C(11A)-C(10A)-C(13A)	125.0(2)
C(9A)-O(2A)-H(2A)	110(2)	C(13A)-C(10A)-C(9A)	122.2(2)
C(1A)-N(1A)-C(7A)	107.04(19)	C(10A)-C(11A)-H(11A)	124.5
C(1A)-N(1A)-C(8A)	126.21(19)	C(10A)-C(11A)-C(12A)	110.9(2)
C(7A)-N(1A)-C(8A)	126.5(2)	C(12A)-C(11A)-H(11A)	124.5
C(1A)-N(2A)-C(2A)	104.7(2)	O(3A)-C(12A)-C(8A)	124.7(2)
N(1A)-C(1A)-C(15A)	119.0(2)	O(3A)-C(12A)-C(11A)	128.9(2)
N(2A)-C(1A)-N(1A)	113.2(2)	C(11A)-C(12A)-C(8A)	106.4(2)
N(2A)-C(1A)-C(15A)	127.4(2)	C(10A)-C(13A)-H(13A)	109.5
N(2A)-C(2A)-C(3A)	129.6(2)	C(10A)-C(13A)-H(13B)	109.5
N(2A)-C(2A)-C(7A)	110.6(2)	C(10A)-C(13A)-H(13C)	109.5
C(7A)-C(2A)-C(3A)	119.8(2)	H(13A)-C(13A)-H(13B)	109.5
C(2A)-C(3A)-H(3A)	121.3	H(13A)-C(13A)-H(13C)	109.5
C(4A)-C(3A)-C(2A)	117.3(2)	H(13B)-C(13A)-H(13C)	109.5

C(15A)-C(14A)-C(9A)	107.64(19)	
C(15A)-C(14A)-C(16A)	107.93(18)	
C(15A)-C(14A)-C(20A)	110.9(2)	
C(16A)-C(14A)-C(9A)	109.9(2)	
C(20A)-C(14A)-C(9A)	111.70(18)	
C(20A)-C(14A)-C(16A)	108.7(2)	
C(1A)-C(15A)-C(14A)	113.85(18)	
C(1A)-C(15A)-H(15A)	108.8	
C(1A)-C(15A)-H(15B)	108.8	
C(14A)-C(15A)-H(15A)	108.8	
C(14A)-C(15A)-H(15B)	108.8	
H(15A)-C(15A)-H(15B)	107.7	
C(14A)-C(16A)-H(16A)	109.1	
C(14A)-C(16A)-H(16B)	109.1	
H(16A)-C(16A)-H(16B)	107.9	
C(17A)-C(16A)-C(14A)	112.3(2)	
C(17A)-C(16A)-H(16A)	109.1	
C(17A)-C(16A)-H(16B)	109.1	
C(16A)-C(17A)-H(17A)	109.3	
C(16A)-C(17A)-H(17B)	109.3	
H(17A)-C(17A)-H(17B)	107.9	
C(18A)-C(17A)-C(16A)	111.7(2)	
C(18A)-C(17A)-H(17A)	109.3	
C(18A)-C(17A)-H(17B)	109.3	
C(17A)-C(18A)-H(18A)	109.5	
C(17A)-C(18A)-H(18B)	109.5	
C(17A)-C(18A)-C(19A)	110.7(2)	
H(18A)-C(18A)-H(18B)	108.1	
C(19A)-C(18A)-H(18A)	109.5	
C(19A)-C(18A)-H(18B)	109.5	
C(18A)-C(19A)-H(19A)	109.0	
C(18A)-C(19A)-H(19B)	109.0	
H(19A)-C(19A)-H(19B)	107.8	
C(20A)-C(19A)-C(18A)	112.7(2)	
C(20A)-C(19A)-H(19A)	109.0	
C(20A)-C(19A)-H(19B)	109.0	
C(14A)-C(20A)-H(20A)	109.3	
C(14A)-C(20A)-H(20B)	109.3	
C(19A)-C(20A)-C(14A)	111.81(19)	
C(19A)-C(20A)-H(20A)	109.3	

C(19A)-C(20A)-H(20B)	109.3
H(20A)-C(20A)-H(20B)	107.9
C(8B)-O(1B)-H(1B)	107(3)
C(9B)-O(2B)-H(2B)	114(2)
C(1B)-N(1B)-C(7B)	107.0(2)
C(1B)-N(1B)-C(8B)	126.2(2)
C(7B)-N(1B)-C(8B)	126.7(2)
C(1B)-N(2B)-C(2B)	104.7(2)
N(1B)-C(1B)-C(15B)	119.3(2)
N(2B)-C(1B)-N(1B)	113.45(19)
N(2B)-C(1B)-C(15B)	127.1(2)
N(2B)-C(2B)-C(3B)	128.8(2)
N(2B)-C(2B)-C(7B)	110.5(2)
C(7B)-C(2B)-C(3B)	120.7(2)
C(2B)-C(3B)-H(3B)	121.6
C(4B)-C(3B)-C(2B)	116.9(2)
C(4B)-C(3B)-H(3B)	121.6
C(3B)-C(4B)-H(4B)	119.1
C(3B)-C(4B)-C(5B)	121.8(2)
C(5B)-C(4B)-H(4B)	119.1
C(4B)-C(5B)-H(5B)	119.2
C(6B)-C(5B)-C(4B)	121.7(2)
C(6B)-C(5B)-H(5B)	119.2
C(5B)-C(6B)-H(6B)	121.8
C(5B)-C(6B)-C(7B)	116.3(2)
C(7B)-C(6B)-H(6B)	121.8
C(2B)-C(7B)-N(1B)	104.3(2)
C(6B)-C(7B)-N(1B)	133.1(2)
C(6B)-C(7B)-C(2B)	122.6(2)
O(1B)-C(8B)-N(1B)	110.24(19)
O(1B)-C(8B)-C(9B)	111.1(2)
O(1B)-C(8B)-C(12B)	106.06(18)
N(1B)-C(8B)-C(9B)	114.44(18)
N(1B)-C(8B)-C(12B)	112.0(2)
C(12B)-C(8B)-C(9B)	102.46(18)
O(2B)-C(9B)-C(8B)	109.84(19)
O(2B)-C(9B)-C(10B)	111.6(2)
O(2B)-C(9B)-C(14B)	107.33(18)
C(10B)-C(9B)-C(8B)	100.63(17)
C(10B)-C(9B)-C(14B)	114.0(2)
	S61

C(14B)-C(9B)-C(8B)	113.42(19)	C(14B)-C(16B)-H(16D)	109.2
C(11B)-C(10B)-C(9B)	113.1(2)	H(16C)-C(16B)-H(16D)	107.9
C(11B)-C(10B)-C(13B)	124.2(2)	C(17B)-C(16B)-C(14B)	111.99(19)
C(13B)-C(10B)-C(9B)	122.7(2)	C(17B)-C(16B)-H(16C)	109.2
C(10B)-C(11B)-H(11B)	124.7	C(17B)-C(16B)-H(16D)	109.2
C(10B)-C(11B)-C(12B)	110.5(2)	C(16B)-C(17B)-H(17C)	109.1
C(12B)-C(11B)-H(11B)	124.7	C(16B)-C(17B)-H(17D)	109.1
O(3B)-C(12B)-C(8B)	124.7(2)	C(16B)-C(17B)-C(18B)	112.4(2)
O(3B)-C(12B)-C(11B)	128.8(2)	H(17C)-C(17B)-H(17D)	107.9
C(11B)-C(12B)-C(8B)	106.5(2)	C(18B)-C(17B)-H(17C)	109.1
C(10B)-C(13B)-H(13D)	109.5	C(18B)-C(17B)-H(17D)	109.1
C(10B)-C(13B)-H(13E)	109.5	C(17B)-C(18B)-H(18C)	109.6
C(10B)-C(13B)-H(13F)	109.5	C(17B)-C(18B)-H(18D)	109.6
H(13D)-C(13B)-H(13E)	109.5	C(17B)-C(18B)-C(19B)	110.4(2)
H(13D)-C(13B)-H(13F)	109.5	H(18C)-C(18B)-H(18D)	108.1
H(13E)-C(13B)-H(13F)	109.5	C(19B)-C(18B)-H(18C)	109.6
C(15B)-C(14B)-C(9B)	107.71(19)	C(19B)-C(18B)-H(18D)	109.6
C(15B)-C(14B)-C(20B)	108.35(17)	C(18B)-C(19B)-H(19C)	109.3
C(16B)-C(14B)-C(9B)	111.49(18)	C(18B)-C(19B)-H(19D)	109.3
C(16B)-C(14B)-C(15B)	110.9(2)	H(19C)-C(19B)-H(19D)	108.0
C(16B)-C(14B)-C(20B)	108.6(2)	C(20B)-C(19B)-C(18B)	111.5(2)
C(20B)-C(14B)-C(9B)	109.8(2)	C(20B)-C(19B)-H(19C)	109.3
C(1B)-C(15B)-C(14B)	113.05(18)	C(20B)-C(19B)-H(19D)	109.3
C(1B)-C(15B)-H(15C)	109.0	C(14B)-C(20B)-H(20C)	108.9
C(1B)-C(15B)-H(15D)	109.0	C(14B)-C(20B)-H(20D)	108.9
C(14B)-C(15B)-H(15C)	109.0	C(19B)-C(20B)-C(14B)	113.3(2)
C(14B)-C(15B)-H(15D)	109.0	C(19B)-C(20B)-H(20C)	108.9
H(15C)-C(15B)-H(15D)	107.8	C(19B)-C(20B)-H(20D)	108.9
C(14B)-C(16B)-H(16C)	109.2	H(20C)-C(20B)-H(20D)	107.7

Table S13. Anisotropic displacement parameters (Å²x 10³) for **4b** (2). The anisotropic displacementfactor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1A)	18(1)	11(1)	15(1)	0(1)	10(1)	-2(1)
O(2A)	18(1)	10(1)	15(1)	1(1)	8(1)	2(1)
O(3A)	18(1)	15(1)	18(1)	4(1)	7(1)	-1(1)

N(1A)	14(1)	14(1)	14(1)	0(1)	10(1)	2(1)
N(2A)	16(1)	17(1)	18(1)	0(1)	12(1)	1(1)
C(1A)	15(1)	11(1)	17(1)	-1(1)	10(1)	0(1)
C(2A)	17(1)	16(1)	19(1)	0(1)	13(1)	2(1)
C(3A)	18(1)	24(2)	24(1)	-4(1)	15(1)	2(1)
C(4A)	15(1)	28(2)	28(1)	-2(1)	13(1)	1(1)
C(5A)	12(1)	22(2)	23(1)	2(1)	9(1)	-1(1)
C(6A)	16(1)	17(1)	18(1)	3(1)	9(1)	0(1)
C(7A)	14(1)	11(1)	19(1)	2(1)	11(1)	0(1)
C(8A)	16(1)	10(1)	14(1)	0(1)	10(1)	1(1)
C(9A)	14(1)	9(1)	15(1)	-1(1)	9(1)	2(1)
C(10A)	18(1)	9(1)	17(1)	-3(1)	12(1)	-3(1)
C(11A)	21(1)	15(1)	16(1)	0(1)	12(1)	0(1)
C(12A)	18(1)	10(1)	14(1)	-1(1)	8(1)	-3(1)
C(13A)	18(1)	22(1)	21(1)	-4(1)	12(1)	-1(1)
C(14A)	12(1)	9(1)	16(1)	-1(1)	7(1)	1(1)
C(15A)	14(1)	17(1)	15(1)	-3(1)	9(1)	1(1)
C(16A)	14(1)	13(1)	20(1)	-1(1)	7(1)	3(1)
C(17A)	15(1)	20(2)	19(1)	-5(1)	6(1)	-1(1)
C(18A)	21(1)	18(2)	27(1)	-6(1)	14(1)	-6(1)
C(19A)	25(1)	10(1)	24(1)	-1(1)	11(1)	-2(1)
C(20A)	20(1)	12(1)	17(1)	1(1)	10(1)	0(1)
O(1B)	18(1)	10(1)	18(1)	-2(1)	12(1)	-3(1)
O(2B)	17(1)	9(1)	20(1)	1(1)	13(1)	2(1)
O(3B)	18(1)	15(1)	24(1)	-5(1)	14(1)	-1(1)
N(1B)	14(1)	13(1)	15(1)	1(1)	9(1)	-1(1)
N(2B)	15(1)	16(1)	16(1)	1(1)	8(1)	1(1)
C(1B)	12(1)	10(1)	16(1)	1(1)	9(1)	0(1)
C(2B)	16(1)	13(1)	18(1)	-1(1)	9(1)	0(1)
C(3B)	17(1)	21(2)	20(1)	1(1)	6(1)	1(1)
C(4B)	16(1)	20(2)	22(1)	-1(1)	6(1)	2(1)
C(5B)	16(1)	16(1)	28(1)	-6(1)	12(1)	-2(1)
C(6B)	18(1)	16(1)	22(1)	-1(1)	12(1)	-2(1)
C(7B)	13(1)	12(1)	18(1)	-2(1)	7(1)	-1(1)
C(8B)	15(1)	8(1)	15(1)	1(1)	11(1)	-1(1)
C(9B)	14(1)	10(1)	14(1)	2(1)	8(1)	2(1)
C(10B)	19(1)	10(1)	17(1)	-1(1)	11(1)	-4(1)
C(11B)	22(1)	15(1)	16(1)	-2(1)	12(1)	-2(1)
C(12B)	18(1)	10(1)	18(1)	-1(1)	12(1)	-1(1)
C(13B)	20(1)	19(1)	18(1)	3(1)	9(1)	-1(1)

C(14B)	12(1)	10(1)	17(1)	1(1)	9(1)	1(1)
C(15B)	13(1)	15(1)	16(1)	3(1)	9(1)	1(1)
C(16B)	16(1)	11(1)	17(1)	-1(1)	10(1)	0(1)
C(17B)	20(1)	11(1)	23(1)	1(1)	11(1)	-2(1)
C(18B)	18(1)	14(1)	26(1)	3(1)	9(1)	-3(1)
C(19B)	12(1)	20(2)	26(1)	4(1)	12(1)	1(1)
C(20B)	15(1)	14(1)	21(1)	3(1)	11(1)	2(1)

Table S14. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **4b** (2).

H(1A) $4390(30)$ $4690(40)$ $1172(19)$ 16 H(2A) $6350(30)$ $4260(30)$ $1400(20)$ 17 H(3A) 1859 9504 2231 25 H(4A) 95 8753 1070 26 H(5A) 206 7280 -58 22 H(6A) 2115 6531 -87 19 H(1A) 5851 6635 -915 19 H(1A) 5851 6635 -915 19 H(13A) 7864 5379 -169 28 H(13B) 8128 4792 820 28 H(13C) 8527 6354 681 28 H(15A) 6393 6845 2924 17 H(16A) 8308 6196 2820 18 H(16B) 8764 6797 2058 18 H(17A) 8629 8389 3546 22 H(17A) 9872 7912 3420 22 H(18A) 9513 9434 2206 25 H(18B) 9405 10324 3025 25 H(19A) 7263 10257 2410 23 H(20A) 7415 8633 944 18 H(20B) 6169 9137 1054 18 H(1B) $4400(30)$ $-250(40)$ $3480(20)$ 16 H(2B) $6440(30)$ $-780(30)$ $4310(20)$ 16 H(4B) 170 3992 1355 24		X	у	Z	U(eq)
H(2A)6350(30)4260(30)1400(20)17H(3A)18599504223125H(4A)958753107026H(5A)2067280-5822H(6A)21156531-8719H(1A)58516635-91519H(1A)58516635-91519H(13A)78645379-16928H(13B)8128479282028H(13C)8527635468128H(15B)66568491293817H(16A)83086196282018H(17A)86298389354622H(17B)98727912342022H(18A)95139434220625H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(4B)1703992135524	 H(1A)	4390(30)	4690(40)	1172(19)	16
H(3A)18599504223125H(4A)958753107026H(5A)2067280-5822H(6A)21156531-8719H(1A)58516635-91519H(1A)58516635-91519H(13A)78645379-16928H(13B)8128479282028H(13C)8527635468128H(15A)63936845292417H(16A)83086196282018H(16B)87646797205818H(17A)86298389354622H(17B)98727912342022H(18A)95139434220625H(18B)940510324302525H(19A)726310257241023H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(2A)	6350(30)	4260(30)	1400(20)	17
H(4A)958753107026H(5A)2067280-5822H(6A)21156531-8719H(1A)58516635-91519H(13A)78645379-16928H(13B)8128479282028H(13C)8527635468128H(15A)63936845292417H(15B)66568491293817H(16A)83086196282018H(16B)87646797205818H(17A)86298389354622H(17B)98727912342022H(18A)95139434220625H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(4B)19754639112323H(4B)1703992135524	H(3A)	1859	9504	2231	25
H(5A)2067280-5822H(6A)21156531-8719H(1A)58516635-91519H(13A)78645379-16928H(13B)8128479282028H(13C)8527635468128H(15A)63936845292417H(15B)66568491293817H(16A)83086196282018H(17A)86298389354622H(17B)98727912342022H(18A)95139434220625H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(2B)6440(30)-250(40)3480(20)16H(3B)19754639112323H(4B)1703992135524	H(4A)	95	8753	1070	26
H(6A)21156531-8719H(11A)58516635-91519H(13A)78645379-16928H(13B)8128479282028H(13C)8527635468128H(15A)63936845292417H(15B)66568491293817H(16A)83086196282018H(16B)87646797205818H(17A)86298389354622H(17B)98727912342022H(18A)95139434220625H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(4B)1703992135524	H(5A)	206	7280	-58	22
H(11A)58516635-91519H(13A)78645379-16928H(13B)8128479282028H(13C)8527635468128H(15A)63936845292417H(15B)66568491293817H(16A)83086196282018H(16B)87646797205818H(17A)86298389354622H(17B)98727912342022H(18A)95139434220625H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(18)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(6A)	2115	6531	-87	19
H(13A)78645379-16928H(13B)8128479282028H(13C)8527635468128H(15A)63936845292417H(15B)66568491293817H(16A)83086196282018H(16B)87646797205818H(17A)86298389354622H(17B)98727912342022H(18A)95139434220625H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(11A)	5851	6635	-915	19
H(13B)8128479282028H(13C)8527635468128H(13C)63936845292417H(15A)63936845293817H(15B)66568491293817H(16A)83086196282018H(16B)87646797205818H(17A)86298389354622H(17B)98727912342022H(18A)95139434220625H(18B)940510324302525H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(13A)	7864	5379	-169	28
H(13C)8527635468128H(15A)63936845292417H(15B)66568491293817H(16A)83086196282018H(16B)87646797205818H(17A)86298389354622H(17B)98727912342022H(18A)95139434220625H(18B)940510324302525H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(18)4400(30)-250(40)3480(20)16H(28)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(13B)	8128	4792	820	28
H(15A)63936845292417H(15B)66568491293817H(16A)83086196282018H(16B)87646797205818H(17A)86298389354622H(17B)98727912342022H(18A)95139434220625H(18B)940510324302525H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(3B)19754639112323H(4B)1703992135524	H(13C)	8527	6354	681	28
H(15B)66568491293817H(16A)83086196282018H(16B)87646797205818H(17A)86298389354622H(17B)98727912342022H(18A)95139434220625H(18B)940510324302525H(19A)726310257241023H(19B)774810827165623H(20A)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(15A)	6393	6845	2924	17
H(16A)83086196282018H(16B)87646797205818H(17A)86298389354622H(17B)98727912342022H(18A)95139434220625H(18B)940510324302525H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(15B)	6656	8491	2938	17
H(16B)87646797205818H(17A)86298389354622H(17B)98727912342022H(18A)95139434220625H(18B)940510324302525H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(16A)	8308	6196	2820	18
H(17A)86298389354622H(17B)98727912342022H(18A)95139434220625H(18B)940510324302525H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(16B)	8764	6797	2058	18
H(17B)98727912342022H(18A)95139434220625H(18B)940510324302525H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(17A)	8629	8389	3546	22
H(18A)95139434220625H(18B)940510324302525H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(17B)	9872	7912	3420	22
H(18B)940510324302525H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(18A)	9513	9434	2206	25
H(19A)726310257241023H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(18B)	9405	10324	3025	25
H(19B)774810827165623H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(19A)	7263	10257	2410	23
H(20A)7415863394418H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(19B)	7748	10827	1656	23
H(20B)61699137105418H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(20A)	7415	8633	944	18
H(1B)4400(30)-250(40)3480(20)16H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(20B)	6169	9137	1054	18
H(2B)6440(30)-780(30)4310(20)16H(3B)19754639112323H(4B)1703992135524	H(1B)	4400(30)	-250(40)	3480(20)	16
H(3B)19754639112323H(4B)1703992135524	H(2B)	6440(30)	-780(30)	4310(20)	16
H(4B) 170 3992 1355 24	H(3B)	1975	4639	1123	23
	H(4B)	170	3992	1355	24

H(5B)	216	2482	2510	23
H(6B)	2077	1586	3508	20
H(11B)	5781	1606	6332	19
H(13D)	7769	274	6642	28
H(13E)	8464	1361	6227	28
H(13F)	8130	-172	5803	28
H(15C)	6713	3508	2951	16
H(15D)	6458	1861	2825	16
H(16C)	6095	4133	4537	16
H(16D)	7314	3649	5330	16
H(17C)	7647	5866	4812	21
H(17D)	7261	5284	3811	21
H(18C)	9442	4502	5270	23
H(18D)	9408	5411	4419	23
H(19C)	8736	3471	3466	21
H(19D)	9934	3001	4283	21
H(20C)	8740	1842	4976	18
H(20D)	8365	1269	3974	18

Table S15. Torsion angles [°] for 4b (2).

O(1A)-C(8A)-C(9A)-O(2A)	-26.8(3)	N(2A)-C(2A)-C(3A)-C(4A)	-176.7(3)
O(1A)-C(8A)-C(9A)-C(10A)	90.7(2)	N(2A)-C(2A)-C(7A)-N(1A)	-1.1(3)
O(1A)-C(8A)-C(9A)-C(14A)	-146.99(18)	N(2A)-C(2A)-C(7A)-C(6A)	176.9(2)
O(1A)-C(8A)-C(12A)-O(3A)	85.9(3)	C(1A)-N(1A)-C(7A)-C(2A)	1.9(3)
O(1A)-C(8A)-C(12A)-C(11A)	-93.6(2)	C(1A)-N(1A)-C(7A)-C(6A)	-175.8(3)
O(2A)-C(9A)-C(10A)-C(11A)	133.1(2)	C(1A)-N(1A)-C(8A)-O(1A)	123.0(2)
O(2A)-C(9A)-C(10A)-C(13A)	-46.4(3)	C(1A)-N(1A)-C(8A)-C(9A)	-2.5(3)
O(2A)-C(9A)-C(14A)-C(15A)	-73.2(2)	C(1A)-N(1A)-C(8A)-C(12A)	-119.5(3)
O(2A)-C(9A)-C(14A)-C(16A)	44.1(2)	C(1A)-N(2A)-C(2A)-C(3A)	177.9(3)
O(2A)-C(9A)-C(14A)-C(20A)	164.80(18)	C(1A)-N(2A)-C(2A)-C(7A)	-0.2(3)
N(1A)-C(1A)-C(15A)-C(14A)	34.2(3)	C(2A)-N(2A)-C(1A)-N(1A)	1.5(3)
N(1A)-C(8A)-C(9A)-O(2A)	98.1(2)	C(2A)-N(2A)-C(1A)-C(15A)	-171.7(3)
N(1A)-C(8A)-C(9A)-C(10A)	-144.4(2)	C(2A)-C(3A)-C(4A)-C(5A)	-0.3(5)
N(1A)-C(8A)-C(9A)-C(14A)	-22.1(3)	C(3A)-C(2A)-C(7A)-N(1A)	-179.4(2)
N(1A)-C(8A)-C(12A)-O(3A)	-33.8(4)	C(3A)-C(2A)-C(7A)-C(6A)	-1.4(4)
N(1A)-C(8A)-C(12A)-C(11A)	146.8(2)	C(3A)-C(4A)-C(5A)-C(6A)	-0.8(5)
N(2A)-C(1A)-C(15A)-C(14A)	-152.9(3)	C(4A)-C(5A)-C(6A)-C(7A)	0.8(4)

C(5A)-C(6A)-C(7A)-N(1A)	177.7(3)	C(17A)-C(18A)-C(19A)-C(20A)	-54.0(3)
C(5A)-C(6A)-C(7A)-C(2A)	0.3(4)	C(18A)-C(19A)-C(20A)-C(14A)	55.9(3)
C(7A)-N(1A)-C(1A)-N(2A)	-2.3(3)	C(20A)-C(14A)-C(15A)-C(1A)	67.0(3)
C(7A)-N(1A)-C(1A)-C(15A)	171.6(2)	C(20A)-C(14A)-C(16A)-C(17A)	55.8(2)
C(7A)-N(1A)-C(8A)-O(1A)	-50.9(3)	O(1B)-C(8B)-C(9B)-O(2B)	28.8(2)
C(7A)-N(1A)-C(8A)-C(9A)	-176.4(2)	O(1B)-C(8B)-C(9B)-C(10B)	-89.0(2)
C(7A)-N(1A)-C(8A)-C(12A)	66.6(3)	O(1B)-C(8B)-C(9B)-C(14B)	148.85(18)
C(7A)-C(2A)-C(3A)-C(4A)	1.3(4)	O(1B)-C(8B)-C(12B)-O(3B)	-87.8(3)
C(8A)-N(1A)-C(1A)-N(2A)	-177.2(2)	O(1B)-C(8B)-C(12B)-C(11B)	91.8(2)
C(8A)-N(1A)-C(1A)-C(15A)	-3.4(4)	O(2B)-C(9B)-C(10B)-C(11B)	-133.1(2)
C(8A)-N(1A)-C(7A)-C(2A)	176.8(2)	O(2B)-C(9B)-C(10B)-C(13B)	47.3(3)
C(8A)-N(1A)-C(7A)-C(6A)	-0.9(4)	O(2B)-C(9B)-C(14B)-C(15B)	70.8(2)
C(8A)-C(9A)-C(10A)-C(11A)	16.0(3)	O(2B)-C(9B)-C(14B)-C(16B)	-167.35(17)
C(8A)-C(9A)-C(10A)-C(13A)	-163.5(2)	O(2B)-C(9B)-C(14B)-C(20B)	-47.0(2)
C(8A)-C(9A)-C(14A)-C(15A)	49.2(3)	N(1B)-C(1B)-C(15B)-C(14B)	-34.5(3)
C(8A)-C(9A)-C(14A)-C(16A)	166.52(19)	N(1B)-C(8B)-C(9B)-O(2B)	-96.9(2)
C(8A)-C(9A)-C(14A)-C(20A)	-72.8(2)	N(1B)-C(8B)-C(9B)-C(10B)	145.3(2)
C(9A)-C(8A)-C(12A)-O(3A)	-157.2(3)	N(1B)-C(8B)-C(9B)-C(14B)	23.2(3)
C(9A)-C(8A)-C(12A)-C(11A)	23.3(3)	N(1B)-C(8B)-C(12B)-O(3B)	32.5(4)
C(9A)-C(10A)-C(11A)-C(12A)	-1.6(3)	N(1B)-C(8B)-C(12B)-C(11B)	-147.9(2)
C(9A)-C(14A)-C(15A)-C(1A)	-55.5(3)	N(2B)-C(1B)-C(15B)-C(14B)	151.2(3)
C(9A)-C(14A)-C(16A)-C(17A)	178.30(19)	N(2B)-C(2B)-C(3B)-C(4B)	179.0(3)
C(9A)-C(14A)-C(20A)-C(19A)	-176.58(19)	N(2B)-C(2B)-C(7B)-N(1B)	0.7(3)
C(10A)-C(9A)-C(14A)-C(15A)	163.9(2)	N(2B)-C(2B)-C(7B)-C(6B)	-177.7(2)
C(10A)-C(9A)-C(14A)-C(16A)	-78.8(2)	C(1B)-N(1B)-C(7B)-C(2B)	-1.3(3)
C(10A)-C(9A)-C(14A)-C(20A)	41.9(3)	C(1B)-N(1B)-C(7B)-C(6B)	176.8(3)
C(10A)-C(11A)-C(12A)-O(3A)	166.3(3)	C(1B)-N(1B)-C(8B)-O(1B)	-124.1(2)
C(10A)-C(11A)-C(12A)-C(8A)	-14.3(3)	C(1B)-N(1B)-C(8B)-C(9B)	2.0(4)
C(12A)-C(8A)-C(9A)-O(2A)	-140.3(2)	C(1B)-N(1B)-C(8B)-C(12B)	118.0(3)
C(12A)-C(8A)-C(9A)-C(10A)	-22.7(2)	C(1B)-N(2B)-C(2B)-C(3B)	-179.9(3)
C(12A)-C(8A)-C(9A)-C(14A)	99.5(2)	C(1B)-N(2B)-C(2B)-C(7B)	0.2(3)
C(13A)-C(10A)-C(11A)-C(12A)	177.9(3)	C(2B)-N(2B)-C(1B)-N(1B)	-1.1(3)
C(14A)-C(9A)-C(10A)-C(11A)	-106.5(2)	C(2B)-N(2B)-C(1B)-C(15B)	173.4(3)
C(14A)-C(9A)-C(10A)-C(13A)	73.9(3)	C(2B)-C(3B)-C(4B)-C(5B)	-0.5(4)
C(14A)-C(16A)-C(17A)-C(18A)	-56.2(3)	C(3B)-C(2B)-C(7B)-N(1B)	-179.2(2)
C(15A)-C(14A)-C(16A)-C(17A)	-64.6(3)	C(3B)-C(2B)-C(7B)-C(6B)	2.5(4)
C(15A)-C(14A)-C(20A)-C(19A)	63.3(3)	C(3B)-C(4B)-C(5B)-C(6B)	0.9(5)
C(16A)-C(14A)-C(15A)-C(1A)	-174.0(2)	C(4B)-C(5B)-C(6B)-C(7B)	0.4(4)
C(16A)-C(14A)-C(20A)-C(19A)	-55.2(3)	C(5B)-C(6B)-C(7B)-N(1B)	-179.8(3)
C(16A)-C(17A)-C(18A)-C(19A)	53.7(3)	C(5B)-C(6B)-C(7B)-C(2B)	-2.0(4) \$66

C(7B)-N(1B)-C(1B)-N(2B)	1.6(3)	C(10B)-C(9B)-C(14B)-C(15B)	-165.08(19)
C(7B)-N(1B)-C(1B)-C(15B)	-173.4(2)	C(10B)-C(9B)-C(14B)-C(16B)	-43.2(3)
C(7B)-N(1B)-C(8B)-O(1B)	52.3(3)	C(10B)-C(9B)-C(14B)-C(20B)	77.2(2)
C(7B)-N(1B)-C(8B)-C(9B)	178.4(2)	C(10B)-C(11B)-C(12B)-O(3B)	-164.8(3)
C(7B)-N(1B)-C(8B)-C(12B)	-65.5(3)	C(10B)-C(11B)-C(12B)-C(8B)	15.7(3)
C(7B)-C(2B)-C(3B)-C(4B)	-1.1(4)	C(12B)-C(8B)-C(9B)-O(2B)	141.7(2)
C(8B)-N(1B)-C(1B)-N(2B)	178.6(2)	C(12B)-C(8B)-C(9B)-C(10B)	23.9(2)
C(8B)-N(1B)-C(1B)-C(15B)	3.6(4)	C(12B)-C(8B)-C(9B)-C(14B)	-98.3(2)
C(8B)-N(1B)-C(7B)-C(2B)	-178.3(2)	C(13B)-C(10B)-C(11B)-C(12B)	-179.2(2)
C(8B)-N(1B)-C(7B)-C(6B)	-0.2(5)	C(14B)-C(9B)-C(10B)-C(11B)	105.1(2)
C(8B)-C(9B)-C(10B)-C(11B)	-16.6(3)	C(14B)-C(9B)-C(10B)-C(13B)	-74.5(3)
C(8B)-C(9B)-C(10B)-C(13B)	163.8(2)	C(14B)-C(16B)-C(17B)-C(18B)	-56.9(3)
C(8B)-C(9B)-C(14B)-C(15B)	-50.7(3)	C(15B)-C(14B)-C(16B)-C(17B)	-64.0(2)
C(8B)-C(9B)-C(14B)-C(16B)	71.1(2)	C(15B)-C(14B)-C(20B)-C(19B)	65.7(3)
C(8B)-C(9B)-C(14B)-C(20B)	-168.48(18)	C(16B)-C(14B)-C(15B)-C(1B)	-65.7(3)
C(9B)-C(8B)-C(12B)-O(3B)	155.6(3)	C(16B)-C(14B)-C(20B)-C(19B)	-54.8(3)
C(9B)-C(8B)-C(12B)-C(11B)	-24.8(3)	C(16B)-C(17B)-C(18B)-C(19B)	54.9(3)
C(9B)-C(10B)-C(11B)-C(12B)	1.2(3)	C(17B)-C(18B)-C(19B)-C(20B)	-53.5(3)
C(9B)-C(14B)-C(15B)-C(1B)	56.6(3)	C(18B)-C(19B)-C(20B)-C(14B)	55.3(3)
C(9B)-C(14B)-C(16B)-C(17B)	176.00(19)	C(20B)-C(14B)-C(15B)-C(1B)	175.3(2)
C(9B)-C(14B)-C(20B)-C(19B)	-176.90(19)	C(20B)-C(14B)-C(16B)-C(17B)	54.9(3)

Table S16. Hydrogen bonds for 4b (2) [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1A)-H(1A)N(2B)	0.88(3)	1.93(3)	2.810(3)	172(3)
O(2A)-H(2A)O(3A)#1	0.88(3)	1.96(3)	2.818(3)	163(3)
O(1B)-H(1B)N(2A)#2	0.89(3)	1.97(3)	2.833(3)	165(3)
O(2B)-H(2B)O(3B)#3	0.88(3)	1.96(3)	2.823(3)	166(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y-1/2,-z #2 x,y-1,z #3 -x+1,y-1/2,-z+1

6.3. Compound 4c

X-ray diffraction data were collected at 100K on a Rigaku Synergy S diffractometer equipped with a HyPix600HE area-detector (kappa geometry, shutterless ω -scan technique), using monochromatized Cu K_a-radiation. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.¹ The structure was solved by direct methods using SHELXT² and refined on F^2 using SHELXL-2018³ in the OLEX2 program.⁴ Positions of all atoms were found from the electron density-difference map. Atoms were refined with individual anisotropic (non-hydrogen atoms) or isotropic (hydrogen atoms) displacement parameters.

Identification code	4 c	
Empirical formula	C19 H20 N2 O4	
Formula weight	340.37	
Temperature	100.01(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P21	
Unit cell dimensions	a = 11.38512(6) Å	a= 90°.
	b = 9.48447(4) Å	b= 110.6652(6)°.
	c = 15.80604(8) Å	$g = 90^{\circ}$.
Volume	1596.950(14) Å ³	
Z	4	
Density (calculated)	1.416 g/cm^3	
Absorption coefficient	0.822 mm ⁻¹	
F(000)	720	
Crystal size	0.34 x 0.17 x 0.08 mm ³	
Theta range for data collection	2.988 to 79.491°.	
Index ranges	-14<=h<=14, -10<=k<=1	2, -20<=l<=20
Reflections collected	41676	
Independent reflections	6778 [R(int) = 0.0282]	
Observed reflections	6769	
Completeness to theta = 67.684°	100.0 %	
Absorption correction	Semi-empirical from equ	ivalents
Max. and min. transmission	0.83418 and 0.83014	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	6778 / 1 / 610	
Goodness-of-fit on F ²	1.040	
Final R indices [I>2sigma(I)]	R1 = 0.0275, wR2 = 0.07	30
R indices (all data)	R1 = 0.0276, wR2 = 0.07	31

Table S17. Crystal data and structure refinement for 4c.

CCDC	2233460
Largest diff. peak and hole	0.274 and -0.157 e.Å ⁻³
Extinction coefficient	0.0048(4)
Absolute structure parameter	-0.03(4)

Table S18 . Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å ² x 10^3)
for 4c. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
O(1A)	6797(1)	5003(1)	4146(1)	14(1)
O(2A)	4409(1)	5075(1)	4025(1)	14(1)
O(3A)	3841(1)	7551(2)	5055(1)	18(1)
O(4A)	9242(1)	9514(2)	4792(1)	24(1)
N(1A)	4347(1)	8692(2)	2247(1)	16(1)
N(2A)	4450(1)	7320(2)	3423(1)	13(1)
C(1A)	6473(2)	6239(2)	4515(1)	12(1)
C(2A)	4998(2)	6392(2)	4196(1)	12(1)
C(3A)	4783(2)	6937(2)	5057(1)	14(1)
C(4A)	5884(2)	6521(2)	5819(1)	17(1)
C(5A)	6811(2)	6112(2)	5542(1)	15(1)
C(6A)	8052(2)	5566(2)	6152(1)	20(1)
C(7A)	7147(2)	7488(2)	4221(1)	12(1)
C(8A)	7152(2)	8845(2)	4764(1)	15(1)
C(9A)	7981(2)	9984(2)	4588(1)	20(1)
C(10A)	9272(2)	8349(2)	4227(1)	21(1)
C(11A)	8526(2)	7094(2)	4372(1)	17(1)
C(12A)	6460(2)	7751(2)	3203(1)	15(1)
C(13A)	5085(2)	7985(2)	2951(1)	13(1)
C(14A)	3132(2)	8439(2)	2240(1)	16(1)
C(15A)	1975(2)	8888(2)	1619(1)	20(1)
C(16A)	898(2)	8427(2)	1750(1)	21(1)
C(17A)	951(2)	7534(2)	2470(1)	20(1)
C(18A)	2090(2)	7095(2)	3098(1)	17(1)
C(19A)	3170(2)	7573(2)	2966(1)	15(1)
O(1B)	6775(1)	15(1)	1768(1)	15(1)
O(2B)	4368(1)	67(1)	695(1)	14(1)
O(3B)	3774(1)	2643(1)	-584(1)	17(1)

O(4B)	9075(1)	4650(1)	2371(1)	21(1)
N(1B)	4319(1)	3663(2)	2471(1)	16(1)
N(2B)	4399(1)	2293(2)	1341(1)	13(1)
C(1B)	6421(2)	1253(2)	1241(1)	13(1)
C(2B)	4939(2)	1396(2)	828(1)	12(1)
C(3B)	4710(2)	1992(2)	-132(1)	14(1)
C(4B)	5790(2)	1595(2)	-360(1)	16(1)
C(5B)	6737(2)	1157(2)	375(1)	14(1)
C(6B)	7957(2)	603(2)	368(1)	19(1)
C(7B)	7082(2)	2505(2)	1880(1)	13(1)
C(8B)	7023(2)	3878(2)	1339(1)	15(1)
C(9B)	7795(2)	5049(2)	1940(1)	19(1)
C(10B)	9173(2)	3457(2)	2942(1)	19(1)
C(11B)	8482(2)	2178(2)	2412(1)	16(1)
C(12B)	6417(2)	2695(2)	2571(1)	15(1)
C(13B)	5045(2)	2948(2)	2137(1)	13(1)
C(14B)	3098(2)	3430(2)	1866(1)	16(1)
C(15B)	1948(2)	3892(2)	1903(1)	20(1)
C(16B)	866(2)	3454(2)	1222(1)	22(1)
C(17B)	907(2)	2576(2)	520(1)	20(1)
C(18B)	2035(2)	2117(2)	466(1)	17(1)
C(19B)	3126(2)	2566(2)	1151(1)	14(1)

Table S19. Bond lengths [Å] and angles [°] for 4c.

O(1A)-H(1A)	0.84(3)	C(1A)-C(5A)	1.535(2)
O(1A)-C(1A)	1.415(2)	C(1A)-C(7A)	1.569(2)
O(2A)-H(2A)	0.91(3)	C(2A)-C(3A)	1.554(2)
O(2A)-C(2A)	1.398(2)	C(3A)-C(4A)	1.453(2)
O(3A)-C(3A)	1.219(2)	C(4A)-H(4A)	1.00(3)
O(4A)-C(9A)	1.427(2)	C(4A)-C(5A)	1.334(3)
O(4A)-C(10A)	1.429(2)	C(5A)-C(6A)	1.494(3)
N(1A)-C(13A)	1.317(2)	C(6A)-H(6A)	1.03(3)
N(1A)-C(14A)	1.400(2)	C(6A)-H(6B)	0.90(4)
N(2A)-C(2A)	1.455(2)	C(6A)-H(6C)	0.99(3)
N(2A)-C(13A)	1.364(2)	C(7A)-C(8A)	1.546(2)
N(2A)-C(19A)	1.400(2)	C(7A)-C(11A)	1.548(2)
C(1A)-C(2A)	1.581(2)	C(7A)-C(12A)	1.542(2)

C(8A)-H(8A)	0.99(3)	C(4B)-H(4B)	1.00(3)
C(8A)-H(8B)	0.98(2)	C(4B)-C(5B)	1.342(3)
C(8A)-C(9A)	1.524(3)	C(5B)-C(6B)	1.489(2)
C(9A)-H(9A)	0.96(2)	C(6B)-H(6D)	1.02(3)
C(9A)-H(9B)	0.99(3)	C(6B)-H(6E)	0.95(3)
C(10A)-H(10A)	0.98(3)	C(6B)-H(6F)	0.94(4)
C(10A)-H(10B)	0.97(3)	C(7B)-C(8B)	1.547(2)
C(10A)-C(11A)	1.527(3)	C(7B)-C(11B)	1.548(2)
C(11A)-H(11A)	1.00(3)	C(7B)-C(12B)	1.543(2)
C(11A)-H(11B)	0.95(3)	C(8B)-H(8C)	1.00(3)
C(12A)-H(12A)	0.95(3)	C(8B)-H(8D)	0.99(3)
C(12A)-H(12B)	0.98(3)	C(8B)-C(9B)	1.523(2)
C(12A)-C(13A)	1.489(2)	C(9B)-H(9C)	0.98(3)
C(14A)-C(15A)	1.403(2)	C(9B)-H(9D)	1.00(2)
C(14A)-C(19A)	1.399(2)	C(10B)-H(10C)	0.97(2)
C(15A)-H(15A)	0.96(3)	C(10B)-H(10D)	0.99(2)
C(15A)-C(16A)	1.385(3)	C(10B)-C(11B)	1.526(3)
C(16A)-H(16A)	0.96(2)	C(11B)-H(11C)	0.98(3)
C(16A)-C(17A)	1.403(3)	C(11B)-H(11D)	1.02(3)
C(17A)-H(17A)	0.97(3)	C(12B)-H(12C)	0.97(3)
C(17A)-C(18A)	1.389(3)	C(12B)-H(12D)	0.94(3)
C(18A)-H(18A)	0.98(3)	C(12B)-C(13B)	1.487(2)
C(18A)-C(19A)	1.394(2)	C(14B)-C(15B)	1.402(2)
O(1B)-H(1B)	0.85(3)	C(14B)-C(19B)	1.406(2)
O(1B)-C(1B)	1.414(2)	C(15B)-H(15B)	0.95(3)
O(2B)-H(2B)	0.85(3)	C(15B)-C(16B)	1.383(3)
O(2B)-C(2B)	1.400(2)	C(16B)-H(16B)	0.98(3)
O(3B)-C(3B)	1.221(2)	C(16B)-C(17B)	1.403(3)
O(4B)-C(9B)	1.425(2)	C(17B)-H(17B)	0.97(3)
O(4B)-C(10B)	1.427(2)	C(17B)-C(18B)	1.386(3)
N(1B)-C(13B)	1.316(2)	C(18B)-H(18B)	0.98(3)
N(1B)-C(14B)	1.398(2)	C(18B)-C(19B)	1.396(2)
N(2B)-C(2B)	1.453(2)	C(1A)-O(1A)-H(1A)	111.4(19)
N(2B)-C(13B)	1.363(2)	C(2A)-O(2A)-H(2A)	111(2)
N(2B)-C(19B)	1.396(2)	C(9A)-O(4A)-C(10A)	110.14(14)
C(1B)-C(2B)	1.585(2)	C(13A)-N(1A)-C(14A)	104.73(14)
C(1B)-C(5B)	1.536(2)	C(13A)-N(2A)-C(2A)	125.89(14)
C(1B)-C(7B)	1.569(2)	C(13A)-N(2A)-C(19A)	107.10(14)
C(2B)-C(3B)	1.551(2)	C(19A)-N(2A)-C(2A)	126.67(14)
C(3B)-C(4B)	1.449(2)	O(1A)-C(1A)-C(2A)	110.29(13) S71

O(1A)-C(1A)-C(5A)	111.49(14)	O(4A)-C(9A)-H(9B)	109.0(17)
O(1A)-C(1A)-C(7A)	106.12(13)	C(8A)-C(9A)-H(9A)	110.0(15)
C(5A)-C(1A)-C(2A)	100.73(13)	C(8A)-C(9A)-H(9B)	109.4(16)
C(5A)-C(1A)-C(7A)	113.97(14)	H(9A)-C(9A)-H(9B)	107(2)
C(7A)-C(1A)-C(2A)	114.33(14)	O(4A)-C(10A)-H(10A)	105.1(16)
O(2A)-C(2A)-N(2A)	110.12(13)	O(4A)-C(10A)-H(10B)	110.6(16)
O(2A)-C(2A)-C(1A)	111.25(14)	O(4A)-C(10A)-C(11A)	111.77(15)
O(2A)-C(2A)-C(3A)	104.68(13)	H(10A)-C(10A)-H(10B)	106(2)
N(2A)-C(2A)-C(1A)	114.57(14)	С(11А)-С(10А)-Н(10А)	111.3(16)
N(2A)-C(2A)-C(3A)	112.38(14)	C(11A)-C(10A)-H(10B)	111.9(15)
C(3A)-C(2A)-C(1A)	103.24(13)	C(7A)-C(11A)-H(11A)	113.1(15)
O(3A)-C(3A)-C(2A)	124.52(15)	C(7A)-C(11A)-H(11B)	110.6(14)
O(3A)-C(3A)-C(4A)	129.29(16)	C(10A)-C(11A)-C(7A)	112.11(15)
C(4A)-C(3A)-C(2A)	106.16(14)	C(10A)-C(11A)-H(11A)	105.9(16)
C(3A)-C(4A)-H(4A)	122.4(16)	C(10A)-C(11A)-H(11B)	108.4(14)
C(5A)-C(4A)-C(3A)	111.06(15)	H(11A)-C(11A)-H(11B)	106(2)
C(5A)-C(4A)-H(4A)	126.5(16)	C(7A)-C(12A)-H(12A)	112.8(14)
C(4A)-C(5A)-C(1A)	113.02(15)	C(7A)-C(12A)-H(12B)	107.8(15)
C(4A)-C(5A)-C(6A)	124.57(16)	H(12A)-C(12A)-H(12B)	108(2)
C(6A)-C(5A)-C(1A)	122.41(15)	C(13A)-C(12A)-C(7A)	113.64(13)
C(5A)-C(6A)-H(6A)	111.1(16)	C(13A)-C(12A)-H(12A)	109.4(14)
C(5A)-C(6A)-H(6B)	111(2)	C(13A)-C(12A)-H(12B)	104.6(14)
C(5A)-C(6A)-H(6C)	111.3(18)	N(1A)-C(13A)-N(2A)	113.22(15)
H(6A)-C(6A)-H(6B)	109(3)	N(1A)-C(13A)-C(12A)	126.79(15)
H(6A)-C(6A)-H(6C)	105(3)	N(2A)-C(13A)-C(12A)	119.70(15)
H(6B)-C(6A)-H(6C)	109(3)	N(1A)-C(14A)-C(15A)	129.43(17)
C(8A)-C(7A)-C(1A)	111.75(13)	C(19A)-C(14A)-N(1A)	110.41(15)
C(8A)-C(7A)-C(11A)	108.12(14)	C(19A)-C(14A)-C(15A)	120.13(16)
C(11A)-C(7A)-C(1A)	110.31(14)	C(14A)-C(15A)-H(15A)	122.1(16)
C(12A)-C(7A)-C(1A)	108.09(13)	C(16A)-C(15A)-C(14A)	117.50(18)
C(12A)-C(7A)-C(8A)	110.26(14)	C(16A)-C(15A)-H(15A)	120.4(16)
C(12A)-C(7A)-C(11A)	108.26(13)	C(15A)-C(16A)-H(16A)	119.9(15)
C(7A)-C(8A)-H(8A)	110.6(15)	C(15A)-C(16A)-C(17A)	121.69(17)
C(7A)-C(8A)-H(8B)	108.9(15)	C(17A)-C(16A)-H(16A)	118.4(15)
H(8A)-C(8A)-H(8B)	109(2)	C(16A)-C(17A)-H(17A)	119.4(16)
C(9A)-C(8A)-C(7A)	111.66(14)	C(18A)-C(17A)-C(16A)	121.48(17)
C(9A)-C(8A)-H(8A)	109.4(15)	C(18A)-C(17A)-H(17A)	119.1(16)
C(9A)-C(8A)-H(8B)	107.1(14)	C(17A)-C(18A)-H(18A)	121.1(14)
O(4A)-C(9A)-C(8A)	112.09(16)	C(17A)-C(18A)-C(19A)	116.52(17)
O(4A)-C(9A)-H(9A)	109.3(14)	C(19A)-C(18A)-H(18A)	122.4(14)
C(14A)-C(19A)-N(2A)	104.49(15)		
----------------------	------------		
C(18A)-C(19A)-N(2A)	132.79(17)		
C(18A)-C(19A)-C(14A)	122.65(16)		
C(1B)-O(1B)-H(1B)	107.3(18)		
C(2B)-O(2B)-H(2B)	110(2)		
C(9B)-O(4B)-C(10B)	110.58(14)		
C(13B)-N(1B)-C(14B)	104.93(14)		
C(13B)-N(2B)-C(2B)	125.83(14)		
C(13B)-N(2B)-C(19B)	107.15(14)		
C(19B)-N(2B)-C(2B)	126.88(14)		
O(1B)-C(1B)-C(2B)	110.77(13)		
O(1B)-C(1B)-C(5B)	111.63(14)		
O(1B)-C(1B)-C(7B)	106.07(13)		
C(5B)-C(1B)-C(2B)	100.83(13)		
C(5B)-C(1B)-C(7B)	114.13(14)		
C(7B)-C(1B)-C(2B)	113.54(13)		
O(2B)-C(2B)-N(2B)	110.16(13)		
O(2B)-C(2B)-C(1B)	110.78(14)		
O(2B)-C(2B)-C(3B)	105.83(13)		
N(2B)-C(2B)-C(1B)	114.76(13)		
N(2B)-C(2B)-C(3B)	111.97(14)		
C(3B)-C(2B)-C(1B)	102.79(13)		
O(3B)-C(3B)-C(2B)	124.59(15)		
O(3B)-C(3B)-C(4B)	128.87(16)		
C(4B)-C(3B)-C(2B)	106.53(14)		
C(3B)-C(4B)-H(4B)	123.7(15)		
C(5B)-C(4B)-C(3B)	110.93(15)		
C(5B)-C(4B)-H(4B)	125.3(15)		
C(4B)-C(5B)-C(1B)	112.61(15)		
C(4B)-C(5B)-C(6B)	124.68(16)		
C(6B)-C(5B)-C(1B)	122.69(15)		
C(5B)-C(6B)-H(6D)	112.4(15)		
C(5B)-C(6B)-H(6E)	110.1(18)		
C(5B)-C(6B)-H(6F)	112(2)		
H(6D)-C(6B)-H(6E)	105(2)		
H(6D)-C(6B)-H(6F)	110(3)		
H(6E)-C(6B)-H(6F)	107(3)		
C(8B)-C(7B)-C(1B)	111.31(13)		
C(8B)-C(7B)-C(11B)	107.78(14)		
C(11B)-C(7B)-C(1B)	111.47(14)		

C(12B)-C(7B)-C(1B)	107.44(13)
C(12B)-C(7B)-C(8B)	110.92(14)
C(12B)-C(7B)-C(11B)	107.88(13)
C(7B)-C(8B)-H(8C)	111.1(16)
C(7B)-C(8B)-H(8D)	110.4(16)
H(8C)-C(8B)-H(8D)	105(2)
C(9B)-C(8B)-C(7B)	111.44(14)
C(9B)-C(8B)-H(8C)	107.5(15)
C(9B)-C(8B)-H(8D)	111.6(16)
O(4B)-C(9B)-C(8B)	111.85(15)
O(4B)-C(9B)-H(9C)	106.4(14)
O(4B)-C(9B)-H(9D)	110.0(13)
C(8B)-C(9B)-H(9C)	112.3(15)
C(8B)-C(9B)-H(9D)	109.1(14)
H(9C)-C(9B)-H(9D)	107(2)
O(4B)-C(10B)-H(10C)	110.7(14)
O(4B)-C(10B)-H(10D)	104.9(15)
O(4B)-C(10B)-C(11B)	111.89(15)
H(10C)-C(10B)-H(10D)	107.2(19)
C(11B)-C(10B)-H(10C)	110.3(14)
C(11B)-C(10B)-H(10D)	111.7(15)
C(7B)-C(11B)-H(11C)	107.5(14)
C(7B)-C(11B)-H(11D)	111.0(14)
C(10B)-C(11B)-C(7B)	111.82(15)
C(10B)-C(11B)-H(11C)	110.8(15)
C(10B)-C(11B)-H(11D)	107.1(15)
H(11C)-C(11B)-H(11D)	109(2)
C(7B)-C(12B)-H(12C)	108.5(14)
C(7B)-C(12B)-H(12D)	111.1(15)
H(12C)-C(12B)-H(12D)	108(2)
C(13B)-C(12B)-C(7B)	112.99(14)
C(13B)-C(12B)-H(12C)	106.8(14)
C(13B)-C(12B)-H(12D)	109.5(15)
N(1B)-C(13B)-N(2B)	113.25(15)
N(1B)-C(13B)-C(12B)	127.21(15)
N(2B)-C(13B)-C(12B)	119.27(15)
N(1B)-C(14B)-C(15B)	129.77(17)
N(1B)-C(14B)-C(19B)	110.06(15)
C(15B)-C(14B)-C(19B)	120.15(16)
C(14B)-C(15B)-H(15B)	121.7(16)
	S73

C(16B)-C(15B)-C(14B)	117.57(18)	C(18B)-C(17B)-H(17B)	117.6(16)
C(16B)-C(15B)-H(15B)	120.7(16)	C(17B)-C(18B)-H(18B)	121.6(14)
C(15B)-C(16B)-H(16B)	119.3(15)	C(17B)-C(18B)-C(19B)	116.55(17)
C(15B)-C(16B)-C(17B)	121.67(17)	C(19B)-C(18B)-H(18B)	121.8(14)
C(17B)-C(16B)-H(16B)	119.0(15)	N(2B)-C(19B)-C(14B)	104.57(15)
C(16B)-C(17B)-H(17B)	120.6(16)	C(18B)-C(19B)-N(2B)	133.04(16)
C(18B)-C(17B)-C(16B)	121.71(17)	C(18B)-C(19B)-C(14B)	122.34(15)

Table S20. Anisotropic displacement parameters (Å2x 103) for 4c. The anisotropic displacementfactor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]

	U ¹¹	U ²²	U33	U ²³	U ¹³	U ¹²
O(1A)	17(1)	10(1)	17(1)	-1(1)	7(1)	0(1)
O(2A)	17(1)	11(1)	14(1)	-1(1)	6(1)	-2(1)
O(3A)	19(1)	16(1)	22(1)	-5(1)	9(1)	0(1)
O(4A)	19(1)	21(1)	28(1)	-3(1)	6(1)	-6(1)
N(1A)	16(1)	17(1)	12(1)	1(1)	4(1)	0(1)
N(2A)	12(1)	13(1)	14(1)	2(1)	4(1)	1(1)
C(1A)	14(1)	10(1)	12(1)	-1(1)	4(1)	1(1)
C(2A)	15(1)	10(1)	13(1)	1(1)	5(1)	-1(1)
C(3A)	18(1)	11(1)	15(1)	-2(1)	8(1)	-4(1)
C(4A)	21(1)	15(1)	14(1)	-1(1)	6(1)	-1(1)
C(5A)	19(1)	10(1)	14(1)	0(1)	4(1)	-2(1)
C(6A)	20(1)	21(1)	15(1)	4(1)	3(1)	0(1)
C(7A)	13(1)	10(1)	15(1)	1(1)	5(1)	1(1)
C(8A)	18(1)	12(1)	16(1)	-2(1)	6(1)	-1(1)
C(9A)	23(1)	14(1)	25(1)	-1(1)	10(1)	-2(1)
C(10A)	16(1)	21(1)	27(1)	2(1)	9(1)	0(1)
C(11A)	14(1)	16(1)	21(1)	2(1)	5(1)	2(1)
C(12A)	16(1)	16(1)	13(1)	2(1)	6(1)	2(1)
C(13A)	16(1)	12(1)	12(1)	-1(1)	5(1)	0(1)
C(14A)	16(1)	15(1)	15(1)	-1(1)	4(1)	0(1)
C(15A)	19(1)	21(1)	17(1)	2(1)	2(1)	2(1)
C(16A)	14(1)	22(1)	20(1)	-4(1)	-1(1)	2(1)
C(17A)	16(1)	18(1)	25(1)	-5(1)	6(1)	-1(1)
C(18A)	17(1)	15(1)	20(1)	-1(1)	6(1)	0(1)
C(19A)	15(1)	12(1)	15(1)	-1(1)	2(1)	1(1)

O(1B)	17(1)	10(1)	15(1)	1(1)	3(1)	1(1)
O(2B)	16(1)	12(1)	13(1)	0(1)	5(1)	-2(1)
O(3B)	17(1)	15(1)	17(1)	4(1)	3(1)	1(1)
O(4B)	18(1)	17(1)	26(1)	-1(1)	5(1)	-3(1)
N(1B)	16(1)	16(1)	15(1)	-1(1)	7(1)	-1(1)
N(2B)	13(1)	14(1)	12(1)	-1(1)	4(1)	1(1)
C(1B)	13(1)	12(1)	13(1)	1(1)	4(1)	2(1)
C(2B)	14(1)	11(1)	12(1)	-1(1)	4(1)	0(1)
C(3B)	18(1)	12(1)	12(1)	-1(1)	3(1)	-3(1)
C(4B)	21(1)	16(1)	13(1)	-1(1)	7(1)	-2(1)
C(5B)	17(1)	11(1)	16(1)	-3(1)	8(1)	-3(1)
C(6B)	16(1)	24(1)	20(1)	-4(1)	7(1)	0(1)
C(7B)	12(1)	12(1)	12(1)	0(1)	2(1)	1(1)
C(8B)	17(1)	12(1)	15(1)	0(1)	4(1)	0(1)
C(9B)	19(1)	14(1)	21(1)	-2(1)	3(1)	0(1)
C(10B)	15(1)	17(1)	20(1)	-1(1)	1(1)	1(1)
C(11B)	14(1)	14(1)	18(1)	0(1)	2(1)	2(1)
C(12B)	16(1)	16(1)	12(1)	-2(1)	4(1)	0(1)
C(13B)	16(1)	11(1)	12(1)	0(1)	6(1)	-2(1)
C(14B)	16(1)	15(1)	16(1)	1(1)	6(1)	-1(1)
C(15B)	22(1)	19(1)	23(1)	-1(1)	11(1)	2(1)
C(16B)	17(1)	23(1)	28(1)	5(1)	10(1)	2(1)
C(17B)	15(1)	22(1)	21(1)	5(1)	5(1)	-1(1)
C(18B)	16(1)	17(1)	16(1)	1(1)	4(1)	-1(1)
C(19B)	14(1)	14(1)	17(1)	4(1)	6(1)	2(1)

Table S21. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **4c**.

	x	У	Z	U(eq)
H(1A)	6540(30)	4270(30)	4328(19)	29(7)
H(2A)	4500(30)	4670(40)	3530(20)	37(8)
H(4A)	5900(20)	6540(30)	6453(19)	27(6)
H(6A)	8000(30)	5210(30)	6755(19)	33(7)
H(6B)	8650(30)	6230(40)	6270(20)	51(9)
H(6C)	8320(30)	4740(40)	5880(20)	43(8)
H(8A)	6290(20)	9210(30)	4613(17)	21(6)

H(8B)	7500(20)	8630(30)	5409(16)	18(5)
H(9A)	7640(20)	10280(30)	3968(17)	17(6)
H(9B)	7980(30)	10820(30)	4960(19)	32(7)
H(10A)	10170(20)	8110(30)	4391(17)	24(6)
H(10B)	8990(20)	8640(30)	3597(17)	21(6)
H(11A)	9000(20)	6740(30)	5000(18)	27(7)
H(11B)	8560(20)	6360(30)	3972(16)	15(5)
H(12A)	6820(20)	8510(30)	2976(16)	15
H(12B)	6530(20)	6890(30)	2879(17)	19(6)
H(15A)	1920(20)	9490(30)	1120(19)	30(7)
H(16A)	90(20)	8710(30)	1340(16)	21(6)
H(17A)	180(20)	7220(30)	2535(17)	25(6)
H(18A)	2120(20)	6460(30)	3598(16)	18(6)
H(1B)	6540(20)	-690(30)	1408(18)	23(6)
H(2B)	4470(30)	-320(30)	1200(20)	33(7)
H(4B)	5820(20)	1670(30)	-986(18)	25(6)
H(6D)	7930(30)	350(30)	-268(19)	29(7)
H(6E)	8160(30)	-250(40)	690(20)	38(8)
H(6F)	8620(30)	1230(40)	640(20)	49(9)
H(8C)	7360(20)	3730(30)	842(17)	23(6)
H(8D)	6140(20)	4170(30)	1029(18)	25(6)
H(9C)	7800(20)	5910(30)	1601(16)	19(6)
H(9D)	7420(20)	5300(30)	2406(16)	15(5)
H(10C)	8870(20)	3680(30)	3423(15)	12(5)
H(10D)	10090(20)	3280(30)	3227(16)	18(6)
H(11C)	8510(20)	1390(30)	2818(17)	20(6)
H(11D)	8940(20)	1890(30)	1984(17)	23(6)
H(12C)	6510(20)	1830(30)	2919(16)	14(5)
H(12D)	6780(20)	3430(30)	2977(17)	17(6)
H(15B)	1910(20)	4510(30)	2366(19)	29(7)
H(16B)	50(20)	3760(30)	1232(16)	23(6)
H(17B)	140(30)	2270(30)	53(19)	24(6)
H(18B)	2060(20)	1490(30)	-23(16)	17

Table S22. Torsion angles [°] for 4c.

O(1A)-C(1A)-C(2A)-O(2A)	28.47(18)	O(1A)-C(1A)-C(2A)-C(3A)	140.24(14)
O(1A)-C(1A)-C(2A)-N(2A)	-97.25(17)	O(1A)-C(1A)-C(5A)-C(4A)	-133.01(16)

O(1A)-C(1A)-C(5A)-C(6A)	46.3(2)	C(7A)-C(1A)-C(5A)-C(6A) -73.8(2)
O(1A)-C(1A)-C(7A)-C(8A)	-165.88(13)	C(7A)-C(8A)-C(9A)-O(4A) -57.2(2)
O(1A)-C(1A)-C(7A)-C(11A)	-45.57(17)	C(7A)-C(12A)-C(13A)-N(1A) 154.45(17)
O(1A)-C(1A)-C(7A)-C(12A)	72.62(16)	C(7A)-C(12A)-C(13A)-N(2A) -32.2(2)
O(2A)-C(2A)-C(3A)-O(3A)	-84.4(2)	C(8A)-C(7A)-C(11A)-C(10A) -49.18(19)
O(2A)-C(2A)-C(3A)-C(4A)	93.79(15)	C(8A)-C(7A)-C(12A)-C(13A) -68.34(19)
O(3A)-C(3A)-C(4A)-C(5A)	-168.19(19)	C(9A)-O(4A)-C(10A)-C(11A) -61.3(2)
O(4A)-C(10A)-C(11A)-C(7A)	56.3(2)	C(10A)-O(4A)-C(9A)-C(8A) 61.93(19)
N(1A)-C(14A)-C(15A)-C(16A)	176.98(19)	C(11A)-C(7A)-C(8A)-C(9A) 49.35(19)
N(1A)-C(14A)-C(19A)-N(2A)	0.71(19)	C(11A)-C(7A)-C(12A)-C(13A) 173.57(15)
N(1A)-C(14A)-C(19A)-C(18A)	-176.72(17)	C(12A)-C(7A)-C(8A)-C(9A) -68.83(18)
N(2A)-C(2A)-C(3A)-O(3A)	35.1(2)	C(12A)-C(7A)-C(11A)-C(10A) 70.26(19)
N(2A)-C(2A)-C(3A)-C(4A)	-146.70(15)	C(13A)-N(1A)-C(14A)-C(15A) -177.32(19)
C(1A)-C(2A)-C(3A)-O(3A)	159.10(17)	C(13A)-N(1A)-C(14A)-C(19A) 0.6(2)
C(1A)-C(2A)-C(3A)-C(4A)	-22.73(18)	C(13A)-N(2A)-C(2A)-O(2A) -123.24(17)
C(1A)-C(7A)-C(8A)-C(9A)	170.93(14)	C(13A)-N(2A)-C(2A)-C(1A) 3.1(2)
C(1A)-C(7A)-C(11A)-C(10A)	-171.66(14)	C(13A)-N(2A)-C(2A)-C(3A) 120.49(17)
C(1A)-C(7A)-C(12A)-C(13A)	54.08(19)	C(13A)-N(2A)-C(19A)-C(14A) -1.73(19)
C(2A)-N(2A)-C(13A)-N(1A)	175.97(15)	C(13A)-N(2A)-C(19A)-C(18A) 175.32(19)
C(2A)-N(2A)-C(13A)-C(12A)	1.8(3)	C(14A)-N(1A)-C(13A)-N(2A) -1.8(2)
C(2A)-N(2A)-C(19A)-C(14A)	-175.32(16)	C(14A)-N(1A)-C(13A)-C(12A) 171.92(17)
C(2A)-N(2A)-C(19A)-C(18A)	1.7(3)	C(14A)-C(15A)-C(16A)-C(17A) -0.6(3)
C(2A)-C(1A)-C(5A)-C(4A)	-16.0(2)	C(15A)-C(14A)-C(19A)-N(2A) 178.87(16)
C(2A)-C(1A)-C(5A)-C(6A)	163.33(16)	C(15A)-C(14A)-C(19A)-C(18A) 1.4(3)
C(2A)-C(1A)-C(7A)-C(8A)	72.33(17)	C(15A)-C(16A)-C(17A)-C(18A) 1.4(3)
C(2A)-C(1A)-C(7A)-C(11A)	-167.35(14)	C(16A)-C(17A)-C(18A)-C(19A) -0.8(3)
C(2A)-C(1A)-C(7A)-C(12A)	-49.17(18)	C(17A)-C(18A)-C(19A)-N(2A) -177.23(19)
C(2A)-C(3A)-C(4A)-C(5A)	13.8(2)	C(17A)-C(18A)-C(19A)-C(14A) -0.6(3)
C(3A)-C(4A)-C(5A)-C(1A)	1.8(2)	C(19A)-N(2A)-C(2A)-O(2A) 49.2(2)
C(3A)-C(4A)-C(5A)-C(6A)	-177.48(17)	C(19A)-N(2A)-C(2A)-C(1A) 175.51(15)
C(5A)-C(1A)-C(2A)-O(2A)	-89.41(15)	C(19A)-N(2A)-C(2A)-C(3A) -67.1(2)
C(5A)-C(1A)-C(2A)-N(2A)	144.88(14)	C(19A)-N(2A)-C(13A)-N(1A) 2.3(2)
C(5A)-C(1A)-C(2A)-C(3A)	22.36(17)	C(19A)-N(2A)-C(13A)-C(12A) -171.90(15)
C(5A)-C(1A)-C(7A)-C(8A)	-42.80(19)	C(19A)-C(14A)-C(15A)-C(16A) -0.8(3)
C(5A)-C(1A)-C(7A)-C(11A)	77.52(17)	O(1B)-C(1B)-C(2B)-O(2B) -28.95(18)
C(5A)-C(1A)-C(7A)-C(12A)	-164.30(14)	O(1B)-C(1B)-C(2B)-N(2B) 96.57(17)
C(7A)-C(1A)-C(2A)-O(2A)	147.94(13)	O(1B)-C(1B)-C(2B)-C(3B) -141.61(14)
C(7A)-C(1A)-C(2A)-N(2A)	22.2(2)	O(1B)-C(1B)-C(5B)-C(4B) 134.41(16)
C(7A)-C(1A)-C(2A)-C(3A)	-100.29(15)	O(1B)-C(1B)-C(5B)-C(6B) -44.2(2)
C(7A)-C(1A)-C(5A)-C(4A)	106.88(17)	O(1B)-C(1B)-C(7B)-C(8B) 167.10(13)
		S77

O(1B)-C(1B)-C(7B)-C(11B)	46.72(17)	C(7B)-C(1B)-C(2B)-C(3B) 99.18(15)
O(1B)-C(1B)-C(7B)-C(12B)	-71.28(15)	C(7B)-C(1B)-C(5B)-C(4B) -105.33(17)
O(2B)-C(2B)-C(3B)-O(3B)	86.4(2)	C(7B)-C(1B)-C(5B)-C(6B) 76.0(2)
O(2B)-C(2B)-C(3B)-C(4B)	-92.58(15)	C(7B)-C(8B)-C(9B)-O(4B) 57.69(19)
O(3B)-C(3B)-C(4B)-C(5B)	166.73(19)	C(7B)-C(12B)-C(13B)-N(1B) -151.23(17)
O(4B)-C(10B)-C(11B)-C(7B)	-56.4(2)	C(7B)-C(12B)-C(13B)-N(2B) 35.1(2)
N(1B)-C(14B)-C(15B)-C(16B)	-177.50(19)	C(8B)-C(7B)-C(11B)-C(10B) 50.21(19)
N(1B)-C(14B)-C(19B)-N(2B)	-0.3(2)	C(8B)-C(7B)-C(12B)-C(13B) 64.92(19)
N(1B)-C(14B)-C(19B)-C(18B)	177.47(16)	C(9B)-O(4B)-C(10B)-C(11B) 60.72(19)
N(2B)-C(2B)-C(3B)-O(3B)	-33.6(2)	C(10B)-O(4B)-C(9B)-C(8B) -61.50(19)
N(2B)-C(2B)-C(3B)-C(4B)	147.38(14)	C(11B)-C(7B)-C(8B)-C(9B) -50.73(18)
C(1B)-C(2B)-C(3B)-O(3B)	-157.33(17)	C(11B)-C(7B)-C(12B)-C(13B) -177.25(15)
C(1B)-C(2B)-C(3B)-C(4B)	23.68(17)	C(12B)-C(7B)-C(8B)-C(9B) 67.16(18)
C(1B)-C(7B)-C(8B)-C(9B)	-173.26(13)	C(12B)-C(7B)-C(11B)-C(10B) -69.63(19)
C(1B)-C(7B)-C(11B)-C(10B)	172.64(14)	C(13B)-N(1B)-C(14B)-C(15B) 177.35(19)
C(1B)-C(7B)-C(12B)-C(13B)	-56.95(19)	C(13B)-N(1B)-C(14B)-C(19B) -0.9(2)
C(2B)-N(2B)-C(13B)-N(1B)	-178.07(16)	C(13B)-N(2B)-C(2B)-O(2B) 123.30(17)
C(2B)-N(2B)-C(13B)-C(12B)	-3.5(3)	C(13B)-N(2B)-C(2B)-C(1B) -2.5(2)
C(2B)-N(2B)-C(19B)-C(14B)	177.27(16)	C(13B)-N(2B)-C(2B)-C(3B) -119.22(17)
C(2B)-N(2B)-C(19B)-C(18B)	-0.1(3)	C(13B)-N(2B)-C(19B)-C(14B) 1.37(18)
C(2B)-C(1B)-C(5B)-C(4B)	16.76(19)	C(13B)-N(2B)-C(19B)-C(18B) -176.04(19)
C(2B)-C(1B)-C(5B)-C(6B)	-161.90(16)	C(14B)-N(1B)-C(13B)-N(2B) 1.9(2)
C(2B)-C(1B)-C(7B)-C(8B)	-71.03(17)	C(14B)-N(1B)-C(13B)-C(12B) -172.13(17)
C(2B)-C(1B)-C(7B)-C(11B)	168.59(13)	C(14B)-C(15B)-C(16B)-C(17B) 0.3(3)
C(2B)-C(1B)-C(7B)-C(12B)	50.59(18)	C(15B)-C(14B)-C(19B)-N(2B) -178.76(16)
C(2B)-C(3B)-C(4B)-C(5B)	-14.3(2)	C(15B)-C(14B)-C(19B)-C(18B) -1.0(3)
C(3B)-C(4B)-C(5B)-C(1B)	-2.0(2)	C(15B)-C(16B)-C(17B)-C(18B) -0.8(3)
C(3B)-C(4B)-C(5B)-C(6B)	176.59(17)	C(16B)-C(17B)-C(18B)-C(19B) 0.5(3)
C(5B)-C(1B)-C(2B)-O(2B)	89.34(15)	C(17B)-C(18B)-C(19B)-N(2B) 177.47(18)
C(5B)-C(1B)-C(2B)-N(2B)	-145.14(14)	C(17B)-C(18B)-C(19B)-C(14B) 0.4(3)
C(5B)-C(1B)-C(2B)-C(3B)	-23.32(16)	C(19B)-N(2B)-C(2B)-O(2B) -51.9(2)
C(5B)-C(1B)-C(7B)-C(8B)	43.78(19)	C(19B)-N(2B)-C(2B)-C(1B) -177.71(15)
C(5B)-C(1B)-C(7B)-C(11B)	-76.60(18)	C(19B)-N(2B)-C(2B)-C(3B) 65.6(2)
C(5B)-C(1B)-C(7B)-C(12B)	165.40(14)	C(19B)-N(2B)-C(13B)-N(1B) -2.1(2)
C(7B)-C(1B)-C(2B)-O(2B)	-148.16(13)	C(19B)-N(2B)-C(13B)-C(12B) 172.41(15)
C(7B)-C(1B)-C(2B)-N(2B)	-22.6(2)	C(19B)-C(14B)-C(15B)-C(16B) 0.6(3)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1A)-H(1A)O(3A)#1	0.84(3)	2.02(3)	2.8592(19)	171(3)
O(2A)-H(2A)N(1B)	0.91(3)	1.87(3)	2.7677(19)	167(3)
O(1B)-H(1B)O(3B)#2	0.85(3)	2.00(3)	2.8507(19)	172(2)
O(2B)-H(2B)N(1A)#3	0.85(3)	1.95(3)	2.7864(19)	169(3)

Table S23. Hydrogen bonds for 4c [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y-1/2,-z+1 #2 -x+1,y-1/2,-z #3 x,y-1,z

6.4. Compound 10b

X-ray diffraction data were collected at 100K on a Rigaku Synergy S diffractometer equipped with a HyPix6000HE area-detector (kappa geometry, shutterless ω -scan technique), using monochromatized Cu K α -radiation. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.¹ The structure was solved by direct methods using SHELXT² and refined on F^2 using SHELXL-2018³ in the OLEX2 program.⁴ Positions of all atoms were found from the electron density-difference map. Atoms were refined with individual anisotropic (non-hydrogen atoms) or isotropic (hydrogen atoms) displacement parameters.

Table S24. Crystal data and structure refinement for 10b.

Identification code	10b	
Empirical formula	C21 H22 N2 O5	
Formula weight	382.40	
Temperature	100.00(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 8.16824(5) Å	a= 90°.
	b = 16.10854(12) Å	b= 91.7049(6)°.
	c = 13.62304(8) Å	$g = 90^{\circ}$.
Volume	1791.71(2) Å ³	
7	4	

Density (calculated)	1.418 g/cm ³
Absorption coefficient	0.841 mm ⁻¹
F(000)	808
Crystal size	0.690 x 0.371 x 0.138 mm ³
Theta range for data collection	4.251 to 79.526°.
Index ranges	-10<=h<=10, -20<=k<=20, -14<=l<=17
Reflections collected	21964
Independent reflections	3879 [$\mathbf{R}(int) = 0.0305$]
Observed reflections	3770
Completeness to theta = 67.684°	100.0 %
Absorption correction	Analytical
Max. and min. transmission	0.921 and 0.724
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3879 / 0 / 342
Goodness-of-fit on F ²	1.048
Final R indices [I>2sigma(I)]	R1 = 0.0359, $wR2 = 0.0922$
R indices (all data)	R1 = 0.0368, wR2 = 0.0929
Extinction coefficient	0.0023(3)
Largest diff. peak and hole	0.389 and -0.286 e.Å ⁻³
CCDC	2233471

Table S25 . Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters (Å ² x 10 ³)
for 10b . U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
O(1)	6863(1)	5711(1)	8997(1)	20(1)
O(2)	9290(1)	5087(1)	8820(1)	38(1)
O(3)	6559(1)	4058(1)	9956(1)	20(1)
O(4)	4059(1)	3093(1)	8917(1)	16(1)
O(5)	9850(1)	2462(1)	7680(1)	22(1)
N(1)	4197(1)	2928(1)	5486(1)	16(1)
N(2)	4126(1)	3871(1)	6697(1)	14(1)
C(1)	6103(1)	5013(1)	8611(1)	16(1)
C(2)	6066(1)	4208(1)	9128(1)	15(1)
C(3)	5185(1)	3588(1)	8429(1)	13(1)

C(4)	4217(1)	4192(1)	7710(1)	13(1)
C(5)	5170(1)	4996(1)	7795(1)	15(1)
C(6)	8537(1)	5671(1)	9104(1)	19(1)
C(7)	9198(2)	6436(1)	9588(1)	20(1)
C(8)	6443(1)	3023(1)	7882(1)	14(1)
C(9)	7785(1)	3531(1)	7384(1)	15(1)
C(10)	9079(1)	2973(1)	6947(1)	19(1)
C(11)	8676(1)	1937(1)	8128(1)	20(1)
C(12)	7315(1)	2427(1)	8613(1)	17(1)
C(13)	5405(1)	2521(1)	7125(1)	15(1)
C(14)	4569(1)	3090(1)	6412(1)	14(1)
C(15)	3419(1)	3645(1)	5133(1)	15(1)
C(16)	2705(1)	3804(1)	4207(1)	17(1)
C(17)	2001(1)	4579(1)	4051(1)	19(1)
C(18)	2010(1)	5182(1)	4794(1)	19(1)
C(19)	2696(1)	5029(1)	5719(1)	18(1)
C(20)	3380(1)	4246(1)	5878(1)	14(1)
C(21)	2472(1)	4341(1)	8059(1)	16(1)

Table S26. Bond lengths [Å] and angles $[\circ]$ for 10b.

O(1)-C(1)	1.3811(13)	C(1)-C(5)	1.3289(16)
O(1)-C(6)	1.3724(14)	C(2)-C(3)	1.5438(14)
O(2)-C(6)	1.1941(16)	C(3)-C(4)	1.5760(14)
O(3)-C(2)	1.2102(14)	C(3)-C(8)	1.5757(14)
O(4)-H(4)	0.89(2)	C(4)-C(5)	1.5137(14)
O(4)-C(3)	1.3999(13)	C(4)-C(21)	1.5352(14)
O(5)-C(10)	1.4263(14)	C(5)-H(5)	0.950(16)
O(5)-C(11)	1.4286(14)	C(6)-C(7)	1.4918(16)
N(1)-C(14)	1.3140(14)	C(7)-H(7A)	0.962(19)
N(1)-C(15)	1.3960(14)	C(7)-H(7B)	0.98(2)
N(2)-C(4)	1.4737(13)	C(7)-H(7C)	0.95(2)
N(2)-C(14)	1.3688(14)	C(8)-C(9)	1.5411(14)
N(2)-C(20)	1.3921(13)	C(8)-C(12)	1.5433(14)
C(1)-C(2)	1.4774(16)	C(8)-C(13)	1.5439(14)
			S81

C(9)-H(9A)	0.977(15)	O(4)-C(3)-C(4)	108.77(8)
C(9)-H(9B)	0.978(16)	O(4)-C(3)-C(8)	110.06(8)
C(9)-C(10)	1.5224(15)	C(2)-C(3)-C(4)	101.55(8)
C(10)-H(10A)	1.006(16)	C(2)-C(3)-C(8)	111.52(8)
C(10)-H(10B)	1.008(16)	C(8)-C(3)-C(4)	112.60(8)
C(11)-H(11A)	0.975(16)	N(2)-C(4)-C(3)	112.07(8)
C(11)-H(11B)	1.016(15)	N(2)-C(4)-C(5)	112.51(9)
C(11)-C(12)	1.5296(16)	N(2)-C(4)-C(21)	108.89(8)
C(12)-H(12A)	0.992(15)	C(5)-C(4)-C(3)	103.48(8)
C(12)-H(12B)	0.998(15)	C(5)-C(4)-C(21)	108.82(9)
C(13)-H(13A)	1.001(16)	C(21)-C(4)-C(3)	110.97(8)
C(13)-H(13B)	0.981(17)	C(1)-C(5)-C(4)	111.28(10)
C(13)-C(14)	1.4870(14)	C(1)-C(5)-H(5)	126.5(9)
C(15)-C(16)	1.3983(15)	C(4)-C(5)-H(5)	121.8(9)
C(15)-C(20)	1.4030(15)	O(1)-C(6)-C(7)	110.76(10)
C(16)-H(16)	0.944(16)	O(2)-C(6)-O(1)	121.57(11)
C(16)-C(17)	1.3873(16)	O(2)-C(6)-C(7)	127.67(11)
C(17)-H(17)	0.953(15)	C(6)-C(7)-H(7A)	109.5(11)
C(17)-C(18)	1.4033(17)	C(6)-C(7)-H(7B)	107.9(12)
C(18)-H(18)	0.988(16)	C(6)-C(7)-H(7C)	109.2(12)
C(18)-C(19)	1.3855(16)	H(7A)-C(7)-H(7B)	108.8(16)
C(19)-H(19)	0.968(16)	H(7A)-C(7)-H(7C)	111.4(15)
C(19)-C(20)	1.3951(15)	H(7B)-C(7)-H(7C)	109.9(16)
C(21)-H(21A)	0.968(15)	C(9)-C(8)-C(3)	112.59(9)
C(21)-H(21B)	0.962(16)	C(9)-C(8)-C(12)	107.06(8)
C(21)-H(21C)	0.953(16)	C(9)-C(8)-C(13)	111.63(9)
C(6)-O(1)-C(1)	115.94(9)	C(12)-C(8)-C(3)	110.38(8)
C(3)-O(4)-H(4)	114.4(12)	C(12)-C(8)-C(13)	109.79(9)
C(10)-O(5)-C(11)	110.65(8)	C(13)-C(8)-C(3)	105.42(8)
C(14)-N(1)-C(15)	104.90(9)	C(8)-C(9)-H(9A)	108.3(9)
C(14)-N(2)-C(4)	125.56(9)	C(8)-C(9)-H(9B)	111.3(9)
C(14)-N(2)-C(20)	106.51(9)	H(9A)-C(9)-H(9B)	108.7(12)
C(20)-N(2)-C(4)	127.38(9)	C(10)-C(9)-C(8)	111.70(9)
O(1)-C(1)-C(2)	123.29(10)	C(10)-C(9)-H(9A)	108.4(9)
C(5)-C(1)-O(1)	125.15(10)	C(10)-C(9)-H(9B)	108.4(9)
C(5)-C(1)-C(2)	111.17(10)	O(5)-C(10)-C(9)	111.35(9)
O(3)-C(2)-C(1)	127.52(10)	O(5)-C(10)-H(10A)	108.6(9)
O(3)-C(2)-C(3)	125.60(10)	O(5)-C(10)-H(10B)	106.9(9)
C(1)-C(2)-C(3)	106.80(9)	C(9)-C(10)-H(10A)	113.3(9)
O(4)-C(3)-C(2)	112.08(8)	C(9)-C(10)-H(10B)	109.0(9)

H(10A)-C(10)-H(10B)	107.5(12)	N(1)-C(15)-C(20)	109.91(9)
O(5)-C(11)-H(11A)	105.6(9)	C(16)-C(15)-C(20)	120.58(10)
O(5)-C(11)-H(11B)	109.0(8)	C(15)-C(16)-H(16)	121.0(10)
O(5)-C(11)-C(12)	112.65(9)	C(17)-C(16)-C(15)	117.59(10)
H(11A)-C(11)-H(11B)	109.1(12)	C(17)-C(16)-H(16)	121.4(10)
C(12)-C(11)-H(11A)	109.7(9)	C(16)-C(17)-H(17)	118.9(9)
C(12)-C(11)-H(11B)	110.6(8)	C(16)-C(17)-C(18)	121.25(10)
C(8)-C(12)-H(12A)	109.7(9)	C(18)-C(17)-H(17)	119.9(9)
C(8)-C(12)-H(12B)	110.3(9)	C(17)-C(18)-H(18)	119.8(9)
C(11)-C(12)-C(8)	111.68(9)	C(19)-C(18)-C(17)	121.76(11)
C(11)-C(12)-H(12A)	110.2(9)	C(19)-C(18)-H(18)	118.4(9)
C(11)-C(12)-H(12B)	109.2(9)	C(18)-C(19)-H(19)	121.9(9)
H(12A)-C(12)-H(12B)	105.6(12)	C(18)-C(19)-C(20)	116.86(10)
C(8)-C(13)-H(13A)	107.6(9)	C(20)-C(19)-H(19)	121.2(9)
C(8)-C(13)-H(13B)	113.5(9)	N(2)-C(20)-C(15)	105.19(9)
H(13A)-C(13)-H(13B)	109.9(13)	N(2)-C(20)-C(19)	132.90(10)
C(14)-C(13)-C(8)	110.19(9)	C(19)-C(20)-C(15)	121.91(10)
C(14)-C(13)-H(13A)	108.6(9)	C(4)-C(21)-H(21A)	108.4(8)
C(14)-C(13)-H(13B)	107.0(9)	C(4)-C(21)-H(21B)	109.7(9)
N(1)-C(14)-N(2)	113.47(9)	C(4)-C(21)-H(21C)	109.0(9)
N(1)-C(14)-C(13)	126.42(10)	H(21A)-C(21)-H(21B)	109.5(12)
N(2)-C(14)-C(13)	120.11(9)	H(21A)-C(21)-H(21C)	110.8(13)
N(1)-C(15)-C(16)	129.49(10)	H(21B)-C(21)-H(21C)	109.4(13)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	15(1)	16(1)	28(1)	-8(1)	-1(1)	-2(1)
O(2)	17(1)	37(1)	60(1)	-26(1)	2(1)	1(1)
O(3)	19(1)	27(1)	14(1)	-2(1)	-2(1)	-1(1)
O(4)	15(1)	20(1)	13(1)	4(1)	-1(1)	-3(1)
O(5)	16(1)	21(1)	28(1)	4(1)	0(1)	3(1)
N(1)	17(1)	15(1)	14(1)	-1(1)	-2(1)	1(1)
N(2)	17(1)	13(1)	11(1)	0(1)	-1(1)	2(1)
C(1)	14(1)	15(1)	19(1)	-5(1)	3(1)	-2(1)
C(2)	11(1)	19(1)	14(1)	-4(1)	2(1)	0(1)
C(3)	13(1)	15(1)	11(1)	1(1)	0(1)	-1(1)
C(4)	15(1)	13(1)	11(1)	-1(1)	0(1)	0(1)
C(5)	16(1)	13(1)	17(1)	-1(1)	3(1)	1(1)
C(6)	16(1)	22(1)	19(1)	-3(1)	2(1)	-2(1)
C(7)	18(1)	20(1)	22(1)	-2(1)	1(1)	-6(1)
C(8)	14(1)	13(1)	13(1)	0(1)	-1(1)	1(1)
C(9)	16(1)	14(1)	15(1)	0(1)	1(1)	0(1)
C(10)	18(1)	18(1)	20(1)	0(1)	2(1)	2(1)
C(11)	18(1)	17(1)	24(1)	3(1)	-2(1)	2(1)
C(12)	17(1)	16(1)	16(1)	3(1)	-3(1)	1(1)
C(13)	17(1)	12(1)	14(1)	0(1)	-2(1)	1(1)
C(14)	14(1)	13(1)	14(1)	-1(1)	-1(1)	0(1)
C(15)	15(1)	16(1)	14(1)	0(1)	1(1)	0(1)
C(16)	18(1)	20(1)	13(1)	-1(1)	-1(1)	-1(1)
C(17)	18(1)	24(1)	14(1)	4(1)	-2(1)	1(1)
C(18)	20(1)	18(1)	19(1)	4(1)	1(1)	3(1)
C(19)	21(1)	15(1)	16(1)	0(1)	1(1)	3(1)
C(20)	15(1)	16(1)	12(1)	1(1)	1(1)	0(1)
C(21)	15(1)	19(1)	15(1)	0(1)	1(1)	1(1)

Table S27. Anisotropic displacement parameters (Å²x 10³) for **10b**. The anisotropic displacementfactor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}]$

	х	у	Z	U(eq)
H(4)	4420(20)	2906(12)	9498(14)	39(5)
H(5)	4996(19)	5439(10)	7345(11)	23(4)
H(7A)	10370(20)	6400(11)	9649(13)	35(4)
H(7B)	8910(20)	6911(13)	9167(15)	45(5)
H(7C)	8720(20)	6499(12)	10210(15)	44(5)
H(9A)	8318(18)	3886(9)	7880(11)	18(3)
H(9B)	7321(19)	3883(10)	6861(11)	21(4)
H(10A)	8635(19)	2607(10)	6404(11)	21(4)
H(10B)	9962(19)	3330(10)	6665(11)	23(4)
H(11A)	9290(19)	1619(10)	8624(11)	23(4)
H(11B)	8198(18)	1542(9)	7614(11)	19(3)
H(12A)	6505(18)	2042(9)	8893(11)	19(3)
H(12B)	7790(18)	2743(10)	9184(11)	20(3)
H(13A)	4552(19)	2214(10)	7493(11)	22(4)
H(13B)	6050(20)	2130(10)	6742(12)	25(4)
H(16)	2714(19)	3400(10)	3705(12)	23(4)
H(17)	1519(18)	4702(10)	3422(11)	20(4)
H(18)	1515(19)	5732(10)	4663(11)	24(4)
H(19)	2682(19)	5440(10)	6237(12)	23(4)
H(21A)	2541(17)	4557(9)	8722(11)	15(3)
H(21B)	1924(18)	4738(10)	7636(11)	20(3)
H(21C)	1885(19)	3829(10)	8038(11)	22(4)

Table S28. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **10b**.

O(1)-C(1)-C(2)-O(3)	5.87(17)	C(4)-C(3)-C(8)-C(12)	-178.25(8)
O(1)-C(1)-C(2)-C(3)	-177.09(9)	C(4)-C(3)-C(8)-C(13)	-59.75(11)
O(1)-C(1)-C(5)-C(4)	-166.65(9)	C(5)-C(1)-C(2)-O(3)	-167.27(11)
O(3)-C(2)-C(3)-O(4)	40.84(14)	C(5)-C(1)-C(2)-C(3)	9.76(12)
O(3)-C(2)-C(3)-C(4)	156.78(10)	C(6)-O(1)-C(1)-C(2)	66.65(14)
O(3)-C(2)-C(3)-C(8)	-83.07(13)	C(6)-O(1)-C(1)-C(5)	-121.18(12)
O(4)-C(3)-C(4)-N(2)	-97.13(10)	C(8)-C(3)-C(4)-N(2)	25.14(12)
O(4)-C(3)-C(4)-C(5)	141.40(8)	C(8)-C(3)-C(4)-C(5)	-96.33(10)
O(4)-C(3)-C(4)-C(21)	24.85(11)	C(8)-C(3)-C(4)-C(21)	147.12(9)
O(4)-C(3)-C(8)-C(9)	-176.28(8)	C(8)-C(9)-C(10)-O(5)	-59.15(12)
O(4)-C(3)-C(8)-C(12)	-56.71(11)	C(8)-C(13)-C(14)-N(1)	148.79(11)
O(4)-C(3)-C(8)-C(13)	61.79(10)	C(8)-C(13)-C(14)-N(2)	-30.40(13)
O(5)-C(11)-C(12)-C(8)	55.68(12)	C(9)-C(8)-C(12)-C(11)	-50.89(12)
N(1)-C(15)-C(16)-C(17)	179.75(11)	C(9)-C(8)-C(13)-C(14)	-61.05(11)
N(1)-C(15)-C(20)-N(2)	-1.07(12)	C(10)-O(5)-C(11)-C(12)	-59.18(12)
N(1)-C(15)-C(20)-C(19)	178.87(10)	C(11)-O(5)-C(10)-C(9)	60.54(12)
N(2)-C(4)-C(5)-C(1)	-140.43(9)	C(12)-C(8)-C(9)-C(10)	52.90(11)
C(1)-O(1)-C(6)-O(2)	4.63(17)	C(12)-C(8)-C(13)-C(14)	-179.61(9)
C(1)-O(1)-C(6)-C(7)	-176.14(10)	C(13)-C(8)-C(9)-C(10)	-67.27(11)
C(1)-C(2)-C(3)-O(4)	-136.26(9)	C(13)-C(8)-C(12)-C(11)	70.46(11)
C(1)-C(2)-C(3)-C(4)	-20.33(10)	C(14)-N(1)-C(15)-C(16)	-176.95(11)
C(1)-C(2)-C(3)-C(8)	99.83(10)	C(14)-N(1)-C(15)-C(20)	1.48(12)
C(2)-C(1)-C(5)-C(4)	6.34(13)	C(14)-N(2)-C(4)-C(3)	10.27(14)
C(2)-C(3)-C(4)-N(2)	144.53(8)	C(14)-N(2)-C(4)-C(5)	126.40(11)
C(2)-C(3)-C(4)-C(5)	23.06(10)	C(14)-N(2)-C(4)-C(21)	-112.88(11)
C(2)-C(3)-C(4)-C(21)	-93.50(9)	C(14)-N(2)-C(20)-C(15)	0.26(11)
C(2)-C(3)-C(8)-C(9)	-51.23(11)	C(14)-N(2)-C(20)-C(19)	-179.68(12)
C(2)-C(3)-C(8)-C(12)	68.34(11)	C(15)-N(1)-C(14)-N(2)	-1.35(12)
C(2)-C(3)-C(8)-C(13)	-173.17(8)	C(15)-N(1)-C(14)-C(13)	179.42(10)
C(3)-C(4)-C(5)-C(1)	-19.25(11)	C(15)-C(16)-C(17)-C(18)	0.26(17)
C(3)-C(8)-C(9)-C(10)	174.38(9)	C(16)-C(15)-C(20)-N(2)	177.51(10)
C(3)-C(8)-C(12)-C(11)	-173.76(9)	C(16)-C(15)-C(20)-C(19)	-2.54(16)
C(3)-C(8)-C(13)-C(14)	61.50(11)	C(16)-C(17)-C(18)-C(19)	-1.04(18)
C(4)-N(2)-C(14)-N(1)	172.71(9)	C(17)-C(18)-C(19)-C(20)	0.04(17)
C(4)-N(2)-C(14)-C(13)	-8.00(16)	C(18)-C(19)-C(20)-N(2)	-178.34(11)
C(4)-N(2)-C(20)-C(15)	-171.55(10)	C(18)-C(19)-C(20)-C(15)	1.72(16)
C(4)-N(2)-C(20)-C(19)	8.51(19)	C(20)-N(2)-C(4)-C(3)	-179.40(9)
C(4)-C(3)-C(8)-C(9)	62.18(11)	C(20)-N(2)-C(4)-C(5)	-63.27(13)

S86

C(20)-N(2)-C(4)-C(21)	57.45(13)	C(20)-C(15)-C(16)-C(17)	1.47(16)
C(20)-N(2)-C(14)-N(1)	0.71(12)	C(21)-C(4)-C(5)-C(1)	98.81(10)
C(20)-N(2)-C(14)-C(13)	179.99(9)		

Table S30. Hydrogen bonds for 10b [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(4)-H(4)N(1)#1	0.89(2)	1.91(2)	2.6978(12)	146.0(17)

Symmetry transformations used to generate equivalent atoms: #1 x, -y+1/2, z+1/2

6.5. Compound 11a

X-ray diffraction data were collected at 100K on a Rigaku Synergy S diffractometer equipped with a HyPix600HE area-detector (kappa geometry, shutterless ω -scan technique), using monochromatized Cu K_a-radiation. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.¹ The structure was solved by direct methods using SHELXT² and refined on *F*² using SHELXL-2018³ in the OLEX2 program.⁴ Positions of all atoms were found from the electron density-difference map. Atoms were refined with individual anisotropic (non-hydrogen atoms) or isotropic (hydrogen atoms) displacement parameters.

Table S31. Crystal data and structure refinement for 11a.

Identification code	11a		
Empirical formula	C28 H34 N4 O3		
Formula weight	474.59		
Temperature	100.0(1) K		
Wavelength	1.54184 Å		
Crystal system	Monoclinic		
Space group	$P2_1/c$		
Unit cell dimensions	a = 8.48626(8) Å	<i>α</i> = 90°.	
	b = 24.4487(2) Å	$\beta = 102.1288(8)^{\circ}.$	

	$c = 12.18602(9) \text{ Å}$ $\gamma = 90^{\circ}.$
Volume	2471.89(4) Å ³
Z	4
Density (calculated)	1.275 g/cm ³
Absorption coefficient	0.670 mm ⁻¹
F(000)	1016
Crystal size	0.46 x 0.06 x 0.05 mm ³
Theta range for data collection	3.616 to 79.523°.
Index ranges	-10<=h<=10, -31<=k<=30, -13<=l<=15
Reflections collected	31875
Independent reflections	5343 [R(int) = 0.0324]
Observed reflections	5026
Completeness to theta = 67.684°	99.9 %
Absorption correction	Analytical
Max. and min. transmission	0.969 and 0.844
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5343 / 0 / 453
Goodness-of-fit on F ²	1.076
Final R indices [I>2sigma(I)]	R1 = 0.0399, wR2 = 0.1035
R indices (all data)	R1 = 0.0416, $wR2 = 0.1048$
Extinction coefficient	0.00118(19)
Largest diff. peak and hole	0.340 and -0.242 e.Å ⁻³
CCDC	2233463

Table S32 . Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å ² x 10^3	")
for 11a . U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.	

	х	У	Z	U(eq)
O(1)	4111(1)	3947(1)	5508(1)	23(1)
O(2)	5468(1)	2935(1)	4921(1)	24(1)
N(1)	5656(1)	2118(1)	6627(1)	20(1)
N(2)	5737(1)	1775(1)	7487(1)	21(1)
N(3)	2337(1)	3617(1)	7515(1)	19(1)
N(4)	-175(1)	3951(1)	7272(1)	22(1)
C(1)	3695(1)	3440(1)	5909(1)	19(1)
C(2)	4838(1)	2974(1)	5732(1)	20(1)

C(3)	5013(1)	2595(1)	6687(1)	20(1)
C(4)	4245(1)	2827(1)	7591(1)	21(1)
C(5)	3844(1)	3429(1)	7223(1)	19(1)
C(6)	985(1)	3791(1)	6777(1)	20(1)
C(7)	895(1)	3789(1)	5543(1)	22(1)
C(8)	1928(1)	3322(1)	5223(1)	20(1)
C(9)	6325(1)	1241(1)	7415(1)	21(1)
C(10)	6472(2)	904(1)	8353(1)	27(1)
C(11)	7044(2)	376(1)	8310(1)	34(1)
C(12)	7452(2)	176(1)	7338(1)	33(1)
C(13)	7294(2)	515(1)	6407(1)	28(1)
C(14)	6745(2)	1047(1)	6437(1)	24(1)
C(15)	5226(1)	3799(1)	7796(1)	24(1)
C(16)	2019(1)	3675(1)	8587(1)	20(1)
C(17)	2910(1)	3557(1)	9659(1)	22(1)
C(18)	2189(2)	3676(1)	10553(1)	24(1)
C(19)	637(2)	3897(1)	10392(1)	26(1)
C(20)	-261(2)	4001(1)	9324(1)	24(1)
C(21)	451(1)	3888(1)	8416(1)	21(1)
C(22)	1259(1)	2764(1)	5493(1)	22(1)
C(23)	-379(2)	2624(1)	4738(1)	27(1)
C(24)	-292(2)	2645(1)	3500(1)	29(1)
C(25)	301(2)	3203(1)	3204(1)	27(1)
C(26)	1932(1)	3346(1)	3955(1)	23(1)
O(3)	7049(1)	4409(1)	6083(1)	25(1)
C(27)	7207(2)	4986(1)	6242(1)	33(1)
C(28)	7408(2)	5159(1)	7453(1)	37(1)

Table S33. Bond lengths [Å] and angles $[\circ]$ for 11a.

O(1)-H(1)	0.92(2)	N(3)-C(6)	1.3682(14)
O(1)-C(1)	1.4047(13)	N(3)-C(16)	1.3948(14)
O(2)-C(2)	1.2218(14)	N(4)-C(6)	1.3172(15)
N(1)-N(2)	1.3340(13)	N(4)-C(21)	1.3924(14)
N(1)-C(3)	1.2955(15)	C(1)-C(2)	1.5410(15)
N(2)-H(2)	0.912(17)	C(1)-C(5)	1.5797(15)
N(2)-C(9)	1.4053(15)	C(1)-C(8)	1.5821(15)
N(3)-C(5)	1.4726(14)	C(2)-C(3)	1.4698(15)
			S89

C(3)-C(4)	1.5041(15)	C(23)-C(24)	1.5266(18)
C(4)-H(4A)	1.008(16)	C(24)-H(24A)	1.003(18)
C(4)-H(4B)	0.991(16)	C(24)-H(24B)	1.017(16)
C(4)-C(5)	1.5541(15)	C(24)-C(25)	1.5223(19)
C(5)-C(15)	1.5288(16)	C(25)-H(25A)	1.005(18)
C(6)-C(7)	1.4890(15)	C(25)-H(25B)	0.984(17)
C(7)-H(7A)	0.990(16)	C(25)-C(26)	1.5313(17)
C(7)-H(7B)	0.997(16)	C(26)-H(26A)	1.009(16)
C(7)-C(8)	1.5386(15)	C(26)-H(26B)	0.995(16)
C(8)-C(22)	1.5413(16)	O(3)-H(3)	0.92(2)
C(8)-C(26)	1.5465(15)	O(3)-C(27)	1.4251(16)
C(9)-C(10)	1.3940(16)	C(27)-H(27A)	0.995(19)
C(9)-C(14)	1.3963(16)	C(27)-H(27B)	1.01(2)
C(10)-H(10)	0.956(17)	C(27)-C(28)	1.5102(19)
C(10)-C(11)	1.3846(19)	C(28)-H(28A)	1.01(2)
C(11)-H(11)	0.986(19)	C(28)-H(28B)	1.04(2)
C(11)-C(12)	1.3896(19)	C(28)-H(28C)	1.01(2)
C(12)-H(12)	0.971(17)	C(1)-O(1)-H(1)	112.2(12)
C(12)-C(13)	1.3874(19)	C(3)-N(1)-N(2)	118.41(10)
C(13)-H(13)	0.979(17)	N(1)-N(2)-H(2)	122.0(10)
C(13)-C(14)	1.3861(18)	N(1)-N(2)-C(9)	119.73(9)
C(14)-H(14)	0.979(17)	C(9)-N(2)-H(2)	118.2(10)
C(15)-H(15A)	1.001(18)	C(6)-N(3)-C(5)	126.05(9)
C(15)-H(15B)	0.969(17)	C(6)-N(3)-C(16)	106.53(9)
C(15)-H(15C)	0.994(16)	C(16)-N(3)-C(5)	127.38(9)
C(16)-C(17)	1.3958(16)	C(6)-N(4)-C(21)	105.17(9)
C(16)-C(21)	1.4029(16)	O(1)-C(1)-C(2)	113.14(9)
C(17)-H(17)	0.967(15)	O(1)-C(1)-C(5)	113.26(9)
C(17)-C(18)	1.3878(16)	O(1)-C(1)-C(8)	104.87(9)
C(18)-H(18)	0.999(16)	C(2)-C(1)-C(5)	102.14(8)
C(18)-C(19)	1.3985(18)	C(2)-C(1)-C(8)	110.26(9)
C(19)-H(19)	0.983(16)	C(5)-C(1)-C(8)	113.42(9)
C(19)-C(20)	1.3876(17)	O(2)-C(2)-C(1)	124.41(10)
C(20)-H(20)	1.001(16)	O(2)-C(2)-C(3)	127.13(11)
C(20)-C(21)	1.3949(16)	C(3)-C(2)-C(1)	108.45(9)
C(22)-H(22A)	1.004(15)	N(1)-C(3)-C(2)	119.69(10)
C(22)-H(22B)	0.991(16)	N(1)-C(3)-C(4)	129.28(10)
C(22)-C(23)	1.5357(16)	C(2)-C(3)-C(4)	110.83(10)
C(23)-H(23A)	0.995(17)	C(3)-C(4)-H(4A)	112.6(9)
C(23)-H(23B)	0.981(17)	C(3)-C(4)-H(4B)	109.7(9)

C(3)-C(4)-C(5)	104.32(9)	C(9)-C(14)-H(14)	119.7(10)
H(4A)-C(4)-H(4B)	108.1(13)	C(13)-C(14)-C(9)	119.31(11)
C(5)-C(4)-H(4A)	110.6(9)	C(13)-C(14)-H(14)	121.0(10)
C(5)-C(4)-H(4B)	111.6(9)	C(5)-C(15)-H(15A)	110.1(10)
N(3)-C(5)-C(1)	110.58(9)	C(5)-C(15)-H(15B)	111.4(10)
N(3)-C(5)-C(4)	112.00(9)	C(5)-C(15)-H(15C)	109.6(9)
N(3)-C(5)-C(15)	109.03(9)	H(15A)-C(15)-H(15B)	109.2(13)
C(4)-C(5)-C(1)	105.98(9)	H(15A)-C(15)-H(15C)	108.4(13)
C(15)-C(5)-C(1)	110.07(9)	H(15B)-C(15)-H(15C)	108.1(13)
C(15)-C(5)-C(4)	109.14(9)	N(3)-C(16)-C(17)	133.01(11)
N(3)-C(6)-C(7)	121.45(10)	N(3)-C(16)-C(21)	105.21(10)
N(4)-C(6)-N(3)	113.21(10)	C(17)-C(16)-C(21)	121.77(10)
N(4)-C(6)-C(7)	125.34(10)	C(16)-C(17)-H(17)	123.3(9)
C(6)-C(7)-H(7A)	107.9(9)	C(18)-C(17)-C(16)	116.70(11)
C(6)-C(7)-H(7B)	107.7(9)	C(18)-C(17)-H(17)	119.9(9)
C(6)-C(7)-C(8)	110.31(9)	C(17)-C(18)-H(18)	117.6(9)
H(7A)-C(7)-H(7B)	107.6(12)	C(17)-C(18)-C(19)	121.94(11)
C(8)-C(7)-H(7A)	110.2(9)	C(19)-C(18)-H(18)	120.5(9)
C(8)-C(7)-H(7B)	112.9(9)	C(18)-C(19)-H(19)	119.1(9)
C(7)-C(8)-C(1)	105.00(9)	C(20)-C(19)-C(18)	121.18(11)
C(7)-C(8)-C(22)	110.35(9)	C(20)-C(19)-H(19)	119.7(9)
C(7)-C(8)-C(26)	110.27(9)	C(19)-C(20)-H(20)	121.6(9)
C(22)-C(8)-C(1)	113.53(9)	C(19)-C(20)-C(21)	117.62(11)
C(22)-C(8)-C(26)	108.95(9)	C(21)-C(20)-H(20)	120.8(9)
C(26)-C(8)-C(1)	108.67(9)	N(4)-C(21)-C(16)	109.86(10)
C(10)-C(9)-N(2)	118.01(10)	N(4)-C(21)-C(20)	129.39(11)
C(10)-C(9)-C(14)	120.21(11)	C(20)-C(21)-C(16)	120.75(11)
C(14)-C(9)-N(2)	121.77(10)	C(8)-C(22)-H(22A)	111.7(8)
C(9)-C(10)-H(10)	119.0(10)	C(8)-C(22)-H(22B)	109.0(9)
C(11)-C(10)-C(9)	119.55(12)	H(22A)-C(22)-H(22B)	107.1(12)
C(11)-C(10)-H(10)	121.5(10)	C(23)-C(22)-C(8)	113.39(10)
C(10)-C(11)-H(11)	119.2(11)	C(23)-C(22)-H(22A)	107.5(9)
C(10)-C(11)-C(12)	120.73(12)	C(23)-C(22)-H(22B)	108.0(9)
C(12)-C(11)-H(11)	120.1(11)	C(22)-C(23)-H(23A)	111.2(10)
C(11)-C(12)-H(12)	119.8(10)	C(22)-C(23)-H(23B)	109.0(10)
C(13)-C(12)-C(11)	119.30(12)	H(23A)-C(23)-H(23B)	108.6(14)
C(13)-C(12)-H(12)	120.9(10)	C(24)-C(23)-C(22)	111.06(10)
C(12)-C(13)-H(13)	120.2(10)	C(24)-C(23)-H(23A)	107.9(10)
C(14)-C(13)-C(12)	120.89(12)	C(24)-C(23)-H(23B)	109.0(10)
C(14)-C(13)-H(13)	118.9(10)	C(23)-C(24)-H(24A)	110.1(10)

C(23)-C(24)-H(24B)	109.4(9)	C(25)-C(26)-H(26B)	110.9(9)
H(24A)-C(24)-H(24B)	106.6(13)	H(26A)-C(26)-H(26B)	107.4(13)
C(25)-C(24)-C(23)	110.56(10)	C(27)-O(3)-H(3)	107.4(13)
C(25)-C(24)-H(24A)	111.1(10)	O(3)-C(27)-H(27A)	104.8(11)
C(25)-C(24)-H(24B)	109.0(9)	O(3)-C(27)-H(27B)	110.3(11)
C(24)-C(25)-H(25A)	110.0(10)	O(3)-C(27)-C(28)	113.45(11)
C(24)-C(25)-H(25B)	110.0(10)	H(27A)-C(27)-H(27B)	108.5(15)
C(24)-C(25)-C(26)	111.48(10)	C(28)-C(27)-H(27A)	110.9(10)
H(25A)-C(25)-H(25B)	104.5(13)	C(28)-C(27)-H(27B)	108.7(12)
C(26)-C(25)-H(25A)	111.2(10)	C(27)-C(28)-H(28A)	108.0(11)
C(26)-C(25)-H(25B)	109.5(10)	C(27)-C(28)-H(28B)	110.6(12)
C(8)-C(26)-H(26A)	108.1(9)	C(27)-C(28)-H(28C)	109.5(11)
C(8)-C(26)-H(26B)	108.0(9)	H(28A)-C(28)-H(28B)	108.4(16)
C(25)-C(26)-C(8)	113.38(10)	H(28A)-C(28)-H(28C)	107.8(16)
C(25)-C(26)-H(26A)	108.8(9)	H(28B)-C(28)-H(28C)	112.5(16)

Table S34. Anisotropic displacement parameters (Å²x 10³) for C6BNIMNH2NH2. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	24(1)	22(1)	22(1)	4(1)	4(1)	-1(1)
O(2)	24(1)	31(1)	19(1)	2(1)	7(1)	3(1)
N(1)	19(1)	22(1)	18(1)	1(1)	2(1)	0(1)
N(2)	24(1)	22(1)	17(1)	1(1)	5(1)	2(1)
N(3)	20(1)	21(1)	17(1)	0(1)	4(1)	3(1)
N(4)	22(1)	24(1)	19(1)	-1(1)	4(1)	3(1)
C(1)	21(1)	20(1)	17(1)	1(1)	4(1)	0(1)
C(2)	18(1)	24(1)	18(1)	0(1)	2(1)	-1(1)
C(3)	19(1)	23(1)	18(1)	1(1)	3(1)	2(1)
C(4)	22(1)	22(1)	18(1)	2(1)	5(1)	3(1)
C(5)	18(1)	22(1)	18(1)	1(1)	4(1)	2(1)
C(6)	22(1)	20(1)	20(1)	0(1)	3(1)	1(1)
C(7)	22(1)	23(1)	18(1)	0(1)	3(1)	4(1)
C(8)	20(1)	22(1)	17(1)	0(1)	3(1)	2(1)
C(9)	18(1)	22(1)	22(1)	1(1)	3(1)	0(1)
C(10)	34(1)	26(1)	24(1)	3(1)	11(1)	2(1)

C(11)	46(1)	28(1)	33(1)	10(1)	16(1)	6(1)
C(12)	40(1)	21(1)	40(1)	4(1)	16(1)	6(1)
C(13)	32(1)	27(1)	30(1)	-2(1)	13(1)	1(1)
C(14)	26(1)	25(1)	22(1)	2(1)	6(1)	2(1)
C(15)	23(1)	28(1)	20(1)	0(1)	4(1)	-2(1)
C(16)	22(1)	20(1)	19(1)	-1(1)	6(1)	0(1)
C(17)	22(1)	23(1)	20(1)	1(1)	4(1)	1(1)
C(18)	28(1)	26(1)	18(1)	0(1)	4(1)	1(1)
C(19)	28(1)	30(1)	20(1)	-1(1)	8(1)	2(1)
C(20)	23(1)	28(1)	23(1)	-1(1)	7(1)	3(1)
C(21)	23(1)	21(1)	19(1)	-1(1)	4(1)	1(1)
C(22)	22(1)	23(1)	21(1)	-1(1)	3(1)	0(1)
C(23)	23(1)	29(1)	29(1)	-1(1)	2(1)	-1(1)
C(24)	26(1)	33(1)	26(1)	-6(1)	-2(1)	2(1)
C(25)	27(1)	34(1)	18(1)	-1(1)	1(1)	6(1)
C(26)	24(1)	28(1)	17(1)	1(1)	4(1)	4(1)
O(3)	23(1)	24(1)	25(1)	1(1)	2(1)	0(1)
C(27)	45(1)	24(1)	28(1)	4(1)	4(1)	0(1)
C(28)	53(1)	26(1)	30(1)	-2(1)	2(1)	0(1)

Table S35. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **11a**.

	x	у	Z	U(eq)
H(1)	5170(20)	4037(8)	5791(16)	47(5)
H(2)	5484(19)	1881(7)	8146(14)	30(4)
H(4A)	4984(19)	2815(6)	8356(14)	29(4)
H(4B)	3259(19)	2617(6)	7627(13)	26(4)
H(7A)	1295(18)	4147(7)	5335(13)	26(4)
H(7B)	-264(19)	3760(6)	5164(13)	25(4)
H(10)	6190(20)	1045(7)	9016(15)	35(4)
H(11)	7140(20)	139(8)	8976(16)	43(5)
H(12)	7850(20)	-195(7)	7320(14)	35(4)
H(13)	7580(20)	380(7)	5717(14)	33(4)
H(14)	6650(20)	1289(7)	5787(14)	31(4)
H(15A)	6260(20)	3675(7)	7609(14)	34(4)
H(15B)	5031(19)	4177(7)	7567(13)	28(4)

H(15C)	5337(19)	3780(7)	8623(14)	29(4)
H(17)	3969(18)	3391(6)	9797(12)	21(3)
H(18)	2817(19)	3597(6)	11326(14)	28(4)
H(19)	178(19)	3977(6)	11051(13)	28(4)
H(20)	-1380(20)	4150(7)	9202(13)	30(4)
H(22A)	1129(18)	2744(6)	6292(13)	22(3)
H(22B)	2034(18)	2473(6)	5396(13)	25(4)
H(23A)	-1230(20)	2885(7)	4857(14)	33(4)
H(23B)	-690(20)	2254(7)	4918(14)	32(4)
H(24A)	-1370(20)	2558(7)	3017(15)	38(4)
H(24B)	482(19)	2353(7)	3340(13)	27(4)
H(25A)	-530(20)	3490(7)	3253(14)	35(4)
H(25B)	390(20)	3208(7)	2413(14)	33(4)
H(26A)	2767(19)	3079(7)	3801(13)	28(4)
H(26B)	2284(19)	3719(7)	3783(13)	27(4)
H(3)	7980(30)	4250(8)	6479(17)	52(5)
H(27A)	6200(20)	5141(7)	5776(15)	42(5)
H(27B)	8150(20)	5126(8)	5945(17)	51(5)
H(28A)	7480(20)	5569(8)	7482(16)	47(5)
H(28B)	6410(30)	5037(9)	7773(18)	59(6)
H(28C)	8450(20)	5009(8)	7902(17)	50(5)

Table S36. Torsion angles [°] for 11a.

O(1)-C(1)-C(2)-O(2)	-35.27(15)	N(2)-N(1)-C(3)-C(4)	-2.93(18)
O(1)-C(1)-C(2)-C(3)	145.13(9)	N(2)-C(9)-C(10)-C(11)	179.88(12)
O(1)-C(1)-C(5)-N(3)	87.56(11)	N(2)-C(9)-C(14)-C(13)	-178.98(11)
O(1)-C(1)-C(5)-C(4)	-150.86(9)	N(3)-C(6)-C(7)-C(8)	30.70(15)
O(1)-C(1)-C(5)-C(15)	-32.96(13)	N(3)-C(16)-C(17)-C(18)	179.51(12)
O(1)-C(1)-C(8)-C(7)	-62.25(10)	N(3)-C(16)-C(21)-N(4)	0.77(13)
O(1)-C(1)-C(8)-C(22)	177.13(9)	N(3)-C(16)-C(21)-C(20)	-179.59(11)
O(1)-C(1)-C(8)-C(26)	55.73(11)	N(4)-C(6)-C(7)-C(8)	-149.00(11)
O(2)-C(2)-C(3)-N(1)	-12.99(18)	C(1)-C(2)-C(3)-N(1)	166.59(10)
O(2)-C(2)-C(3)-C(4)	171.71(11)	C(1)-C(2)-C(3)-C(4)	-8.70(12)
N(1)-N(2)-C(9)-C(10)	176.65(11)	C(1)-C(8)-C(22)-C(23)	-173.82(9)
N(1)-N(2)-C(9)-C(14)	-3.71(16)	C(1)-C(8)-C(26)-C(25)	176.40(10)
N(1)-C(3)-C(4)-C(5)	175.31(11)	C(2)-C(1)-C(5)-N(3)	-150.43(9)
N(2)-N(1)-C(3)-C(2)	-177.24(10)	C(2)-C(1)-C(5)-C(4)	-28.85(11)

C(2)-C(1)-C(5)-C(15)	89.04(10)	C(8)-C(1)-C(2)-C(3)	-97.80(10)
C(2)-C(1)-C(8)-C(7)	175.65(9)	C(8)-C(1)-C(5)-N(3)	-31.81(12)
C(2)-C(1)-C(8)-C(22)	55.03(12)	C(8)-C(1)-C(5)-C(4)	89.77(11)
C(2)-C(1)-C(8)-C(26)	-66.37(11)	C(8)-C(1)-C(5)-C(15)	-152.33(9)
C(2)-C(3)-C(4)-C(5)	-9.97(12)	C(8)-C(22)-C(23)-C(24)	55.88(14)
C(3)-N(1)-N(2)-C(9)	175.58(10)	C(9)-C(10)-C(11)-C(12)	-0.8(2)
C(3)-C(4)-C(5)-N(3)	144.91(9)	C(10)-C(9)-C(14)-C(13)	0.65(18)
C(3)-C(4)-C(5)-C(1)	24.25(11)	C(10)-C(11)-C(12)-C(13)	0.5(2)
C(3)-C(4)-C(5)-C(15)	-94.26(10)	C(11)-C(12)-C(13)-C(14)	0.4(2)
C(5)-N(3)-C(6)-N(4)	-178.31(10)	C(12)-C(13)-C(14)-C(9)	-1.0(2)
C(5)-N(3)-C(6)-C(7)	1.95(17)	C(14)-C(9)-C(10)-C(11)	0.24(19)
C(5)-N(3)-C(16)-C(17)	-3.8(2)	C(16)-N(3)-C(5)-C(1)	-178.54(10)
C(5)-N(3)-C(16)-C(21)	177.58(10)	C(16)-N(3)-C(5)-C(4)	63.51(14)
C(5)-C(1)-C(2)-O(2)	-157.35(11)	C(16)-N(3)-C(5)-C(15)	-57.39(14)
C(5)-C(1)-C(2)-C(3)	23.05(11)	C(16)-N(3)-C(6)-N(4)	-0.51(13)
C(5)-C(1)-C(8)-C(7)	61.82(11)	C(16)-N(3)-C(6)-C(7)	179.75(10)
C(5)-C(1)-C(8)-C(22)	-58.81(12)	C(16)-C(17)-C(18)-C(19)	0.92(18)
C(5)-C(1)-C(8)-C(26)	179.79(9)	C(17)-C(16)-C(21)-N(4)	-178.06(11)
C(6)-N(3)-C(5)-C(1)	-1.19(15)	C(17)-C(16)-C(21)-C(20)	1.58(18)
C(6)-N(3)-C(5)-C(4)	-119.15(12)	C(17)-C(18)-C(19)-C(20)	0.7(2)
C(6)-N(3)-C(5)-C(15)	119.96(12)	C(18)-C(19)-C(20)-C(21)	-1.20(19)
C(6)-N(3)-C(16)-C(17)	178.46(13)	C(19)-C(20)-C(21)-N(4)	179.65(12)
C(6)-N(3)-C(16)-C(21)	-0.18(12)	C(19)-C(20)-C(21)-C(16)	0.09(18)
C(6)-N(4)-C(21)-C(16)	-1.07(13)	C(21)-N(4)-C(6)-N(3)	0.97(13)
C(6)-N(4)-C(21)-C(20)	179.34(12)	C(21)-N(4)-C(6)-C(7)	-179.30(11)
C(6)-C(7)-C(8)-C(1)	-59.04(12)	C(21)-C(16)-C(17)-C(18)	-2.04(17)
C(6)-C(7)-C(8)-C(22)	63.66(12)	C(22)-C(8)-C(26)-C(25)	52.24(13)
C(6)-C(7)-C(8)-C(26)	-175.93(9)	C(22)-C(23)-C(24)-C(25)	-56.16(14)
C(7)-C(8)-C(22)-C(23)	68.62(12)	C(23)-C(24)-C(25)-C(26)	56.08(14)
C(7)-C(8)-C(26)-C(25)	-69.01(13)	C(24)-C(25)-C(26)-C(8)	-55.38(14)
C(8)-C(1)-C(2)-O(2)	81.80(13)	C(26)-C(8)-C(22)-C(23)	-52.58(12)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(3)	0.92(2)	1.81(2)	2.6920(12)	161.4(18)
N(2)-H(2)O(2)#1	0.912(17)	2.212(17)	3.1041(12)	166.0(14)
O(3)-H(3)N(4)#2	0.92(2)	1.81(2)	2.7332(13)	179(2)

Table S37. Hydrogen bonds for 11a [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z+1/2 #2 x+1,y,z

6.6. Compound 12b

X-ray diffraction data were collected at 100K on a Rigaku Synergy S diffractometer equipped with a HyPix600HE area-detector (kappa geometry, shutterless ω -scan technique), using monochromatized Cu K_{α}-radiation. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.¹ The structure was solved by direct methods using SHELXT² and refined on *F*² using SHELXL-2018³ in the OLEX2 program.⁴ Positions of all atoms were found from the electron density-difference map. Atoms were refined with individual anisotropic (non-hydrogen atoms) or isotropic (hydrogen atoms) displacement parameters. The position of hydroxy atom H1 was restrained at the distance of 0.85(2)Å from O1, and Uiso(H1)=1.5 Ueq(O1).

Table S38. Crystal data and structure refinement for 12b.

12b		
C25 H24 N4 O2		
412.48		
100.0(1) K		
1.54184 Å		
Monoclinic		
I2/a		
Unit cell dimensions $a = 18.1847(2) \text{ Å}$ $\alpha = 90^{\circ}$		
b = 9.88774(11) Å	β= 106.5529(13)°.	
c = 27.3603(4) Å	$\gamma = 90^{\circ}.$	
4715.65(11) Å ³		
8		
	12b C25 H24 N4 O2 412.48 100.0(1) K 1.54184 Å Monoclinic I2/a $a = 18.1847(2)$ Å $b = 9.88774(11)$ Å $c = 27.3603(4)$ Å 4715.65(11) Å ³ 8	

Density (calculated)	1.162 g/cm ³
Absorption coefficient	0.604 mm ⁻¹
F(000)	1744
Crystal size	0.28 x 0.18 x 0.10 mm ³
Theta range for data collection	3.370 to 79.678°.
Index ranges	-23<=h<=17, -12<=k<=12, -34<=l<=34
Reflections collected	32398
Independent reflections	5013 [R(int) = 0.0370]
Observed reflections	4797
Completeness to theta = 67.684°	99.7 %
Absorption correction	Analytical
Max. and min. transmission	0.948 and 0.877
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5013 / 1 / 376
Goodness-of-fit on F ²	1.092
Final R indices [I>2sigma(I)]	R1 = 0.0563, $wR2 = 0.1405$
R indices (all data)	R1 = 0.0577, $wR2 = 0.1413$
Extinction coefficient	0.00065(6)
Largest diff. peak and hole	0.498 and -0.213 e.Å ⁻³
CCDC	2233468

Table S39. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for **12b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Х	У	Z	U(eq)
4289(1)	8374(1)	6371(1)	37(1)
2424(1)	5092(1)	6782(1)	32(1)
5041(1)	7003(2)	8099(1)	32(1)
5363(1)	6701(2)	7374(1)	29(1)
4997(1)	4177(2)	5804(1)	28(1)
3826(1)	6193(2)	5593(1)	32(1)
4416(1)	6991(2)	6492(1)	28(1)
3814(1)	6604(2)	6782(1)	27(1)
4035(1)	7440(2)	7277(1)	30(1)
4810(1)	7061(2)	7598(1)	29(1)
5281(1)	6713(2)	6823(1)	29(1)
5501(1)	5306(2)	6649(1)	30(1)
	x 4289(1) 2424(1) 5041(1) 5363(1) 4997(1) 3826(1) 4416(1) 3814(1) 4035(1) 4810(1) 5281(1) 5501(1)	x y 4289(1) 8374(1) 2424(1) 5092(1) 5041(1) 7003(2) 5363(1) 6701(2) 4997(1) 4177(2) 3826(1) 6193(2) 4416(1) 6991(2) 3814(1) 6604(2) 4035(1) 7440(2) 4810(1) 7061(2) 5281(1) 6713(2) 5501(1) 5306(2)	x y z 4289(1) 8374(1) 6371(1) 2424(1) 5092(1) 6782(1) 5041(1) 7003(2) 8099(1) 5363(1) 6701(2) 7374(1) 4997(1) 4177(2) 5804(1) 3826(1) 6193(2) 5593(1) 4416(1) 6991(2) 6492(1) 3814(1) 6604(2) 6782(1) 4035(1) 7440(2) 7277(1) 4810(1) 7061(2) 7598(1) 5281(1) 6713(2) 6823(1) 5501(1) 5306(2) 6649(1)

C(7)	4954(1)	5121(2)	6131(1)	26(1)
C(8)	4357(1)	6103(2)	6030(1)	27(1)
C(9)	5806(1)	7814(2)	6715(1)	37(1)
C(10)	5808(1)	6604(2)	8218(1)	31(1)
C(11)	6342(1)	6431(2)	8694(1)	36(1)
C(12)	7075(1)	6020(2)	8707(1)	38(1)
C(13)	7269(1)	5769(2)	8255(1)	36(1)
C(14)	6751(1)	5946(2)	7778(1)	33(1)
C(15)	6019(1)	6386(2)	7769(1)	30(1)
C(16)	4430(1)	4188(2)	5354(1)	30(1)
C(17)	4396(1)	3147(2)	4996(1)	34(1)
C(18)	3818(1)	3124(3)	4548(1)	43(1)
C(19)	3270(1)	4174(3)	4427(1)	48(1)
C(20)	3296(1)	5205(3)	4764(1)	46(1)
C(21)	3856(1)	5219(2)	5240(1)	32(1)
C(22)	3004(1)	6994(2)	6458(1)	30(1)
C(23)	2388(1)	6517(2)	6696(1)	33(1)
C(24)	3152(1)	4704(2)	7114(1)	30(1)
C(25)	3807(1)	5075(2)	6894(1)	27(1)

Table S40. Bond lengths [Å] and angles [°] for 12b.

O(1)-H(1)	0.884(17)	C(2)-C(3)	1.540(3)
O(1)-C(1)	1.411(2)	C(2)-C(22)	1.537(3)
O(2)-C(23)	1.426(2)	C(2)-C(25)	1.544(2)
O(2)-C(24)	1.428(2)	C(3)-H(3A)	1.01(2)
N(1)-C(4)	1.314(3)	C(3)-H(3B)	0.99(2)
N(1)-C(10)	1.395(3)	C(3)-C(4)	1.482(3)
N(2)-C(4)	1.368(2)	C(5)-C(6)	1.559(3)
N(2)-C(5)	1.472(3)	C(5)-C(9)	1.530(3)
N(2)-C(15)	1.398(3)	C(6)-H(6A)	1.01(3)
N(3)-C(7)	1.311(2)	C(6)-H(6B)	1.00(2)
N(3)-C(16)	1.363(2)	C(6)-C(7)	1.492(3)
N(4)-C(8)	1.308(3)	C(7)-C(8)	1.425(2)
N(4)-C(21)	1.376(3)	C(9)-H(9A)	1.03(3)
C(1)-C(2)	1.571(3)	C(9)-H(9B)	1.04(3)
C(1)-C(5)	1.599(3)	C(9)-H(9C)	1.04(3)
C(1)-C(8)	1.519(3)	C(10)-C(11)	1.395(3)
			S98

C(10)-C(15)	1.406(3)	C(2)-C(1)-C(5)	112.86(15)
C(11)-H(11)	0.95(3)	C(8)-C(1)-C(2)	112.64(14)
C(11)-C(12)	1.385(3)	C(8)-C(1)-C(5)	101.32(14)
C(12)-H(12)	1.02(3)	C(3)-C(2)-C(1)	105.56(14)
C(12)-C(13)	1.401(3)	C(3)-C(2)-C(25)	111.43(16)
C(13)-H(13)	1.01(2)	C(22)-C(2)-C(1)	109.82(16)
C(13)-C(14)	1.386(3)	C(22)-C(2)-C(3)	109.88(15)
C(14)-H(14)	0.98(3)	C(22)-C(2)-C(25)	107.47(14)
C(14)-C(15)	1.395(3)	C(25)-C(2)-C(1)	112.68(14)
C(16)-C(17)	1.410(3)	C(2)-C(3)-H(3A)	113.6(13)
C(16)-C(21)	1.429(3)	C(2)-C(3)-H(3B)	108.9(13)
C(17)-H(17)	1.03(3)	H(3A)-C(3)-H(3B)	104.1(18)
C(17)-C(18)	1.367(3)	C(4)-C(3)-C(2)	110.60(15)
C(18)-H(18)	0.97(3)	C(4)-C(3)-H(3A)	108.4(13)
C(18)-C(19)	1.412(4)	C(4)-C(3)-H(3B)	111.2(13)
C(19)-H(19)	1.01(3)	N(1)-C(4)-N(2)	113.57(17)
C(19)-C(20)	1.366(4)	N(1)-C(4)-C(3)	126.64(18)
C(20)-H(20)	1.00(3)	N(2)-C(4)-C(3)	119.78(18)
C(20)-C(21)	1.406(3)	N(2)-C(5)-C(1)	112.11(15)
C(22)-H(22A)	0.98(3)	N(2)-C(5)-C(6)	110.17(16)
C(22)-H(22B)	0.99(3)	N(2)-C(5)-C(9)	108.38(15)
C(22)-C(23)	1.523(3)	C(6)-C(5)-C(1)	106.12(14)
C(23)-H(23A)	1.03(2)	C(9)-C(5)-C(1)	109.66(16)
C(23)-H(23B)	0.96(2)	C(9)-C(5)-C(6)	110.41(16)
C(24)-H(24A)	1.03(2)	C(5)-C(6)-H(6A)	110.4(14)
C(24)-H(24B)	1.03(2)	C(5)-C(6)-H(6B)	112.1(14)
C(24)-C(25)	1.523(3)	H(6A)-C(6)-H(6B)	107.5(19)
C(25)-H(25A)	1.00(2)	C(7)-C(6)-C(5)	103.87(15)
C(25)-H(25B)	0.99(2)	C(7)-C(6)-H(6A)	110.4(14)
C(1)-O(1)-H(1)	113.0(19)	C(7)-C(6)-H(6B)	112.6(13)
C(23)-O(2)-C(24)	111.19(14)	N(3)-C(7)-C(6)	125.64(16)
C(4)-N(1)-C(10)	104.96(16)	N(3)-C(7)-C(8)	122.90(17)
C(4)-N(2)-C(5)	125.85(16)	C(8)-C(7)-C(6)	111.45(16)
C(4)-N(2)-C(15)	106.50(16)	N(4)-C(8)-C(1)	125.50(16)
C(15)-N(2)-C(5)	127.59(16)	N(4)-C(8)-C(7)	123.20(17)
C(7)-N(3)-C(16)	115.75(16)	C(7)-C(8)-C(1)	111.29(16)
C(8)-N(4)-C(21)	115.32(16)	C(5)-C(9)-H(9A)	110.3(15)
O(1)-C(1)-C(2)	105.32(14)	C(5)-C(9)-H(9B)	107.1(14)
O(1)-C(1)-C(5)	111.63(15)	C(5)-C(9)-H(9C)	111.4(14)
O(1)-C(1)-C(8)	113.32(16)	H(9A)-C(9)-H(9B)	110(2) S99

H(9A)-C(9)-H(9C)	110(2)	C(20)-C(19)-H(19)	116.3(17)
H(9B)-C(9)-H(9C)	108(2)	C(19)-C(20)-H(20)	119.1(15)
N(1)-C(10)-C(15)	110.00(17)	C(19)-C(20)-C(21)	120.7(2)
C(11)-C(10)-N(1)	129.57(19)	C(21)-C(20)-H(20)	120.0(15)
C(11)-C(10)-C(15)	120.43(19)	N(4)-C(21)-C(16)	121.25(18)
C(10)-C(11)-H(11)	119(2)	N(4)-C(21)-C(20)	119.67(19)
C(12)-C(11)-C(10)	117.9(2)	C(20)-C(21)-C(16)	119.05(19)
C(12)-C(11)-H(11)	123(2)	C(2)-C(22)-H(22A)	107.2(14)
C(11)-C(12)-H(12)	119.1(14)	C(2)-C(22)-H(22B)	110.5(14)
C(11)-C(12)-C(13)	120.9(2)	H(22A)-C(22)-H(22B)	108(2)
C(13)-C(12)-H(12)	120.0(14)	C(23)-C(22)-C(2)	112.03(16)
C(12)-C(13)-H(13)	118.1(13)	C(23)-C(22)-H(22A)	110.8(14)
C(14)-C(13)-C(12)	122.3(2)	C(23)-C(22)-H(22B)	108.4(14)
C(14)-C(13)-H(13)	119.6(13)	O(2)-C(23)-C(22)	111.77(15)
C(13)-C(14)-H(14)	121.3(15)	O(2)-C(23)-H(23A)	109.1(13)
C(13)-C(14)-C(15)	116.5(2)	O(2)-C(23)-H(23B)	105.9(14)
C(15)-C(14)-H(14)	122.2(15)	C(22)-C(23)-H(23A)	111.8(13)
N(2)-C(15)-C(10)	104.95(16)	C(22)-C(23)-H(23B)	108.8(14)
C(14)-C(15)-N(2)	133.05(19)	H(23A)-C(23)-H(23B)	109.3(19)
C(14)-C(15)-C(10)	122.01(19)	O(2)-C(24)-H(24A)	106.2(12)
N(3)-C(16)-C(17)	119.64(17)	O(2)-C(24)-H(24B)	110.7(13)
N(3)-C(16)-C(21)	121.37(17)	O(2)-C(24)-C(25)	111.80(16)
C(17)-C(16)-C(21)	118.98(18)	H(24A)-C(24)-H(24B)	109.1(18)
C(16)-C(17)-H(17)	116.1(14)	C(25)-C(24)-H(24A)	109.0(12)
C(18)-C(17)-C(16)	120.4(2)	C(25)-C(24)-H(24B)	109.9(13)
C(18)-C(17)-H(17)	123.5(14)	C(2)-C(25)-H(25A)	109.3(13)
C(17)-C(18)-H(18)	117.7(16)	C(2)-C(25)-H(25B)	111.1(14)
C(17)-C(18)-C(19)	120.6(2)	C(24)-C(25)-C(2)	111.50(15)
C(19)-C(18)-H(18)	121.7(16)	C(24)-C(25)-H(25A)	106.6(12)
C(18)-C(19)-H(19)	123.4(17)	C(24)-C(25)-H(25B)	108.1(13)
C(20)-C(19)-C(18)	120.2(2)	H(25A)-C(25)-H(25B)	110.3(18)

Table S41. Anisotropic displacement parameters (Å²x 10³) for **12b**. The anisotropic displacement factorexponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	44(1)	16(1)	55(1)	2(1)	23(1)	1(1)

O(2)	20(1)	28(1)	46(1)	4(1)	7(1)	1(1)
N(1)	33(1)	23(1)	40(1)	-4(1)	11(1)	-4(1)
N(2)	24(1)	24(1)	38(1)	-4(1)	8(1)	-5(1)
N(3)	26(1)	20(1)	40(1)	-1(1)	11(1)	-1(1)
N(4)	30(1)	28(1)	38(1)	4(1)	11(1)	5(1)
C(1)	28(1)	16(1)	41(1)	-1(1)	11(1)	0(1)
C(2)	23(1)	19(1)	39(1)	-2(1)	9(1)	0(1)
C(3)	28(1)	22(1)	42(1)	-4(1)	13(1)	0(1)
C(4)	26(1)	20(1)	42(1)	-6(1)	11(1)	-5(1)
C(5)	24(1)	24(1)	38(1)	-6(1)	10(1)	-6(1)
C(6)	20(1)	28(1)	42(1)	-5(1)	7(1)	-1(1)
C(7)	24(1)	18(1)	38(1)	-1(1)	10(1)	-3(1)
C(8)	26(1)	19(1)	38(1)	2(1)	10(1)	-1(1)
C(9)	34(1)	33(1)	45(1)	-5(1)	15(1)	-13(1)
C(10)	32(1)	20(1)	42(1)	-3(1)	11(1)	-8(1)
C(11)	40(1)	27(1)	40(1)	-1(1)	9(1)	-7(1)
C(12)	36(1)	30(1)	45(1)	2(1)	3(1)	-9(1)
C(13)	27(1)	26(1)	54(1)	1(1)	8(1)	-6(1)
C(14)	27(1)	24(1)	49(1)	-3(1)	10(1)	-7(1)
C(15)	28(1)	20(1)	42(1)	-3(1)	8(1)	-7(1)
C(16)	28(1)	25(1)	36(1)	1(1)	11(1)	-2(1)
C(17)	33(1)	29(1)	40(1)	-2(1)	11(1)	-3(1)
C(18)	45(1)	47(1)	37(1)	-6(1)	12(1)	-7(1)
C(19)	39(1)	68(2)	34(1)	-3(1)	3(1)	2(1)
C(20)	38(1)	58(1)	40(1)	4(1)	9(1)	12(1)
C(21)	31(1)	32(1)	36(1)	3(1)	11(1)	3(1)
C(22)	27(1)	20(1)	42(1)	2(1)	9(1)	6(1)
C(23)	26(1)	28(1)	44(1)	4(1)	9(1)	6(1)
C(24)	22(1)	24(1)	43(1)	3(1)	9(1)	1(1)
C(25)	21(1)	19(1)	39(1)	1(1)	7(1)	2(1)

Table S42. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 12b.

	X	у	Z	U(eq)
H(1)	4484(15)	8640(30)	6125(9)	55
H(3A)	3663(13)	7340(20)	7488(9)	33(6)

H(3B)	4010(13)	8410(20)	7188(9)	31(6)
H(6A)	5424(13)	4570(30)	6888(9)	37(6)
H(6B)	6049(13)	5270(20)	6646(9)	34(6)
H(9A)	6370(16)	7570(30)	6885(10)	47(7)
H(9B)	5701(13)	7870(30)	6321(10)	40(6)
H(9C)	5685(14)	8750(30)	6845(10)	43(7)
H(11)	6188(19)	6590(30)	8994(13)	73(10)
H(12)	7478(14)	5920(30)	9050(10)	41(6)
H(13)	7806(13)	5450(20)	8282(8)	33(6)
H(14)	6892(14)	5750(30)	7466(10)	42(7)
H(17)	4810(14)	2410(30)	5099(9)	42(7)
H(18)	3806(15)	2370(30)	4317(10)	47(7)
H(19)	2864(16)	4250(30)	4088(11)	56(8)
H(20)	2878(15)	5900(30)	4683(9)	44(7)
H(22A)	2928(14)	6590(30)	6120(10)	39(6)
H(22B)	2959(13)	7990(30)	6414(9)	38(6)
H(23A)	2427(13)	7000(20)	7034(9)	33(6)
H(23B)	1894(13)	6690(20)	6462(9)	32(6)
H(24A)	3134(12)	3660(20)	7149(8)	28(5)
H(24B)	3240(13)	5140(20)	7468(9)	36(6)
H(25A)	3720(12)	4560(20)	6569(9)	28(5)
H(25B)	4292(13)	4790(20)	7140(9)	32(6)

Table S43. Torsion angles [°] for 12b.

O(1)-C(1)-C(2)-C(3)	-64.53(18)	N(2)-C(5)-C(6)-C(7)	143.73(15)
O(1)-C(1)-C(2)-C(22)	53.87(19)	N(3)-C(7)-C(8)-N(4)	-3.9(3)
O(1)-C(1)-C(2)-C(25)	173.64(15)	N(3)-C(7)-C(8)-C(1)	175.21(16)
O(1)-C(1)-C(5)-N(2)	94.86(18)	N(3)-C(16)-C(17)-C(18)	178.25(19)
O(1)-C(1)-C(5)-C(6)	-144.83(16)	N(3)-C(16)-C(21)-N(4)	-4.0(3)
O(1)-C(1)-C(5)-C(9)	-25.6(2)	N(3)-C(16)-C(21)-C(20)	178.20(19)
O(1)-C(1)-C(8)-N(4)	-43.7(2)	C(1)-C(2)-C(3)-C(4)	-62.52(19)
O(1)-C(1)-C(8)-C(7)	137.17(16)	C(1)-C(2)-C(22)-C(23)	174.37(15)
O(2)-C(24)-C(25)-C(2)	57.2(2)	C(1)-C(2)-C(25)-C(24)	-172.77(16)
N(1)-C(10)-C(11)-C(12)	179.84(19)	C(1)-C(5)-C(6)-C(7)	22.16(19)
N(1)-C(10)-C(15)-N(2)	1.6(2)	C(2)-C(1)-C(5)-N(2)	-23.5(2)
N(1)-C(10)-C(15)-C(14)	-178.31(16)	C(2)-C(1)-C(5)-C(6)	96.77(17)
			S102

C(2)-C(1)-C(5)-C(9)	-143.97(16)	C(8)-C(1)-C(5)-C(6)	-23.92(18)
C(2)-C(1)-C(8)-N(4)	75.7(2)	C(8)-C(1)-C(5)-C(9)	95.33(17)
C(2)-C(1)-C(8)-C(7)	-103.40(17)	C(9)-C(5)-C(6)-C(7)	-96.60(18)
C(2)-C(3)-C(4)-N(1)	-144.17(18)	C(10)-N(1)-C(4)-N(2)	1.4(2)
C(2)-C(3)-C(4)-N(2)	34.5(2)	C(10)-N(1)-C(4)-C(3)	-179.88(17)
C(2)-C(22)-C(23)-O(2)	-56.6(2)	C(10)-C(11)-C(12)-C(13)	-0.8(3)
C(3)-C(2)-C(22)-C(23)	-69.9(2)	C(11)-C(10)-C(15)-N(2)	-177.67(16)
C(3)-C(2)-C(25)-C(24)	68.8(2)	C(11)-C(10)-C(15)-C(14)	2.4(3)
C(4)-N(1)-C(10)-C(11)	177.34(19)	C(11)-C(12)-C(13)-C(14)	1.5(3)
C(4)-N(1)-C(10)-C(15)	-1.8(2)	C(12)-C(13)-C(14)-C(15)	-0.2(3)
C(4)-N(2)-C(5)-C(1)	-8.6(2)	C(13)-C(14)-C(15)-N(2)	178.35(18)
C(4)-N(2)-C(5)-C(6)	-126.54(18)	C(13)-C(14)-C(15)-C(10)	-1.8(3)
C(4)-N(2)-C(5)-C(9)	112.56(19)	C(15)-N(2)-C(4)-N(1)	-0.4(2)
C(4)-N(2)-C(15)-C(10)	-0.75(19)	C(15)-N(2)-C(4)-C(3)	-179.24(16)
C(4)-N(2)-C(15)-C(14)	179.16(19)	C(15)-N(2)-C(5)-C(1)	174.56(16)
C(5)-N(2)-C(4)-N(1)	-177.79(16)	C(15)-N(2)-C(5)-C(6)	56.6(2)
C(5)-N(2)-C(4)-C(3)	3.4(3)	C(15)-N(2)-C(5)-C(9)	-64.3(2)
C(5)-N(2)-C(15)-C(10)	176.57(16)	C(15)-C(10)-C(11)-C(12)	-1.0(3)
C(5)-N(2)-C(15)-C(14)	-3.5(3)	C(16)-N(3)-C(7)-C(6)	179.30(17)
C(5)-C(1)-C(2)-C(3)	57.49(18)	C(16)-N(3)-C(7)-C(8)	0.1(3)
C(5)-C(1)-C(2)-C(22)	175.89(14)	C(16)-C(17)-C(18)-C(19)	3.1(3)
C(5)-C(1)-C(2)-C(25)	-64.3(2)	C(17)-C(16)-C(21)-N(4)	174.60(18)
C(5)-C(1)-C(8)-N(4)	-163.44(17)	C(17)-C(16)-C(21)-C(20)	-3.2(3)
C(5)-C(1)-C(8)-C(7)	17.45(19)	C(17)-C(18)-C(19)-C(20)	-2.2(4)
C(5)-C(6)-C(7)-N(3)	168.95(17)	C(18)-C(19)-C(20)-C(21)	-1.5(4)
C(5)-C(6)-C(7)-C(8)	-11.8(2)	C(19)-C(20)-C(21)-N(4)	-173.7(2)
C(6)-C(7)-C(8)-N(4)	176.79(17)	C(19)-C(20)-C(21)-C(16)	4.1(3)
C(6)-C(7)-C(8)-C(1)	-4.1(2)	C(21)-N(4)-C(8)-C(1)	-175.59(17)
C(7)-N(3)-C(16)-C(17)	-175.03(17)	C(21)-N(4)-C(8)-C(7)	3.4(3)
C(7)-N(3)-C(16)-C(21)	3.6(3)	C(21)-C(16)-C(17)-C(18)	-0.4(3)
C(8)-N(4)-C(21)-C(16)	0.3(3)	C(22)-C(2)-C(3)-C(4)	179.13(16)
C(8)-N(4)-C(21)-C(20)	178.10(19)	C(22)-C(2)-C(25)-C(24)	-51.7(2)
C(8)-C(1)-C(2)-C(3)	171.49(15)	C(23)-O(2)-C(24)-C(25)	-60.1(2)
C(8)-C(1)-C(2)-C(22)	-70.11(19)	C(24)-O(2)-C(23)-C(22)	59.6(2)
C(8)-C(1)-C(2)-C(25)	49.7(2)	C(25)-C(2)-C(3)-C(4)	60.1(2)
C(8)-C(1)-C(5)-N(2)	-144.23(15)	C(25)-C(2)-C(22)-C(23)	51.5(2)

6.7. Compound 13a

X-ray diffraction data were collected at 100K on a Rigaku Synergy S diffractometer equipped with a HyPix600HE area-detector (kappa geometry, shutterless ω -scan technique), using monochromatized Cu K_a-radiation. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.¹ The structure was solved by direct methods using SHELXT² and refined on F^2 using SHELXL-2018³ in the OLEX2 program.⁴ Positions of all atoms were found from the electron density-difference map. Atoms were refined with individual anisotropic (non-hydrogen atoms) or isotropic (hydrogen atoms) displacement parameters.

Identification code	13a				
Empirical formula	C21 H20 N2 O4	C21 H20 N2 O4			
Formula weight	364.39				
Temperature	100.0(1) K				
Wavelength	1.54184 Å				
Crystal system	Triclinic				
Space group	РĪ				
Unit cell dimensions	a = 7.48251(7) Å	$\alpha = 107.8011(13)^{\circ}$			
	b = 8.97191(13) Å	β= 96.7797(9)°.			
	c = 13.67021(19) Å	$\gamma = 98.0759(10)^{\circ}$.			
Volume	852.40(2) Å ³				
Z	2				
Density (calculated)	1.420 g/cm ³	1.420 g/cm ³			
Absorption coefficient	0.813 mm ⁻¹	0.813 mm ⁻¹			
F(000)	384				
Crystal size	0.28 x 0.15 x 0.08 mm ³				
Theta range for data collection	3.446 to 79.456°.				
Index ranges	-7<=h<=9, -11<=k<=11,	-17<=l<=17			
Reflections collected	18947				
Independent reflections	3679 [R(int) = 0.0308]	3679 [R(int) = 0.0308]			
Observed reflections	3503	3503			
Completeness to theta = 67.684°	100.0 %	100.0 %			
Absorption correction	Analytical	Analytical			
Max. and min. transmission	0.947 and 0.845	0.947 and 0.845			
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²			
Data / restraints / parameters	3679 / 0 / 325	3679 / 0 / 325			
Goodness-of-fit on F ²	1.034	1.034			
Final R indices [I>2sigma(I)]	R1 = 0.0377, wR2 = 0.10	R1 = 0.0377, $wR2 = 0.1038$			

Table S44. Crystal data and structure refinement for 13a.

R indices (all data)	R1 = 0.0389, wR2 = 0.1049
Extinction coefficient	0.0025(7)
Largest diff. peak and hole	0.344 and -0.240 e.Å ⁻³
CCDC	2233465

		C C			
	x	у	Z	U(eq)	
O(1)	3097(1)	1421(1)	5601(1)	19(1)	
O(2)	1687(1)	3406(1)	5473(1)	19(1)	
O(3)	847(1)	983(1)	4248(1)	25(1)	
O(4)	3929(1)	6736(1)	6328(1)	28(1)	
N(1)	547(1)	4137(1)	8620(1)	18(1)	
N(2)	1866(1)	4519(1)	7295(1)	16(1)	
C(1)	1793(2)	1848(1)	5033(1)	19(1)	
C(2)	2908(2)	4098(1)	6472(1)	16(1)	
C(3)	4058(2)	2772(1)	6493(1)	17(1)	
C(4)	4297(2)	5488(1)	6377(1)	20(1)	
C(5)	6000(2)	4917(1)	6245(1)	22(1)	
C(6)	5883(2)	3409(1)	6236(1)	20(1)	
C(7)	7303(2)	2419(2)	5956(1)	27(1)	
C(8)	4154(2)	2238(1)	7472(1)	17(1)	
C(9)	2185(2)	2042(1)	7703(1)	18(1)	
C(10)	1494(1)	3559(1)	7904(1)	16(1)	
C(11)	204(2)	5562(1)	8485(1)	17(1)	
C(12)	-758(2)	6642(1)	9065(1)	20(1)	
C(13)	-1004(2)	7943(1)	8758(1)	22(1)	
C(14)	-324(2)	8148(1)	7885(1)	21(1)	
C(15)	678(2)	7104(1)	7313(1)	19(1)	
C(16)	966(1)	5818(1)	7647(1)	16(1)	
C(17)	4787(2)	619(1)	7274(1)	21(1)	
C(18)	5056(2)	159(1)	8267(1)	24(1)	
C(19)	6370(2)	1463(2)	9155(1)	26(1)	
C(20)	5724(2)	3058(1)	9374(1)	23(1)	
C(21)	5484(2)	3524(1)	8385(1)	19(1)	

Table S45. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x 10^3$) for **13a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(1)	1.3449(14)	C(17)-H(17A)	0.993(17)
O(1)-C(3)	1.4559(13)	C(17)-H(17B)	0.994(16)
O(2)-C(1)	1.3602(14)	C(17)-C(18)	1.5338(17)
O(2)-C(2)	1.4533(13)	C(18)-H(18A)	1.005(16)
O(3)-C(1)	1.1887(14)	C(18)-H(18B)	1.005(18)
O(4)-C(4)	1.2091(15)	C(18)-C(19)	1.5282(17)
N(1)-C(10)	1.2990(15)	C(19)-H(19A)	1.001(19)
N(1)-C(11)	1.4000(14)	C(19)-H(19B)	1.005(17)
N(2)-C(2)	1.4305(14)	C(19)-C(20)	1.5290(17)
N(2)-C(10)	1.3921(14)	C(20)-H(20A)	0.999(18)
N(2)-C(16)	1.4134(14)	C(20)-H(20B)	1.013(17)
C(2)-C(3)	1.5678(15)	C(20)-C(21)	1.5313(16)
C(2)-C(4)	1.5554(15)	C(21)-H(21A)	0.990(16)
C(3)-C(6)	1.5262(15)	C(21)-H(21B)	0.980(17)
C(3)-C(8)	1.5514(15)	C(1)-O(1)-C(3)	111.11(8)
C(4)-C(5)	1.4489(17)	C(1)-O(2)-C(2)	110.56(8)
C(5)-H(5)	0.955(18)	C(10)-N(1)-C(11)	104.96(9)
C(5)-C(6)	1.3392(17)	C(10)-N(2)-C(2)	122.25(9)
C(6)-C(7)	1.4893(16)	C(10)-N(2)-C(16)	105.91(9)
C(7)-H(7A)	1.01(2)	C(16)-N(2)-C(2)	131.79(9)
C(7)-H(7B)	0.982(19)	O(1)-C(1)-O(2)	111.33(9)
C(7)-H(7C)	0.987(19)	O(3)-C(1)-O(1)	124.80(10)
C(8)-C(9)	1.5398(15)	O(3)-C(1)-O(2)	123.87(11)
C(8)-C(17)	1.5464(15)	O(2)-C(2)-C(3)	103.05(8)
C(8)-C(21)	1.5432(15)	O(2)-C(2)-C(4)	106.62(9)
C(9)-H(9A)	0.972(15)	N(2)-C(2)-O(2)	110.02(9)
C(9)-H(9B)	0.983(17)	N(2)-C(2)-C(3)	115.61(9)
C(9)-C(10)	1.4829(15)	N(2)-C(2)-C(4)	115.74(9)
C(11)-C(12)	1.3950(16)	C(4)-C(2)-C(3)	104.69(9)
C(11)-C(16)	1.4036(15)	O(1)-C(3)-C(2)	102.84(8)
C(12)-H(12)	0.965(17)	O(1)-C(3)-C(6)	108.54(9)
C(12)-C(13)	1.3845(16)	O(1)-C(3)-C(8)	107.99(8)
C(13)-H(13)	0.999(17)	C(6)-C(3)-C(2)	103.11(9)
C(13)-C(14)	1.4023(17)	C(6)-C(3)-C(8)	116.54(9)
C(14)-H(14)	0.991(18)	C(8)-C(3)-C(2)	116.76(9)
C(14)-C(15)	1.3924(16)	O(4)-C(4)-C(2)	124.97(11)
C(15)-H(15)	0.965(16)	O(4)-C(4)-C(5)	127.97(11)
C(15)-C(16)	1.3973(15)	C(5)-C(4)-C(2)	106.73(9)

Table S46. Bond lengths [Å] and angles [°] for 13a.

S106

C(4)-C(5)-H(5)	120.8(10)
C(6)-C(5)-C(4)	112.55(10)
C(6)-C(5)-H(5)	126.5(10)
C(5)-C(6)-C(3)	111.99(10)
C(5)-C(6)-C(7)	124.87(11)
C(7)-C(6)-C(3)	123.06(10)
C(6)-C(7)-H(7A)	108.9(12)
C(6)-C(7)-H(7B)	109.8(11)
C(6)-C(7)-H(7C)	110.1(11)
H(7A)-C(7)-H(7B)	109.2(16)
H(7A)-C(7)-H(7C)	108.1(16)
H(7B)-C(7)-H(7C)	110.7(15)
C(9)-C(8)-C(3)	105.85(9)
C(9)-C(8)-C(17)	108.51(9)
C(9)-C(8)-C(21)	111.63(9)
C(17)-C(8)-C(3)	111.96(9)
C(21)-C(8)-C(3)	109.17(9)
C(21)-C(8)-C(17)	109.70(9)
C(8)-C(9)-H(9A)	108.6(9)
C(8)-C(9)-H(9B)	112.6(9)
H(9A)-C(9)-H(9B)	107.6(13)
C(10)-C(9)-C(8)	111.28(9)
C(10)-C(9)-H(9A)	109.8(9)
C(10)-C(9)-H(9B)	106.9(10)
N(1)-C(10)-N(2)	113.78(10)
N(1)-C(10)-C(9)	126.50(10)
N(2)-C(10)-C(9)	119.72(10)
N(1)-C(11)-C(16)	111.00(10)
C(12)-C(11)-N(1)	127.64(10)
C(12)-C(11)-C(16)	121.36(10)
C(11)-C(12)-H(12)	121.6(10)
C(13)-C(12)-C(11)	117.64(11)
C(13)-C(12)-H(12)	120.7(10)
C(12)-C(13)-H(13)	119.6(10)
C(12)-C(13)-C(14)	120.74(11)
C(14)-C(13)-H(13)	119.7(10)
C(13)-C(14)-H(14)	119.1(10)
C(15)-C(14)-C(13)	122.33(11)

118.6(10)
122.2(9)
116.58(11)
121.2(9)
104.24(9)
134.49(10)
121.20(10)
108.3(10)
111.7(9)
106.7(13)
112.18(10)
110.8(10)
107.0(9)
109.4(9)
106.8(10)
107.9(13)
111.70(10)
110.1(9)
110.8(10)
112.0(10)
109.3(9)
111.11(10)
106.8(14)
108.8(10)
108.6(10)
109.3(10)
110.7(10)
110.68(10)
105.5(13)
109.5(10)
111.0(10)
107.5(9)
110.1(9)
112.65(9)
108.1(9)
109.8(9)
108.6(13)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	21(1)	14(1)	19(1)	2(1)	-2(1)	2(1)
O(2)	21(1)	16(1)	18(1)	5(1)	1(1)	3(1)
O(3)	28(1)	20(1)	20(1)	4(1)	-4(1)	0(1)
O(4)	34(1)	16(1)	40(1)	11(1)	16(1)	6(1)
N(1)	18(1)	17(1)	19(1)	7(1)	1(1)	2(1)
N(2)	17(1)	14(1)	19(1)	6(1)	3(1)	3(1)
C(1)	20(1)	17(1)	19(1)	6(1)	2(1)	2(1)
C(2)	17(1)	14(1)	17(1)	4(1)	2(1)	2(1)
C(3)	16(1)	12(1)	18(1)	1(1)	0(1)	1(1)
C(4)	23(1)	15(1)	19(1)	3(1)	5(1)	0(1)
C(5)	19(1)	21(1)	23(1)	5(1)	3(1)	-1(1)
C(6)	18(1)	21(1)	18(1)	3(1)	1(1)	2(1)
C(7)	21(1)	27(1)	31(1)	7(1)	6(1)	7(1)
C(8)	17(1)	13(1)	19(1)	4(1)	-1(1)	3(1)
C(9)	18(1)	14(1)	21(1)	6(1)	0(1)	1(1)
C(10)	15(1)	15(1)	18(1)	6(1)	-1(1)	0(1)
C(11)	16(1)	16(1)	18(1)	5(1)	0(1)	2(1)
C(12)	20(1)	22(1)	18(1)	6(1)	3(1)	4(1)
C(13)	21(1)	19(1)	23(1)	4(1)	2(1)	6(1)
C(14)	21(1)	16(1)	26(1)	7(1)	2(1)	4(1)
C(15)	19(1)	17(1)	22(1)	8(1)	2(1)	3(1)
C(16)	15(1)	14(1)	18(1)	4(1)	1(1)	3(1)
C(17)	23(1)	15(1)	23(1)	4(1)	-2(1)	5(1)
C(18)	27(1)	17(1)	27(1)	7(1)	-3(1)	6(1)
C(19)	27(1)	22(1)	26(1)	8(1)	-5(1)	6(1)
C(20)	25(1)	20(1)	21(1)	4(1)	-3(1)	3(1)
C(21)	18(1)	14(1)	21(1)	3(1)	-1(1)	1(1)

Table S47. Anisotropic displacement parameters (Å²x 10³) for **13a**. The anisotropic displacementfactor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$
	Х	У	Z	U(eq)
H(5)	7030(20)	5560(20)	6130(13)	30(4)
H(7A)	8180(30)	2950(30)	5609(17)	51(5)
H(7B)	6720(20)	1360(20)	5473(14)	36(4)
H(7C)	8000(20)	2340(20)	6591(15)	36(4)
H(9A)	1400(20)	1226(18)	7108(12)	20(3)
H(9B)	2090(20)	1710(20)	8318(13)	26(4)
H(12)	-1200(20)	6515(19)	9676(13)	24(4)
H(13)	-1680(20)	8740(20)	9161(13)	30(4)
H(14)	-560(20)	9070(20)	7668(13)	31(4)
H(15)	1130(20)	7237(19)	6706(13)	23(4)
H(17A)	3870(20)	-200(20)	6721(13)	27(4)
H(17B)	5970(20)	633(19)	7012(12)	24(4)
H(18A)	3840(20)	-62(19)	8484(12)	25(4)
H(18B)	5550(20)	-860(20)	8080(13)	31(4)
H(19A)	6510(20)	1190(20)	9813(14)	34(4)
H(19B)	7620(20)	1590(20)	8957(13)	27(4)
H(20A)	6650(20)	3900(20)	9927(13)	29(4)
H(20B)	4550(20)	3020(20)	9672(13)	29(4)
H(21A)	6690(20)	3655(18)	8164(12)	20(3)
H(21B)	5060(20)	4540(20)	8535(12)	24(4)

Table S48. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 13a.

Table S49. Torsion angles [°] for 13a.

O(1)-C(3)-C(6)-C(5)	118.29(11)	O(4)-C(4)-C(5)-C(6)	-173.16(12)
O(1)-C(3)-C(6)-C(7)	-58.71(14)	N(1)-C(11)-C(12)-C(13)	-176.96(11)
O(1)-C(3)-C(8)-C(9)	-70.81(10)	N(1)-C(11)-C(16)-N(2)	-2.39(12)
O(1)-C(3)-C(8)-C(17)	47.24(11)	N(1)-C(11)-C(16)-C(15)	175.01(10)
O(1)-C(3)-C(8)-C(21)	168.91(8)	N(2)-C(2)-C(3)-O(1)	109.92(10)
O(2)-C(2)-C(3)-O(1)	-10.14(10)	N(2)-C(2)-C(3)-C(6)	-137.26(9)
O(2)-C(2)-C(3)-C(6)	102.69(9)	N(2)-C(2)-C(3)-C(8)	-8.10(13)
O(2)-C(2)-C(3)-C(8)	-128.16(9)	N(2)-C(2)-C(4)-O(4)	-52.14(16)
O(2)-C(2)-C(4)-O(4)	70.59(14)	N(2)-C(2)-C(4)-C(5)	134.01(10)
O(2)-C(2)-C(4)-C(5)	-103.27(10)	C(1)-O(1)-C(3)-C(2)	8.00(11)

C(1)-O(1)-C(3)-C(6)	-100.78(10)	C(8)-C(9)-C(10)-N(1)	-138.33(11)
C(1)-O(1)-C(3)-C(8)	132.03(9)	C(8)-C(9)-C(10)-N(2)	41.04(13)
C(1)-O(2)-C(2)-N(2)	-114.35(10)	C(8)-C(17)-C(18)-C(19)	-54.87(13)
C(1)-O(2)-C(2)-C(3)	9.47(11)	C(9)-C(8)-C(17)-C(18)	-68.86(12)
C(1)-O(2)-C(2)-C(4)	119.40(9)	C(9)-C(8)-C(21)-C(20)	65.81(12)
C(2)-O(2)-C(1)-O(1)	-4.98(12)	C(10)-N(1)-C(11)-C(12)	-179.65(11)
C(2)-O(2)-C(1)-O(3)	174.95(11)	C(10)-N(1)-C(11)-C(16)	0.65(12)
C(2)-N(2)-C(10)-N(1)	179.34(9)	C(10)-N(2)-C(2)-O(2)	99.63(11)
C(2)-N(2)-C(10)-C(9)	-0.11(15)	C(10)-N(2)-C(2)-C(3)	-16.54(14)
C(2)-N(2)-C(16)-C(11)	-179.57(11)	C(10)-N(2)-C(2)-C(4)	-139.45(10)
C(2)-N(2)-C(16)-C(15)	3.5(2)	C(10)-N(2)-C(16)-C(11)	3.08(11)
C(2)-C(3)-C(6)-C(5)	9.69(13)	C(10)-N(2)-C(16)-C(15)	-173.80(12)
C(2)-C(3)-C(6)-C(7)	-167.30(11)	C(11)-N(1)-C(10)-N(2)	1.48(12)
C(2)-C(3)-C(8)-C(9)	44.38(12)	C(11)-N(1)-C(10)-C(9)	-179.12(10)
C(2)-C(3)-C(8)-C(17)	162.43(9)	C(11)-C(12)-C(13)-C(14)	0.78(17)
C(2)-C(3)-C(8)-C(21)	-75.91(11)	C(12)-C(11)-C(16)-N(2)	177.89(10)
C(2)-C(4)-C(5)-C(6)	0.45(14)	C(12)-C(11)-C(16)-C(15)	-4.72(17)
C(3)-O(1)-C(1)-O(2)	-2.43(12)	C(12)-C(13)-C(14)-C(15)	-2.48(18)
C(3)-O(1)-C(1)-O(3)	177.65(11)	C(13)-C(14)-C(15)-C(16)	0.57(17)
C(3)-C(2)-C(4)-O(4)	179.36(11)	C(14)-C(15)-C(16)-N(2)	179.41(11)
C(3)-C(2)-C(4)-C(5)	5.51(12)	C(14)-C(15)-C(16)-C(11)	2.95(16)
C(3)-C(8)-C(9)-C(10)	-59.82(11)	C(16)-N(2)-C(2)-O(2)	-77.35(13)
C(3)-C(8)-C(17)-C(18)	174.69(9)	C(16)-N(2)-C(2)-C(3)	166.48(10)
C(3)-C(8)-C(21)-C(20)	-177.52(9)	C(16)-N(2)-C(2)-C(4)	43.57(16)
C(4)-C(2)-C(3)-O(1)	-121.50(9)	C(16)-N(2)-C(10)-N(1)	-3.00(12)
C(4)-C(2)-C(3)-C(6)	-8.68(11)	C(16)-N(2)-C(10)-C(9)	177.55(9)
C(4)-C(2)-C(3)-C(8)	120.48(10)	C(16)-C(11)-C(12)-C(13)	2.72(17)
C(4)-C(5)-C(6)-C(3)	-6.65(15)	C(17)-C(8)-C(9)-C(10)	179.86(9)
C(4)-C(5)-C(6)-C(7)	170.29(11)	C(17)-C(8)-C(21)-C(20)	-54.50(13)
C(6)-C(3)-C(8)-C(9)	166.79(9)	C(17)-C(18)-C(19)-C(20)	55.64(14)
C(6)-C(3)-C(8)-C(17)	-75.16(12)	C(18)-C(19)-C(20)-C(21)	-55.95(14)
C(6)-C(3)-C(8)-C(21)	46.50(12)	C(19)-C(20)-C(21)-C(8)	56.37(13)
C(8)-C(3)-C(6)-C(5)	-119.60(11)	C(21)-C(8)-C(9)-C(10)	58.85(12)
C(8)-C(3)-C(6)-C(7)	63.41(14)	C(21)-C(8)-C(17)-C(18)	53.33(13)

7. References

1. CrysAlisPro. Version 1.171.41. Rigaku Oxford Diffraction, 2021.

2. Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. *Acta Cryst.* **2015**, A71(1), 3-8.

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 1, 3-8.

4. Dolomanov O.V.; Bourhis L.J.; Gildea R.J.; Howard J.A.K.; Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, 42, 2, 229-341.