Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

# **Supporting Information**

## Solvent-promoted photochemical carbonylation of benzylic

# **C-H Bonds under iron catalysis**

Rui Qi,<sup>a,b,#</sup> Tianwen Bai<sup>b,#</sup>, Shuwang Tang,<sup>b</sup> Ming Hou,<sup>b</sup> Zhide Zhang, <sup>b</sup> Wenlin Xie,<sup>\*,a</sup> Yangling Deng,<sup>b</sup> Hongwei Zhou<sup>\*,b</sup> and Guanyinsheng Qiu<sup>\*,b</sup>

<sup>a</sup>School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;.

<sup>b</sup>College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China. E-mail: qiuguanyinsheng@mail.zjxu.edu.cn

# equal authors

| 1. General information                                                             | 2  |
|------------------------------------------------------------------------------------|----|
| 2. Mechanistic Studies                                                             | 4  |
| 3. Synthetic procedure for photochemical carbonylation                             | 5  |
| 4. Synthetic Application                                                           | 6  |
| 5. Light on/off experiment                                                         | 8  |
| 6. UV/Vis absorption spectra                                                       | 9  |
| 7. Characterization for all compounds                                              | 10 |
| 8. Calculation details and optimized geometry of transition state TS <sub>AB</sub> |    |
| 9. References                                                                      | 21 |
| 10. Copies of <sup>1</sup> H and <sup>13</sup> C NMR spectra of products           | 23 |

### **1.General information**

Unless otherwise noted, all of the reagents were purchased from commercial suppliers and used without purification. All commercially available compounds were purchased from Energy Chemical, Macklin, Bidepharm or Adamas. TLC was carried out on SiO<sub>2</sub> (silica gel 60 F254, Merck), and the spots were located with UV light (254 nm). Flash chromatography was carried out on SiO<sub>2</sub> (silica gel 60, 200-300 mesh). NMR spectra were measured on a Bruker magnetic resonance spectrometer (<sup>1</sup>H at 400 MHz, <sup>13</sup>C at 100 MHz). Chemical shifts are reported in ppm using tetramethylsilane as internal standard (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet). CDCl<sub>3</sub> were used as a solvent. MS data were obtained on an Agilent 5975C inert 350 EI mass spectrometer (GC-MS); X-Ray single-crystal diffraction data were collected on an Agilent Technologies Gemini single-crystal diffractometer.

The photocatalytic reactions were performed on Beijing Roger tech Ltd with 450 nm 5 W blue LED, and the temperature of the heated reactor was set to indicate temperature.



Figure 1. Setup for photocatalytic reactions



Figure 2. Color of oxidation reaction in methanol solution

# **2.Mechanistic Studies**



<sup>18</sup>O-Labeling experiment for the oxidation of 1,2,3,4- Tetrahydronaphthalene





**KIE study** 



# **Control experiment from styrene to ketone:**



**3. Synthetic procedure for photochemical carbonylation under iron catalysis** 



1,2,3,4-Tetrahydronaphthalene (0.8 mmol, 1.0 equiv.), FeBr<sub>3</sub> (0.02 equiv) and MeOH (2 mL) was added to an oven-dried glass tube equipped with magnetic stirring bar. The vessel placed in blue 5 W LED (450 nm). The reaction mixture was irradiated with for 12 h under air atmosphere. After irradiation, the reaction mixture was transferred to a 25 mL round-bottom flask and the solvent was concentrated in vacuo. The pure product was obtained by flash column chromatography on silica gel (petroleum ether/ethyl acetate 10%-20%).

### 4. Synthetic applications

[4-(4-Chlorophenyl)-4-hydroxy-1-piperidinyl]-1-(4-fluorophenyl)-1butanone(haloperidol)



To an 10 mL vial equipped with a stir bar was added alkyl chloride **1z** (0.2 mmol, 1.0 equiv.), 4-(4-chlorophenyl)-4-hydroxypiperidine (0.4mmol,2.0 equiv.), and anhydrous potassium iodide (0.06 mmol, 0.03 equiv.). The vial was sealed after 2 mL of anhydrous toluene was added. The mixture was stirred at 130 °C for 45 h. After cooling to room temperature, the reaction mixture was diluted with aq. NaHCO<sub>3</sub> and EtOAc, and the aqueous layer was extracted with three portions of EtOAc. The combined organic layers were washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The residue was purified by flash chromatography (eluent: DCM/MeOH = 10/1 with 1% Et<sub>3</sub>N) provided the title compound (56.13 mg, 78% yield) as a white solid<sup>[11]</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01-7.97 (m, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 7.18-7.08 (m, 2H), 3.02-2.94 (m, 2H), 2.84-2.75 (m, 2H), 2.51-2.46 (m, 2H), 2.45-2.36 (m, 2H), 1.96-2.05 (m, 4H), 1.68 (d, *J* = 13.2 Hz, 3H);<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  198.33, 146.81, 133.59 (d, *J*= 3.0 Hz), 132.73,

130.67 (d, J = 9.2 Hz), 128.36, 126.06, 115.72 (d, J = 21.65 Hz), 71.05, 57.80, 49.29, 38.29, 36.23, 21.78;<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -105.53.

#### (4-Fluorophenyl)-4-(4-methylpiperidin-1-yl)butan-1-one (Melperone)



To an 10 mL vial equipped with a stir bar was added alkyl chloride **1z** ( 0.2 mmol, 1.0 equiv.), 4-methylpiperidine (0.4 mmol, 2 equiv.), Na<sub>2</sub>CO<sub>3</sub> (0.4 mmol, 2.0 equiv.), and NaI (0.04 mmol, 0.1 equiv.). The vial was sealed after 2 mL of anhydrous toluene was added. The mixture was stirred at 120 °C for 22 h. After cooling to room temperature, ransfer to a separatory funnel and dilute with aqueous saturated NaHCO<sub>3</sub> and EtOAc, and the aqueous layer was extracted with three portions of EtOAc. The combined organic layers were washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The residue was purified by flash chromatography (eluent: DCM/MeOH = 10/1 with 1% Et<sub>3</sub>N) provided the title compound (43.65 mg, 83% yield) as a red solid<sup>[2]</sup>.(43.65 mg, 83%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) $\delta$  7.90-8.01 (m, 2H), 7.02-7.12 (m, 2H), 2.87-2.96 (m, 2H), 2.81 (d, *J* = 9.9 Hz, 2H), 2.24-2.40 (m, 2H), 1.93-1.83 (m, 4H), 1.53 (d, *J* = 12.2 Hz, 2H), 1.27 (s, 1H), 1.06-1.17 (m, 2H), 0.81-0.87 (m, 3H);<sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) $\delta$  198.46, 165.56 (d, *J* = 250.1 Hz), 133.54, 130.63 (d, *J* = 9.3 Hz), 115.58 (d, *J* = 21.63 Hz), 58.02, 53.85, 36.31, 34.16, 30.73, 21.85, 21.81 (d, *J* = 7.2 Hz).

#### 4-[4-(4-Fluorobenzoyl)-1-piperidinyl]-1-(4-fluorophenyl)-1-butan one(Lenperone)



The reaction of alkyl chloride 1z (0.2 mmol, 1.0 equiv.), (4-chlorophenyl) (piperidin-4-yl)methanone (0.3 mmol, 1.5 equiv.), NaI (0.01 mmol, 0.1 equiv), and K<sub>2</sub>CO<sub>3</sub> (0.3 mmol, 1.5 equiv.) in MeCN (5 mL).The reaction mixture was refluxe for 8

h.After completion of the reaction, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the desired product. (eluent: DCM/MeOH =10/1). Yelllow solid<sup>[3]</sup>.(55.68 mg, 72%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02-7.95 (m, 2H), 7.95-7.89 (m, 2H), 7.16-7.03 (m, 4H), 3.21-3.09 (m, 1H), 3.02-2.89 (m, 4H), 2.44-2.38 (m, 2H), 2.13-2.03 (m, 2H), 1.96-1.85(m, 2H), 1.86-1.67 (m, 4H);<sup>13</sup>C{<sup>1</sup>H} NMR(100 MHz, CDCl<sub>3</sub>)  $\delta$  201.03, 198.54, 165.48 (d, *J* = 250.3 Hz), 133.53 (d, *J* = 3.1 Hz), 132.38 (d, *J* = 2.7 Hz), 130.81 (d, *J* = 9.1 Hz), 130.64 (d, *J* = 9.2 Hz), 115.75 (d, *J* = 14.5 Hz), 115.53 (d, *J* = 14.5 Hz), 53.06, 43.62, 36.09, 28.61, 21.57.

 $\sim$ 

### 5. Light on/off experiment

|       |           | FeBr <sub>3</sub> (2 mo<br>Blue LED 5<br>MeOH, 35 | 01%)<br>5 w<br>℃ | Ŭ       |               |
|-------|-----------|---------------------------------------------------|------------------|---------|---------------|
| Entry | Time( h ) | 3a ( yield% )                                     | Entry            | Time(h) | 3a ( yield% ) |
| 1     | 1         | 8                                                 | 13               | 13      | 56            |
| 2     | 2         | 8                                                 | 14               | 14      | 56            |
| 3     | 3         | 15                                                | 15               | 15      | 62            |
| 4     | 4         | 15                                                | 16               | 16      | 62            |
| 5     | 5         | 25                                                | 17               | 17      | 65            |
| 6     | 6         | 25                                                | 18               | 18      | 65            |
| 7     | 7         | 37                                                | 19               | 19      | 71            |
| 8     | 8         | 37                                                | 20               | 20      | 71            |
| 9     | 9         | 45                                                | 21               | 21      | 76            |
| 10    | 10        | 45                                                | 22               | 22      | 76            |
| 11    | 11        | 50                                                | 23               | 23      | 84            |
| 12    | 12        | 50                                                | 24               | 24      | 84            |



Figure 7. Light on/off experiment

# 6. UV/Vis absorption spectra



Figure 8. UV – Visible absorption spectra of FeBr<sub>3</sub> and **1a** in CH<sub>3</sub>OH (under reaction ).

### 8. Characterization for all compounds



*3,4-dihydronaphthalen-1(2H)-one* (3a): The title compound was prepared according to the general procedure. Yellow liquid<sup>[4]</sup>.(100.45 mg, 86%; eluent: 10%-20% ethyl acetate/ Petroleum ether);<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, *J* = 7.7 Hz, 1H), 7.36 (t, *J* = 7.4Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.15 (d, *J* = 7.4 Hz, 1H), 2.85 (t, *J* = 5.2 Hz, 2H), 2.54 (t, *J* = 6.1 Hz, 2H), 2.06-1.99 (q, 2H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  198.15, 144.43, 133.31, 132.49, 128.75, 126.98, 26.51, 39.08, 29.60, 23.23.



2,3-dihydro-1H-inden-1-one (3b): The title compound was prepared according to the general procedure. Colorless liquid<sup>[5]</sup>.(98.17 mg, 93%; eluent: 10%-20% ethyl acetate/ Petroleum ether);<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (d, *J* = 7.5 Hz, 1H), 7.51 (t, *J* = 7.3 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.3 Hz, 1H), 3.05 (t, *J* = 5.2 Hz, 2H), 2.60 (t, *J* = 5.8 Hz, 2H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  207.12, 155.18, 136.96, 134.59, 127.21, 126.69, 123.58, 36.17, 25.76.



**9H-fluoren-9-one** (3c): The title compound was prepared according to the general procedure. yellow solid<sup>[4]</sup>.(123.41 mg, 86%; eluent: 10%-20% ethyl acetate/ Petroleum ether);<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 (d, J = 7.2 Hz, 2H), 7.50-7.43 (m, 4H), 7.27 (t, J = 7.1 Hz, 2H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  193.83, 144.30, 134.63, 134.00, 128.98, 124.15, 120.27.



*9-H-xanthen-9-one* (3d): The title compound was prepared according to the general procedure. White solid<sup>[4]</sup>.(130.21 mg, 83%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.33 (d, J = 7.9 Hz, 1H), 7.71 (t, J = 7.3 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.37 (t, J = 7.63 Hz, 1H); <sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 177.22, 156.14, 134.81, 126.70, 123.89, 121.81, 117.96.



**9H-thioxanthen-9-one (3e):** The title compound was prepared according to the general procedure. Yellow solid<sup>[4]</sup>.(143.10 mg, 85%; eluent: 10%-20% ethyl acet ae/Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.60 (d, J = 8.0 Hz, 2H), 7.67-7.52 (m, 4H), 7.50-7.41 (m, 2H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  17 9.95, 137.26, 132.24, 129.84, 129.20, 126.28, 125.96.



*Acetophenone* (3f): The title compound was prepared according to the general procedure. Colorless liquid<sup>[6]</sup>.(80.51 mg, 84%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (d, *J* = 7.4 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 2.60 (s, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  198.18, 137.07, 133.10, 128.56, 128.29, 26.63.



**Propiophenone** (3g): The title compound was prepared according to the general procedure. Colorless liquid<sup>[6]</sup>.(65.32 mg, 61%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, J = 7.4 Hz, 2H), 7.55 (t, J = 7.1 Hz, 1H), 7.46 (t, J = 7.4 Hz, 2H), 3.01 (q, J = 7.2 Hz, 2H), 1.23 (t, J = 7.2 Hz, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 200.84, 136.87, 132.87, 128.54, 127.96, 31.78, 8.24.



2-bromo-1-phenylethan-1-one (3h): The title compound was prepared according to the general procedure. Yellow liquid<sup>[4]</sup>.(85.47 mg, 54%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.96 (d, J = 7.3 Hz, 2H), 7.58 (t, J = 6.6 Hz, 1H), 7.47 (t, J = 7.4 Hz, 2H), 4.44 (s, 3H); <sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 191.26, 133.95, 130.18, 128.89, 128.86, 128.48, 31.10.



*Benzophenone* (3i): The title compound was prepared according to the general procedure. Yellow solid<sup>[4]</sup>.(123.42 mg, 85%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, *J* = 7.2 Hz, 4H), 7.55 (t, *J* = 7.3 Hz, 2H), 7.45 (t, *J* = 7.3 Hz, 4H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.65, 137.56, 132.43, 130.03, 128.29.



*1,2-Diphenylethan-1-one* (3j): The title compound was prepared according to the general procedure. White solid<sup>[4]</sup>.(81.75 mg, 52%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, *J* = 7.3 Hz, 2H), 7.62- 7.53 (m, 1H), 7.47 (t, *J* = 6.9 Hz, 2H), 7.38-7.31 (m, 2H), 7.29 (m, 3H), 4.30 (s, 2H);<sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  197.63, 136.57, 134.53, 133.18, 129.47, 128.68, 128.65, 128.61, 126.89, 45.51.



*N-(4-Oxo-4-phenylbutyl)benzamide* (3k): The title compound was prepared according to the general procedure. White solid<sup>[7]</sup>.(91.89 mg, 43%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (t, *J* = 3.2 Hz, 2H), 7.78 (t, *J* = 6.7 Hz, 2H), 7.56-7.46 (m, 1H), 7.47-7.41 (m, 2H), 7.41-7.39(m, 2H), 7.32-7.38 (m, 2H), 7.01 (s, 1H), 3.57-3.46 (m, 2H), 3.14-3.04 (m,, 2H), 2.12-2.00 (m, 2H); <sup>13</sup>C{<sup>1</sup>H} (100 MHz, CDCl<sub>3</sub>)  $\delta$  200.47, 167.65, 136.59, 134.42, 133.29, 132.00, 131.34, 128.62, 128.56, 128.48, 128.05, 127.38, 126.89, 39.95, 36.33, 23.48.



*1-(3,5-Diethylphenyl)ethan-1-one* (31): The title compound was prepared according to the general procedure. Yellow liquid<sup>[6]</sup>.(87.12 mg, 62%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (s, 2H), 7.19 (s, 1H), 2.62 (q, *J* = 7.4 Hz, 4H), 2.52 (s, 3H), 1.21 (t, *J* = 7.6 Hz, 6H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  198.25, 144.55, 137.36, 132.37, 125.18, 28.70, 26.58, 15.54.



*1,1'-(1,2-Phenylene)bis[ethanone]* (3m): The title compound was prepared according to the general procedure. Yellow liquid<sup>[8]</sup>.(58.01 mg, 45%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (s, 4H), 2.51 (d, *J* = 2.7 Hz, 6H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  201.84, 139.43, 131.10, 127.76, 28.75.



*1-(4-methoxyphenyl-1-one)* (**3n**): The title compound was prepared according to the general procedure. Yellow liquid<sup>[4]</sup>.(106.45 mg, 89%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (d, *J* = 8.8 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 3.85 (s, 3H), 2.54 (s, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.82, 163.45, 130.57, 130.26, 113.65, 55.44, 26.34.



[4-(tetraMethyl-1,3,2-dioxaborlan-2-yl)phenyl]ethan-1-one (30): The title compound was prepared according to the general procedure. White solid <sup>[4]</sup>.(107.95 mg, 54%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, 4H), 2.60 (s, 3H), 1.34 (s, 12H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  198.46, 138.91, 134.89, 127.25, 84.18, 26.75, 24.85.



*1-(4-nitrophenyl)ethan-1-one* (**3p**): The title compound was prepared according to the general procedure. Yellow solid<sup>[4]</sup>.(72.58 mg, 53%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.21 (s,2H), 8.06 (s, 2H), 2.62 (s, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.42, 150.20, 141.31, 129.29, 123.75, 26.94.



(3-Bromophenyl)ethan-1-one (3q): The title compound was prepared according to the general procedure. White solid<sup>[8]</sup>.(133.10 mg, 84%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (s, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.34 (t, *J* = 7.9 Hz, 1H), 2.59 (s, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.68, 138.74, 135.96, 131.36, 130.19, 126.84, 122.93, 26.65.



2-Acetyl-benzoic acid ethyl ester (3r): The title compound was prepared according to the general procedure. yellow liquid<sup>[9]</sup>.(139.45 mg, 91%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, J = 7.5 Hz, 1H), 7.51 -7.48 (m, 1H), 7.45-7.41(m,1H), 7.37 (t, J = 7.36 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 2.49 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.90, 142.66, 131.91, 129.95, 129.62, 129.00, 126.33, 61.62, 30.07, 13.96.



(2-Bromophenyl)ethan-1-one (3s): The title compound was prepared according to the general procedure. Yellow liquid<sup>[6]</sup>.(55.11 mg, 35%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (d, *J* = 7.9 Hz, 1H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.27 (t, *J* = 7.6 Hz, 1H), 2.60 (s, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  201.36, 141.36, 133.82, 131.81, 128.91, 127.45, 118.86, 30.33.



*Isochroman-1-one* (3t): The title compound was prepared according to the general procedure. Yellow liquid<sup>[4]</sup>.(61.45 mg, 52%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (d, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.3 Hz, 1H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.18 (d, *J* = 7.4 Hz, 1H), 4.42 (t, *J* = 5.8 Hz, 2H), 2.96 (t, *J* = 5.7 Hz, 2H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.12, 139.62, 133.67, 130.11, 127.55, 127.32, 125.13, 67.33, 27.68.



*tert-Butyl1-oxo-3,4-dihydroisoquinoline-2(1H)-carboxylate* (3u): The title compound was prepared according to the general procedure. Colorless liquid<sup>[10]</sup>.(65.24 mg, 33%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (d, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 7.0 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.20 (d, *J* = 7.4 Hz, 1H), 3.98 (t, *J* = 5.1 Hz, 2H), 2.99 (t, *J* = 5.1 Hz, 2H), 1.57 (s, 9H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.98, 153.12, 139.52, 132.84, 129.60, 127.20, 127.14, 83.22, 44.43, 28.31, 28.09.



*10,10'-Dianthronyl* (3v): The title compound was prepared according to the general procedure. White solid<sup>[11]</sup>.(160.51 mg, 52%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.92 (s, 4H), 7.41 (s, 8H), 6.85 (s, 4H), 4.76 (s, 2H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 183.00, 139.83, 133.72, 132.16, 128.47 , 127.90, 126.60, 54.31.



*2-Benzoquinonecarboxylic acid* (3w): The title compound was prepared according to the general procedure. White solid<sup>[9]</sup>.(125.9 mg, 70%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.60 (s, 1H), 8.01 (t, *J* = 11.8 Hz, 1H), 7.68 (d, *J* = 7.2 Hz, 2H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.51 (dd, *J* = 14.7, 7.1 Hz, 2H), 7.35(m, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 197.14, 170.81, 142.50, 136.93, 133.20, 130.82, 129.55, 129.37, 128.44, 127.94, 127.60.



*Benzaldehyde* (8): The title compound was prepared according to the general procedure. colorless liquid<sup>[12]</sup>.(27.20 mg, 32%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.99 (s, 1H), 7.86 (d, *J* = 7.0 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.4 Hz, 2H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  192.43, 136.33, 134.46, 129.72, 128.97.



*Benzyl methyl sulfoxide* (10): The title compound was prepared according to the general procedure. White solid<sup>[13]</sup>.(55.43 mg, 45%; eluent: 20%-30% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 (m, 3H), 7.23 (d, *J* = 7.1 Hz, 2H), 3.99 (d, *J* = 12.8 Hz, 1H), 3.88 (d, *J* = 12.8 Hz, 1H), 2.40 (s, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  130.02 , 129.62, 128.93, 128.40, 60.09, 37.18.



*Triphenylphosphine oxide* (11): The title compound was prepared according to the general procedure. White solid <sup>[4]</sup>.(137.85 mg, 62%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 7.53-7.7.59 (m, 6H), 7.35- 7..41(m, 3H), 7.28-7.34 (m, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 132.95, 131.99, 131.89, 131.87, 128.49, 128.37.



*Triphenylsilanol* (13): The title compound was prepared according to the general procedure. White solid<sup>[4]</sup>.(150.31 mg, 54%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.65 (d, *J* = 6.7 Hz, 6H), 7.50-7.43 (m, 3H), 7.35-7.41 (m, 6H), 2.98 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  135.06, 130.14, 127.94.



*N-9H-Xanthen-9-ylbenzamide* (16): The title compound was prepared according to the general procedure. White solid<sup>[14]</sup>.(45.56 mg, 19%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.75 (d, *J* = 7.2 Hz, 2H), 7.52 (d, *J* = 7.3 Hz, 2H), 7.45 (dd, *J* = 15.5, 8.4 Hz, 1H), 7.38 (t, *J* = 7.3 Hz, 2H), 7.29 (t, *J* = 7.3 Hz, 2H), 7.10 (t, *J* = 9.4 Hz, 4H), 6.71 (d, *J* = 8.5 Hz, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  166.49, 151.05, 133.90, 131.75, 129.67, 129.31, 128.58, 127.06, 123.60, 121.00, 116.64, 44.18.



*1-(2-Iodophenyl)ethanol* (17): The title compound was prepared according to the general procedure. Yellow liquid<sup>[15]</sup>.(39.70 mg, 20%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.78 (d, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.4 Hz, 1H), 6.95 (t, *J* = 7.5 Hz, 1H), 5.00-5.06 (m, 1H), 2.43 (s, 1H), 1.43 (d, *J* = 6.2 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  147.46, 139.28, 129.13, 128.73, 126.33, 97.21, 73.69, 23.75.

OMe OMe

*1-Methoxy-2-(1-methoxy-1-methylethyl)benzene* (18): The title compound was prepared according to the general procedure. Yellow liquid.(11.52 mg, 8%; eluent: 10%-20% ethyl acetate/ Petroleum ether); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.42 (d, *J* =

7.6 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 7.3 Hz, 1H), 6.91 (d, *J* = 8.3 Hz, 1H), 3.83 (s, 3H), 3.20 (s, 3H), 1.60 (s, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 157.39, 133.32, 128.12, 127.41, 120.30, 111.62, 77.02, 55.22, 50.56, 26.57.

### 8. Calculation details and optimized geometry of transition

# state TS<sub>AB</sub>

All DFT calculations included in the H-bond-assisted hydrogen atom abstraction is conducted under the tight criteria using (U)B3LYP/6-31G(d,p) in Gaussian 09 program<sup>[16]</sup>. The quintet state is carried out using unrestricted methods. The transition state **TS**<sub>AB</sub> and intermediates **A** and **B** are confirmed with one or zero imaginary frequency, respectively.

| TSAB |           |           |           |
|------|-----------|-----------|-----------|
| Fe   | -0.055949 | 0.123201  | -0.108376 |
| 0    | 0.052617  | 1.391349  | -1.692216 |
| 0    | 0.471321  | 2.583179  | -1.314992 |
| С    | 1.505539  | 1.800994  | 1.873063  |
| Н    | 1.713266  | 2.863353  | 2.031006  |
| Н    | 1.103250  | 1.379639  | 2.798229  |
| Н    | 2.432967  | 1.279642  | 1.611948  |
| 0    | 0.529042  | 1.666436  | 0.837714  |
| Н    | 0.616537  | 2.368195  | -0.175572 |
| Br   | -2.236585 | -0.471920 | 0.220025  |
| Br   | 1.611773  | -1.443158 | -0.143747 |

### 9.References

[1]L.Wang, T. Wang, G. Cheng, X. Li, X, J. Wei, B. Guo, C. Zheng, C. Chen, C. Ran and C. Zheng, *ACS Catal.*, 2020, **9**, 7543.

[2]J. Wang, Y.-B. Pang, N. Tao, R.-S. Zeng and Y. Zhao, J. Org. Chem., 2019, 84, 15315.

[3]J. Liu, K.-F. Hu, J.-P. Qu, Y.-B. Kang, Org. Lett., 2017, 19: 5593.

[4]K. Niu, X. Shi, L. Ding, Y. Liu, H. Song and Q. Wang, *ChemSusChem*, 2022, 15, e202102326.

[5]L. Kimberley, M. S. Alena, J. Li, J. H. Carter, X. Kang, G. L.Smith, X. Han, S. J.

Day, C. C. Tang, F. Tuna, E. J. L. McInnes, S. Yang and M. Schroder, *Angew. Chem. Int. Ed.* 2021, **60**, 15243.

[6]X. j. Zhu, Y. Liu, C. Liu, H. J. Yang and H. Fu, Green. Chem., 2020, 13, 4357.

[7]M. B. Zhou, M. Hu, Y. Yang, R.-J. Song, Dr. Xia and Dr. J.-H. Li, *Angew. Chem.*, Int. Ed. 2014, **53**.11338.

[8]L. R. Peacock, R. S. L. Chapman, A. C. Sedgwick, M. F. Mahon, D. Amans and S. D. Bull, *Org. Lett.*, 2015, 17, 994.

[9]B. Lu, M. Zhao, G. Ding, X. Xie, L. Jiang, V. Ratovelomanana and Z. Zhang, *Chem. Cat. Chem.*, 2017, **9**, 3989

[10]J. Dhankhar, M. D. Hofer, A. Linden and L. Coric, *Angew. Chem., Int. Ed.*,2022, 61, e202205470.

[11]Z. Shi and F. Glorius, Chem. Sci., 2013, 4, 829.

[12]J. Zhang, J. Du, C. Zhang, K. Liu, F. Yu, Y. Yuan, B. Duan and R. Liu, Org. Let. 2022, 24, 115

[13]T. Jia, A. Bellomo, K. E. L. Baina, S. D. Dreher, and P. J. Walsh, *J. Am. Chem. Soc.*, 2013, **135**, 3740.

[14]Y. Li, Y. Li, Y. Li, C. Chen, F. Ying, Y. Dong, D. Liang, Synth. Commun., 2019, 49, 2053.

[15]Y. C. Fan and O. Kwon, Org. Let., 2012, 14, 3264.

[16]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. o. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, d. n. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09*, Gaussian, Inc., Wallingford, CT, USA, **2009**.



10.Copies of <sup>1</sup>H and <sup>13</sup>C NMR spectra of products

































































